Dr. I. Michael Navon

Professor of Mathematics,
School of Computational Science and
Department of Mathematics,
Florida State University

Program Director,
Optimization and Optimal Control
















This page has been visited:    Hit Counter by Digits times since May 9, 2004

Publications

1978

  Abstract of Ph.D. Thesis I.M.Navon, University of the Witwatersrand, Applied Mathematics (1979)

   Application of a New Partly Implicit Time-Differencing Scheme for Solving the Shallow-Water Equations, I. M. Navon , Beitrage fur Physic der Atmosphere, , 51, , 281-305 (1978)

1979

  FESW - - a finite-element Fortran IV program for solving the shallow-water equations, I. M. Navon and U. Muller, Advances in Engineering Software , 1, No. 2, 77-86 (1979)

  ADI solution of the inverse balance equation over a non-rectangular region. , I. M. Navon Archiv Fur Meteorologie,Geophysik und Bioklimatologie,Ser A. , 28, , 39-52 (1979)

  Application of Fourth-Order Finite Differences to a Baroclinic Model of the Atmosphere, I. M. Navon and Z. Alperson, Archiv Fur Meteorologie,Geophysik und Bioklimatologie,Ser A. , 27, , 1-19 (1979)

  Finite-element simulation of the shallow-water equations model on a limited-area domain, I. M. Navon , Applied Mathematical Modelling , 3, No. 5, 337-348 (1979)

  ADIF, A FORTRAN IV Program for Solving the Shallow-Water Equations, I. M. Navon, Computers and Geosciences, 5, 19-39 (1979)

  An Implicit Compact Fourth Order Algorithm for Solving the Shallow Water Equations In conservation-Law Form, I. M. Navon and H.A. Riphagen, Monthly Weather Review, 107, No. 9,1107-1127 (1979)

1980

  A linear ADI method for the Shallow Water Equations , G. Fairweather and I. M. Navon , Journal of Computational Physics , 37, 1-18 (1980)

1981

  Implementation of A-Posteriori Methods for Enforcing Conservation of Potential Enstrophy and Mass in Discretized Shallow Water Equations Models, I. M. Navon, Monthly Weather Review, Vol 109, No 5 ,946-958 (1981)

1982

   A Numerov-Galerkin technique applied to a shallow-water equation model with exact conservation of integral invariants, I.M. Navon, Finite-Element Flow-Analysis, Tadahiko Kawai, Ed., North-Holland, 57-67, 1096 pp.(1982)

1983

  Conservation laws in fluid dynamics and the enforcement of their preservation in numerical discretizations. I.M. Navon In Numerical Solution of Partial Differential Equations: Theory, Tools and Case Studies.Edited by D.P.Laurie.International Series of Numerical Mathematics, Vol.66,Birkhauser Verlag Basel Boston -Stuttgart (1983)

  Combined Penalty Multiplier Optimization Methods to Enforce Integral Invariant Conservation, I. M. Navon and R. De Villiers Monthly Weather Review , 111, No. 6, 1228-1243 (1983)

  A Numerov-Galerkin Technique Applied to a Finite-Element Shallow Water Equations Model with Enforced Conservation of Integral Invariants and Selective Lumping, I. M. Navon , Journal of Computational Physics , 52, 313-339 (1983)

1984

  Computational Aspects of the Nonlinear Normal Mode Initialization of the GLAS 4th Order GCM .NASA Research Review 1983, I. M. Navon, S. Bloom, and L. L. Takacs NASA/TM 86053, Global Modeling and Simulation Branch, NASA/Goddard Space Flight Center, 106-113. (1984)

  Applications of augmented-Lagrangian methods in meteorology- comparative study of different conjugate-gradient routines for a large-scale problem. NASA Research Review 1983, I.M. Navon NASA/TM 86053, Global Modeling and Simulation Branch, NASA/Goddard Space Flight Center, 150-156. (1984)

1985

  1985: A review of variational and optimization methods in meteorology. I.M. Navon Proc. Int. Symp. on Variational Methods in Geosciences, Norman, OK CIMMS, 1-4, 128 pp.

1986

  GUSTAF: A Quasi-Newton Nonlinear ADI FORTRAN IV Program for Solving the Shallow-Water Equations with Augmented Lagrangians , I. M. Navon and R. De Villiers, Computers and Geosciences,12, No. 2, 151-173 (1986)

   SHALL4--An Implicit Compact Fourth-Order FORTRAN Program for Solving the Shallow-Water Equations in Conservation-Law Form, I. M. Navon and H.A. Riphagen, Computers and Geosciences, 12, No. 2, 129-150 (1986)

  A Comparison of the Bounded Derivative and the Normal Mode Initialization Methods Using Real Data, F.H.M. Semazzi and I. M. Navon, Monthly Weather Review, 114, No. 11, 2106-2121 (1986)

  A Review of Variational and Optimization Methods in Meteorology, I. M. Navon, Variational methods in Geosciences. Y.K. Sasaki Ed, Developments in Geomathematics 5. Elsevier Science Publishers, 29-35 (1986)

1987

  FEUDX: A Two-Stage, High-Accuracy, Finite-Element FORTRAN Program for Solving Shallow-Water Equations, I. M. Navon, Computers and Geosciences ,13, No. 3, 255-285 (1987)

  The Bayliss-Isaacson algorithm and the constraint restoration method are equivalent. , I. M. Navon, Meteorology and Atmospheric Physics ,37, , 143-152 (1987)

  Pent: A periodic pentadiagonal solver, I. M. Navon,Communications in Applied Numerical Methods., Vol 3 , pp 63-69. (1987)

   The application of the Turkel-Zwas explicit large time step scheme to a hemispheric barotropic model with constraint restoration, I. M. Navon and R. de Villiers, Monthly Weather Review, 115, No. 5, 1036-1051 (1987)

  Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology, I. M. Navon and David M Legler, Monthly Weather Review , 115, No. 4, 1479-1502 (1987)

1988

  Variational and Optimization Methods in Meteorology: A Review, F.X. Le Dimet and I. M. Navon, 1988 Technical Report: Early Review on Variational data assimilation, SCRI report, No 144, 83 (1988)

   A review of finite-element methods for solving the shallow-water equations , I. M. Navon, 1988 Proceedings of the International Conference on Computer Modelling in Ocean Engineering, Problems and Solutions in Coastal and Offshore Systems, Venice, Island of San Servolo, 19-23 September 1988 , SCRI report, No 49,7pp (1988)

   Vectorization of conjugate-gradient methods for large-scale . Minimization I. M. Navon,P. K. H. Phua and M. Ramamurthy: Proceedings Supercomputing '88, November 12-17, 1988, Orlando, FL, USA. IEEE Computer Society 1988, 410-418 (1988)

1989

  Objective Analysis of Pseudostress over the Indian Ocean using a direct minimization Approach David M Legler, I. M. Navon, and James J. O'Brien, Monthly Weather Review, 117, No. 8, 709-720 (1989)

  Determination of the Structure of Mixed Argon-Xenon Clusters Using a Finite-Temperature, Lattice Based Monte-Carlo Method, D.H. Robertson, B.F. Brown, and I.M. Navon, Journal of Chemical Physics , 90, No. 6, 3221-3229 (1989)

  Analysis of the Turkel-Zwas Scheme for the Shallow-Water Equations, B. Neta and I.M. Navon, Journal of Computational Physics , 81 , 277-299 (1989)

1990

  Combined Simulated-Annealing and Limited-Memory Quasi-Newton Methods for Determining Structure of Mixed Argon-Xenon Molecular Clusters, I.M. Navon i, F. Brown, and D.H. Robertson, Computers and Chemistry , 14, No. 4, 305-311 (1990)

   Vectorization of Conjugate-Gradient Methods for Large-Scale Minimization in Meteorology, I. M. Navon, P. K. H. Phua and M. Ramamurthy Journal of Optimization Theory and Applications, 66 No 1 , 71-93 (1990)

  Finite element schemes for extended integrations of atmospheric models , J. Steppeler, I. M. Navon and H-I. Lu Journal of Computational Physics, 89 No 1 , 95-124 (1990)

1991

  VARIATM--A FORTRAN Program for Objective Analysis of Pseudostress Wind Fields Using Large-Scale Conjugate-Gradient Minimization, David M Legler and I. M. Navon, Computers and Geosciences, 17, No. 1, 1-21 (1991)

  EXSHALL:A Turkel-Zwas Explicit Large Time Step FORTRAN Program for Solving Shallow-Water Equations in Spherical Coordinates, I. M. Navon and Jian Yu, Computers and Geosciences, 17, No. 9, 1311-1343 (1991)

1992

  The Second Order Adjoint Analysis:Theory and Applications, Zhi Wang, I. M. Navon, F.X. Le Dimet and X. Zou, Meteorology and Atmospheric Physics, 50, No. 3, 3-20 (1992)

  Incomplete Observations and Control of Gravity Waves in Variational Data Assimilation, X. Zou, I. M. Navon and F.X. Le Dimet, Tellus A, 44A, 273-296 (1992)

  Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model, I. M. Navon, X. Zou, J. Derber, and J. Sela, Monthly Weather Review, 120, No. 7, 1433-1446 (1992)

  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, X. Zou, I.M.Navon, and F.X. LeDimet, Quarterly Journal of the Royal Meteorological Society, 118, 1193-1186 (1992)

  A comparison of the impact of two time differencing schemes of the NASA-GLAS Climate Model. , Richard L Pffefer, I.M.Navon, and X. Zou, Monthly Weather Review, 120, 1417-1432 (1992)

  Conjugate-Gradient Variational Analysis and Initialization Method: An Application to MONEX SOP-2 Data, M. K. Ramamurthy and I. M.Navon, Monthly Weather Review, 120, No. 10, 2360-2377 (1992)

1993

  Numerical Experience with Limited Memory Quasi-Newton and Truncated Newton Methods, X.Zou, I. M. Navon, M. Berger, K.H. Phua, T.Schlick, and F.X. Le Dimet, SIAM Journal on Optimization, 3, No. 3, 582-608 (1993)

  An Adjoint Sensitivity Study of Blocking in a Two-Layer Isentropic Model, X. Zou,A. Barcilon, I. M. Navon J. Whitaker and D.G. Cacuci, Monthly Weather Review , 121, No. 10, 2833-2857 (1993)

  Domain decomposition and parallel processing of a finite element model of the shallow water equations, I. M. Navon and Y. Cai, Computer Methods in Applied Mechanics and Engineering, 106, 179-212 (1993)

  Variational data assimilation with a semi-Lagrangian semi-implicit global shallow water equation model and its adjoint, Y. Li, I. M. Navon, P. Courtier and P. Gauthier Monthly Weather Review, 121, No. 6, 1759-1769 (1993)

  VARIATIONAL DATA ASSIMILATION WITH 2-D SHALLOW WATER EQUATIONS AND 3-D FSU GLOBAL SPECTRAL MODELS Zhi Wang Doctoral Dissertation , Dept. of Mathematics, FSU (1993)

  Variational data Assimilation with Moist Threshold Processes using the NMC Spectral Model, X. Zou, I. M. Navon, and J.G. Sela, Tellus A, 45A, 370-387 (1993)

  Control of Gravity Oscillations in Variational Data Assimilation, X. Zou, I. M. Navon, and J.G. Sela, Monthly Weather Review, 121, No. 1, 272-289 (1993)

1994

  Variational Data Assimilation with a Variable Resolution Finite-Element Shallow-Water Equations Model, Keyun Zhu, I. M. Navon, and X. Zou, Monthly Weather Review, 122, No. 5, 946-965 (1994)

  Parallel Domain-decomposed Preconditioners in Finite-Element Shallow-Water Flow Modeling, Y.Cai and I. M. Navon, Seventh International Conference on Domain Decomposition, 1993, David E. Keyes and J Xu Editors, AMS Series of Contemporary Mathematics,180,, 471-476 (1994)

  DOMAIN DECOMPOSITION ALGORITHMS AND PARALLEL COMPUTATION TECHNIQUES FOR THE NUMERICAL SOLUTION OF PDE'S \VITH APPLICATIONS TO THE FINITE ELEMENT SHALLOW WATER FLOW MODELING , Y.Cai PhD dissertation,FSU, Dept of Mathematics. ,(1994)

   4-D Variational Data Assimilation Experiments with a Multilevel Semi-Lagrangian Semi-Implicit GCM, Yong Li, I.M.Navon, W. Yang, X.Zou, J.R. Bates, S.Moorthi, and R.W. Higgins, Monthly Weather Review , 122, No. 5, 966-983 (1994)

  Variational Data Assimilation: Theory and Applications. X. Zou and I.M. Navon.,Environmental Modeling Volume II,Computer Methods and Software for Simulating Environmental Pollution and its Adverse Effects, P. Zannetti, editor, 279-325 (Computational Mechanics Publications, (1994)

1995

  A Truncated Newton Optimization Algorithm in Meteorology Applications with Analytic Hessian Vector Products, Zhi Wang, I. M. Navon, X. Zou, and F.X. Le Dimet, Computational Optimization and Applications, 4, 241-262 (1995)

   Sequential Open-Boundary Control by Data Assimilation in a Limited Area Model, Jieping Zou, W. H. Hsieh, and I. M. Navon, Monthly Weather Review, 123, No. 9, 2899-2909 (1995)

  Sensitivity Analysis in Variational Data Assimilation ,F.X. Le Dimet ,H.E. Ngodock and I.M. Navon SCRI Technical Report 95-103 (1995)

   Parallelizable Preconditioned Conjugate Gradient Methods for the Cray Y-MP and the TMC CM-2, William H. Holter, I. M. Navon, and Thomas C. Oppe, Proc 2nd Int Coll on Numerical Analysis (Bainov D, Covachev V. Eds) VSP International Science Publishers, Zeist, The Netherlands, 155-164 (1994)

   Parallel Block Preconditioning Techniques for the Numerical Simulation of Shallow-Water Flow Using Finite-Element Methods, Y. Cai and I. M. Navon, Journal of Computational Physics, 122, 39-50 (1995)

  Variational Data Assimilation, Optimal Parameter Estimation and Sensitivity Analysis for Environmental Problems., I.M. Navon, Computational Mechanics '95, Vol 1, Atluri, Yagawa and Cruse Eds., Springer Verlag, 740-746 (1995)

   The Linearization and Adjoint of Radiation Transfer Processes in the NMC Spectral Model Part I: Solar Radiative Transfer, J. Zou and I. M. Navon, Meteorology and Atmospheric Physics, Vol 58,193-203 (1996)


School of Computational Science, Dirac Science Library, Florida State University, Tallahassee FL 32306-4120
Last modified: January 18, 2005 *** Email-us
©2005 School of Computational Science