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Abstract-This paper shows how various limited-memory quasi-Newton large-scale unconstrained 
minimization methods can be used to speed up the location of global minima of potential energy surfaces 
related to the structures of mixed Ar-Xe clusters. Both a simulated annealing method and a finite- 
temperature lattice-based Monte Carlo method are accelerated by the various quasi-Newton limited- 
memory methods which are then compared for computational efficiency. 

1. INTRODUCTION 
Atomic and molecular clusters play important roles 
in a number of phenomena including astrophysical 
processes, atmospheric reactions, nucleation and 
catalysis. Clusters are also intrinsically important 
in any fundamental theory of matter as they form 
a natural bridge between isolated atoms and mol- 
ecules on the one hand, and liquids and solids on the 
other. 

It has been known for a long time that the struc- 
tures of small clusters in the gas phase generally differ 
from t!he packing structure of the substance in its 
crystalline form (Germer, 1939). During the past 50 
years a number of schemes and methods have been 
employed to try to determine and understand the 
equilibrium structures of clusters. [A brief summary 
of this previous work is given in Robertson et al. 
(1989)]. 

From a molecular viewpoint, the potential energy 
of the ground state of the cluster can be described by 
a hypersurface or potential energy surface (PES) of 
large dimensionality (3N - 6, where N is the number 
of atoms in the cluster). The structure of the cluster’s 
most stable conformation is the geometry corre- 
sponding to the global minimum of the cluster’s PES. 
Determining the global minimum of a particular PES 
is complicated by the fact that these PESs contain 
many local minima, and, in fact, the number of 
local minima grows exponentially with N (Hoare & 
McInnes, 1983). Therefore, to determine the energy- 
optimiaed structures of these clusters, one must 
emplo 

1 
a method that will locate the gIobal minimum 

on a P S and not become trapped in one of its many 
local rdinima. 

One, of the few optimization methods that is 
capablq of locating the global minimum of a hyper- 
surfacelcontaining multiple local minima is the simu- 

lated annealing (SA) method (Kirkpatrick et al., 
1983). Wille (1987) has recently used this method in 
conjunction with a local minimization algorithm 
of the PARTAN (Shah et al., 1964) type, to deter- 
mine the energy-optimized geometries of rare gas 
clusters (RGCs) containing up to 25 atoms. In this 
study, the PESs were constructed from pairwise- 
additive, Lennard-Jones (L-J) potentials. Using 

these methods, Wille discovered new, energy-opti- 
mized conformations for RGCs containing 23 and 25 
atoms as compared to those previously reported by 
Hoare & Pal (1971). 

Northby (1987) has recently studied the structures 
of L-J RGCs containing from 13 to 147 atoms using 

a lattice-based searching method followed by a local 
minimization algorithm of the PARTAN type. In a 
similar vein, the present authors (Robertson et al., 
1989) have developed the finite-temperature lattice- 
based Monte Carlo (FTLBMC) method for deter- 
mining optimized structures of mixed RGCs 
containing both Xe and Ar atoms. The FTLBMC 
method is designed for investigating clusters that 
have an underlying structure (namely, that of the 
corresponding cluster containing the same number of 
atoms-but only one type of atom) which is relaxed 
or perturbed in the mixed RGC because of the 
presence of the two different types of atoms. In the 
present paper, we discuss the algorithmic details 
of the FTLBMC method and the particular local 
optimization methods that we employed in these 
studies and compare the efficiency of this method 
with the SA method. 

The remainder of the paper will be organized as 
follows. Section 2 will define the PES used to model 
the atomic interactions. Section 3 will present the 
SA algorithm coupled with a local minimizer and 
Section 4 will discuss the numerical results obtained 
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from this algorithm. The FTLBMC algorithm will be 
presented in Section 5 and a comparison of the four 
local minimizers used in the FTLBMC method will 
be discussed in Section 6. A brief summary of the 
limited-memory quasi-Newton methods used will be 
given in Section 7 and finally, the overall conclusions 
will be presented in Section 8. 

2. THE POTENTIAL ENERGY SURFACES (PESs) 

The PESs used to model the RGCs in this study 
consisted of pairwise-additive L-J two-body poten- 
tials. The interaction between the two atoms i andj 
which are separated by a distance, rq is given by 

(1) 

where zlii is the potential in units of the well depth, 
and t: and m are parameters for the pair of inter- 
active atoms which were used in our previous work 
(Robertson et al., 1989). The PES for a cluster 
containing N atoms is given by 

N--l N 

V(rN) = c c u& - t#_ (2) 
n=i j=i+l 

As indicated in the introduction, these types of PESs 
contain very large numbers of local minima even for 
quite small clusters. For example, for a cluster of 
size N = 13, there are 998 minima known (Hoare & 
Mclnnes, 1983). 

3. THE SIMULATED ANNEALING (SA) 
ALGORITHM 

One of the few optimization algorithms capable 
of determining a global minimum is the simulated 
annealing algorithm. The method was first applied 
for discrete combinatorial optimization problems 
(Kirkpatrick et al., 1983). Vanderbilt & Louie (1984) 
extended the method to problems with continuous 
variables. Consider a function E(x,, x1, _ . . ,x,,) 
defined over the n-dimensional parameter space. We 
wish to minimize E w.r.t x, where E is the energy 
of the physical system for example. 

The Metropolis et al. (1953) Monte-Carlo algoritm 
proceeds by choosing an initial starting point x0 
and making random steps Ax. At each step the 
change 

AE = E(x + Ax) - E(x) (3) 

in the objective function is evaluated. If AE is nega- 
tive, the step is accepted. If AE is positive, the step is 
accepted with a probability 

p = exp( - AE/T). (4) 

The series of accepted steps generates a random walk 
which explores the parameter space. The parameter T 
plays the role of temperature: i.e. as T is decreased 
slowly the volume R(T) of the phase space with 
nonnegligible P(x) [where P(x)d”x is the probability 

that the random walk will be in the volume d”x on 
any given step at long times] shrinks until the system 
is eventually forced to anneal into the configuration 
of lowest E. 

If the annealing is carried out slowly enough, the 
system will avoid being trapped into local minima as 
the method accepts steps which increase E tempor- 
arily to get over a barrier into a new local minimum, 
i.e. the algorithm is not confined to a single catchment 
region. At each temperature T random steps are 
generated using a random number generator. 

The size of the steps should be such that approxi- 
mately half of the steps are accepted. [See Vanderbilt 
& Louie (I 984) for typical techniques.] The number 
M of random steps in the random walk at a given 
temperature should be chosen large enough so as to 
generate reasonable statistics so that representative 
regions of the parameter space are sampled. A factor 
xr by which the temperature is reduced after each 
random walk was chosen to be 0.9. As soon as the 
energy dropped below a certain value, determined 
from a preliminary simulation, we switched to an 
efficient memoryless quasi-Newton-like conjugate- 
gradient algorithm for local minimization. This 
procedure was carried out in the hope to gain compu- 
tational efficiency by saving many function evalu- 
ations when the current point is close to the final 
(global) minimum and the temperature is too low to 
allow an escape from its catchment region. As an 
additional research guide, we applied the conjugate- 
gradient local minimizer at the end of each random 
walk, to gain information about the depth of the local 
minimum [See the Appendix for a flowchart of SA 
with the local minimizer algorithm.] 

In our numerical experiments we will aim to quan- 
tify the computational savings and efficiency in terns 
of CPU time between this coupled procedure vs the 
classical SA method applied to this global minimiza- 
tion problem. 

4. NUMERICAL RESULTS 

In order to test the impact of the computational 
gains of the implementation of the SA in conjunction 
with the conjugate-gradient local minimizer we tested 
a case of a mixed Ar-Xe cluster with 19 atoms 
consisting of 10Xe and 9Ar atoms. 

The SA performed 6000 steps per walk with an 
initial temperature of 0.6, scaled in intervals of energy 
units of 120 K, and a temperature lowering factor of 
0.9 down to a final temperature of 0.2. The SA 
algorithm {see Kirkpatrick er al., 1983) on its own 
required 3267 s of CPU time on a VAX-8700 to 
reach the global minimum, whereas the SA algorithm 
in conjunction with the local minimizer took only 
682 s of CPU time to locate the same global mini- 
mum, i.e. a ratio of 4.79 speed-up. This ratio was 
typical for many other experiments with various 
numbers of atoms. Only about -=z 1% of the total 
computer time for cluster optimization was spent in 
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Fig. I. Application of the SA method to determine global minima of the PES with and without the 
conjugate-gradient local minimizer when the SA algorithm reaches low energies (low temperatures). 

the limited memory quasi-Newton-like conjugate- 
gradient program (Shanno & Phua, 1980). (See also 
Fig. 1 for the impact of the conjugate-gradient local 
minimizer on the critical SA low-temperature slow- 
down.) 

5. FINITE-TEMPERATURE LATTICEBASED 
MONTE-CARLO METHOD (FTLBMC) 

The SA method proves to he computationally 
expensive in terms of the number of evaluations 
of the potential energy. This is due, in part, to the fact 
that lofig walks must be. performed at each tempera- 
ture to ensure that representative regions of the 
configurational space have been sampled. A more 
efficient approach was suggested by the works of Li 
& Schsraga (1987) and Saunders (1987). They pro- 
posed a Monte-Carlo sampling strategy which 
samplea only the minima of the PES rather than 
walking over all of the PES. They sampled from 
minimum to minimum by random displacements in 
the coordinates of the structure, followed by sub- 
sequent optimization to the nearest minimum from 
this distorted structure. The acceptance of the new 
minimum energy structure was based on the 
Metropolis er al. (1953) algorithm. The random step 
sizes were adjusted so that the acceptance ratio was 
approx. 0.5 to allow for maximum information to be 
obtained as in normal Monte-Carlo calculations. 

The hbove ideas were used in the formulation 
of the FTLBMC method for the search of the 
global energy minimum of the mixed Ar-Xe RGC 
(Rober$&m er al., 1989). The underlying premise of 
the FTWMC method is that the global minimum for 

the mixed or heterogeneous cluster is a distortion 
from the global minimum of the pure or homo- 
geneous cluster containing only one type of atom. 
(See Fig. 2 for two representative mixed Ar-Xe 
clusters.) Therefore, the FTLBMC method uses the 
structure of the N atom pure RGC, Ar,, as the 
underlying lattice for the mixed cluster global energy 
minimum search. The number of Xe atoms present in 
the mixed N atom RGC are randomly mapped onto 
the positions of Ar atoms in the pure structure (or 
lattice) and then. since this structure is not in equi- 
librium due to the different optimal lengths of the 
Ar-Xe and Xe-Xe bonds, a local optimizer, is called 
to minimize the energy of this structure. This now 
gives an energy optimized structure, S, , with energy 
E, . Then using the unoptimized lattice, a random pair 
of Ar and Xe are interchanged and the structure is 
optimized to generate a new structure, S,, with 
energy E2. The acceptance of the new structure is 
based on the Metropolis criteria and the procedure 
continues until a set number of new structures have 
been sampled. (See Fig. 3 for a plot of the minima 
sampled as a function of the step number.) The upper 
bound for the global energy minimum is then taken 
as the lowest energy structure found during the 
calculation. As in the above work, the main difference 
between the FTLBMC and SA methods is that the 
FTLBMC method samples and compares only the 
minima on the PES while the SA method samples any 
accessible point on the PES. (See the Appendix for a 
flowchart of the FTLBMC algorithm.) 

The use of random interchanges as opposed to a 
systematic search of the lattice is due to the factorial 
nature of the number of possible configurations as the 
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Fig. 2. The energy optimized structures of the Ar,Xe, and ArIXe, mixed RGCs. The hatched and open 
circles represent Xe and Ar atoms, respectively. The perspccti4e is directly along the axis containing the 

apex atoms; there is an additional Xe atom hidden directly below the central Xe atom. 

size of the cluster is increased. The temperature in the 
Metropolis acceptance criteria was used to modify 
the acceptance ratio as in other Monte-Carlo calcu- 
lations. For the most efficient sampling of the lattice, 
the temperature must not be so high that there are too 
many accepted steps or too low so that the region of 
configuration space sampled is limited. The possi- 
bility of being trapped in a local minimum for a long 
time is also present at temperatures that are too low. 
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Thus for our calculations, a temperature of 0.5 (60 K) 
was found to give an acceptance ratio of approx. 0.5. 
As in the SA algorithm, one should run the FTLBMC 
method several times using different sets of random 
numbers to increase the probability that the lowest 
minimum energy is the desired global minimum. 

Numerically, the FTLBMC method peforms 
faster than either the SA algorithm alone or the SA 
algorithm combined with a local minimizer. This is 
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Fig. 3. The FTLBMC method using CONMIN as the local minimizer, displaying the minima of the PES 
as a function of the number of steps in the FTLBMC method. 
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due to the fact that for moving specific pairs of atoms 
in the mixed Ar-Xe clusters it takes many concerted 
moves oE specific atoms to produce the desired inter- 
change in positions of a pair of Ar-Xe atoms. For the 
typical case, the FTLBMC method outperforms the 
best SA method by a factor of 25-i.e. taking about 
17 CPU s on a CYBER-205 as opposed to 420 s of 
CPU timv for the best scenario SA algorithm acceler- 
ated by a local minimizer. As opposed to the SA 
algorithm with a minimizer, where only about 1% of 
the time is spent in local minimization, the bulk of the 
CPU time in the FTLBMC method is consumed in 
the local minimization, and the FTLBMC method, 
therefore,. provides a vehicle to find the best local 
minimizer for this and similar problems. 

6. COMPARISON OF DIFFERENT LOCAL 
MINIMIZERS IN THE FTLBMC ALGORITHM 

In this test we decided to use three different 
limited-memory quasi-Newton-like conjugate-gradient 
methods as our local minimizers. These included the 
Shanno & Phua (1980) CONMIN code, found by 
Navon & Legler (1987) to be a very robust and 
reliable code for large-scale nonlinear minimization, 
the E04DGF method which is the NAG 12 (1988), 
update implementation of the PLMA method of Gill 
& Murray (1979) and, finally, a new code which was 
made available to us by Dr Jorge Nocedal of North- 
western tiniversity (see Liu & Nocedal, 1988). 

This code implements a limited-memory Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) (see Luenberger, 
1984) quasi-Newton method called L-BFGS. It uses 
a number m of BFGS corrections stored as a function 
of memory availability and uses them in a circular 
way, i.e. the oldest correction is deleted and the 
newest one is inserted. During the first M iterations 
this method is identical to the BFGS method, while 
for k 1 m, the Hessian is obtained by applying m 
BFGS updates to H,,-a sparse symmetric positive 
definite datrix which may be chosen as the identity 
matrix. 

Apart from the CONMIN, E04DDGF and 
L-BFGS we also tried the quasi-Newton method 
with BFGS updates from the CONMIN routine of 
Shanno & Phua (1980). The results are summarized 
in Table I. 

For the numerical results in Table I, two basic 
trends emerge. As far as the number of iterations 
to convegence is concerned (using the stopping 
criteria I/ gl 11 i 10m5 - max(l, )/ xI /I), where 11 a If denotes 
the Euclidian norm), the Shanno & Phua (1980) 
CONMIN algorithm emerges as the first. It is 
followed closely by the L-BFGS method of Liu & 

Table I Co(nparison of different limited-memory quasi-Newton 
locnl minimizers 

Quasi-Newton CONMIN E04DGF L-BFGS 

CPU (S) 68.11 19.78 20.78 15.94 
Average ND. of 70.6 27.2 31.20 29.60 

iterations 

Nocedal (1988) (with the number of BFGS updates, 
m = 5) and then by the E04DGF algorithm of Gill 
& Murray (1979). The performance of the BFGS 
method for this particular test problem was particu- 
larly poor. 

Let us define the iteration time as the time needed 
to generate the search direction, perform the line- 
search and test convergence as well as the time to 
evaluate the function and its gradient. The ranking of 
the limited-memory quasi-Newton methods by CPU 
time differs from the ranking by the number of 
iterations. 

The L-BFGS algorithm is the fastest, foIlowed by 
the CONMIN algorithm and then by the E04DGF 
algorithm. The quasi-Newton BFGS method is 
totally outperformed in this case, requiring about 
a factor of 3 more CPU time. This is a problem- 
dependent result and more research is required into 
the structure of the Hessian of our problem to 
determine the reasons of the poor results with the full 
quasi-Newton BFGS method. In the ranking of 
L-BFGS, CONMIN and EO4DGF algorithms, our 
results agree with the recent results of Liu & NocedaI 
(1988). 

7. LIMITED-MEMORY QUASI-NEWTON 
METHODS 

Limited-memory quasi-Newton methods can be 
viewed as an extension of the conjugate-gradient 
methods in which addition of modest storage serves 
to accelerate convergence of large-scale uncon- 
strained local minimization. They were first proposed 
by Perry (1976, 1978) and generalized by Shanno 
(1978a, b). The memoryless (or limited-memory) 
quasi-Newton method is based upon the idea of 
computing the direction of search 

h = akdkr 

where 01~ is the step-size, as 

(5) 

--H&n-, (6) 

where Hk is an approximation to the inverse Hessian 
of the functionalf(x,) we wish to mimimize, while g, 
is the gradient of f(xr.). For limited-memory quasi- 
Newton methods there is a symmetric matrix 
obtained by updating the identity matrix f with a 
limited number of quasi-Newton updates all consist- 
ing of rank-two matrices. 

The matrix Hk is never computed explicitly, nor 
stored, and the only additional storage consists of 
vectors defining the updates. Various limited-memory 
quasi-Newton methods may be defined, depending on 
the number of updating vectors stored (see Nazareth, 
1979). Shanno (1978a, b) developed his iimited- 
memory quasi-Newton method by using an obser- 
vation of Perry (1976, 1978) that if 
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where yk = gk+ , - gk, then the new direction of 
search, dk + , , is given by 

%+I = -g,,,+&dk= - (8) 

If one denotes 

%=a,d,=x,+,-xx, (9) 

the new search direction using 

d, = -Hkgk (quasi-Newton conditions) (10) 

as 

d,+, = -&+I [(l+g)*-%lpk 

one can show that for exact line-searches this formula 
[i.e. the limited-memory quasi-Newton method of 
Shanno (1978a)l generates mutually conjugate direc- 
tions. 

Shanno & Phua (1980) proposed an implemen- 
tation of the above algorithm, i.e. the CONMIN 
algorithm, which required the storage of seven vec- 
tors of length N for x~. xc+, , a, gk+ I, dk, d, and 
y,. Here d, and yI are two vectors storing the Beale 
(1972) restart method designed to accelerate conver- 
gence for general functions where there is loss of 
conjugacy. 

Gill h Murray (1979) proposed a two-step BFGS 
(see Luenberger, 1984) limited-memory quasi- 
Newton method with preconditioning which was 
implemented in the NAG-12 (1988) update software 
library in the code EWDFG. In their preconditioning 
they use a scaling based on recurring the diagonal of 
the Hessian approximation produced by the direct 
BFGS formula. 

Nocedal (1980) and Liu & Nocedal (1988) 
proposed a limited-memory BFGS quasi-Newton 
method which uses a variable amount of storage. 
In their approach, the quasi-Newton matrix (the 
approximation to the inverse Hessian) is updated 
at every iteration in a circular way by dropping 
the oldest information and replacing it by the 
newest information. Finally, Buckley & Lenir 
(1983, 1985) and Buckley (1989) proposed a quasi- 
Newton limited-memory method with variable stor- 
age, which falls back on the usual limited-memory 
Shanno & Phua (1980) method when the available 
storage has been exhausted resulting in a combined 
conjugate-gradient and quasi-Newton method. All 
of these methods have been found to be extremely 
efficient for large-scale unconstrained minimization 
since they allow the user to exploit his available 
storage in the most optimal way, by using only a 
small number of additional vectors of length N, 
where N is the number of variables of the functional 

to be mimimized. In addition, they perform very well 
with inaccurate line-searches. 

8. CONCLUSIONS 

An investigation was conducted to determine the 
energy-optimized structures of mixed RGCs contain- 
ing both Ar and Xe atoms. An SA procedure was 
improved and speeded up by using a highly efficient 
conjugate-gradient as a local minimizer. 

The FTLBMC procedure related to the discretized 
SA was developed to study clusters which have the 
underlying structure of pure RGCs. This method uses 
heavily the local minimizer to sample the lowest 
energy minima on the PES and is significantly 
faster than the SA method combined with a local 
minimizer. 

In general we achieved speed-ups of a factor of 20 
or more. For this method where the bulk of CPU time 
is spent in local minimizations we compared the 
quasi-Newton method with BFGS updates and 
three limited-memory quasi-Newton-like conjugate- 
gradient methods, namely CONMIN, E04DGF and 
a new method L-BFGS, proposed by Liu & Nocedal 
(1988), which will be included in the Harwell numeri- 
cal optimization library. The L-BFGS emerged as the 
best performer for this particular problem. 
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APPENDIX 

SA Algorithm 

Main Alrorithm: Sin& Stev: 

temperature, T 
geometry, S,. energy, E, 

randomly change 
one coordinate, 
%.i?=s+ti 
MW energy, E-2 

call local optimizer 
to optimize lowest energy 

lower temperature, T 
S,=S,;E,=E, 

Scheme Al 

FTLBMC Merhod 

initial Ar base 
StrUChtre 

cali local optimizer 
optimize energy, E, 

M interchanges: end? 

Scheme A2 


