
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from a~ type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely_ event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indic;;.te

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly
to order.

U·M·I
University Microfilms International

A Bell & Howell lnlormat1on Company
300 North Zeeb Road. Ann Arbor. Ml 48106· 1346 USA

313~761-4700 800:521·0600

Order Number 9432613

Domain decomposition algorithms and parallel computation
techniques for the numerical solution of PDE's with applications
to the finite element shallow water Bow modeling

Cai, Yihong, Ph.D.

The Florida State University, 1994

Copyright ©1994 by Cai, Yihong. All rights reserved.

U·M·I
300 N. Zceh Rd.
Ann Amor. Ml 481 OCl

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

DOMAIN DECOMPOSITION ALGORITHMS AND PARALLEL

COMPUTATION TECHNIQUES FOR THE NUMERICAL

SOLUTION OF PDE'S \VITH APPLICATIONS TO THE FINITE

ELEMENT SHALLOW WATER FLOW MODELING

By

YIHONG CAI

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 1994

Copyright © 1994
Yihong Cai

All Rights Reserved

The members oft he Commit tee appro\·e the dissertation of Yihong Cai d<'fc'nded

on June ! :>. 1991.

I. ~lichael l\'arnn

Professor Directing Dissertation

\~J.G))-WM
~.O'Brien
Outside Committee :\lember

David :\. Kopriva

Committee ;\lember

~&n;#~·
Committee :\lcmber

To my lowly fiann'.·e Dr. Xiang Yang Yu, my IH'lovcd mother Xiuxia Huang.

father Xiaota Cai. sisters i\ingning, Xiaoning and brother Yijian.

111

ACKNO\VLEDGEMENTS

I would like to express my dPepest gratitude to Prof. ~Iichael ~avon, my dissN

tation advisor, for his tireless guidance, encouragement. support and trust. I hav<'

greatly benefited, for the entire pc•riod of 111y Ph.D. study and n•search, from his

thorough knowledge, innovatiw ideas and deep insight in both numerical analysis

and scientific computing. lie has constantly sen·ecl a:; a source of novel ideas and

has always led me in the right direction. Without his unending advice and dedi

cation to sci<'nce and education, I can hardly imagine that I could have compl<'lcd

several research projects in these• new and exciting areas of domain decomposition

and parallel computing. llis influence on HJ(' will certainly play an important rol<'

in my fut tm• professi;mal career.

I feel very much obliged to Prof. David Kopriva and Dr. Thomas Oppc for so

111any helpful professional discussions as well as unforgettable personal conversations

and encouragement. I am deeply impressed by their knowledge in numerical analysis

and applied sciences.

I am grateful to Prof. David Keyes (ICASE, NASA Langley IksParch Center) for

his invaluable comments on the early draft of Chapter 6 during my visit to I CASE

in February, l!)!H.

This research is not possible without tlw Ion\ understanding and tolerano· of my

fiancce Dr. Xiang Yang Yu and my family. They have bec·n making my life· so inter

esting, wonderful and secure. I would also like to express my dreprst appreciation

to my two aunts, Prof. Siu-Chi Huang and ~lrs. Si11-Li<'n Ts11ng. Tlwy ar<' so sp<'cial

and have been giving me and my family so much love. En•r since I was a collcg<'

studPnf. Prof. Siu-Chi Huang has been my constant source of <·1wo11rage11wnt and

moral support. She shared with nw lwr exp<'riPnce gain<'d from m·<·r forty y<•ars of

tPaching and research in I his co11nt.ry. Iler personal cxperic•nc<' a11d molh<'rly advicP

will be V<'Q' IH•lpful to my fut11n· Ci\r<'<'r in scir11ce.

I I is my pl<'asurr to acknowkdg<· I lw grant s11pport A FOS H-S!)-0 16~ I hro11gh

the Geophysical Fluid Dynamics l11stit11tc· (GFDI) of tlw Florida Stal<' 1:11iversity.

IV

the support of FS DOE contracts# 120001:3'.n and DE-FC05-S.1ER2.'i0000 through

the Supercomputer Computations Hcscarch Institute (SCIO) of the Florida State

University. The challenging atmospht•rt', excPllent facilitit•s and friendly people in

SCRI have ma<le my research here really enjoyable. I think I owe SCHI a dPbt which

I can never repay.

I also want to acknowl<'dgc C:\-DISSPL\ graphics soft war<' package. wrsion 11.0.

All figures in this dissertation were produced by this sophisticated software package.

C:\-DISSPLA is a registered trademark of Computer Associates International. Inc.

Finally. I wish to thank Prof. .Janws O'Brien. Prof. Louis Howard. Prof. David

Kopri\·a and Prof. Eutiquio Young for tlwir willingness to servc on my doctoral

committt•t•.

CONTENTS

LIST OF TABLES Xl

LIST OF FIGURES xiv

ABSTRACT XXll

I INTRODUCTION I

2 PARALLELISM: TOOLS AND METHODS 9

2.1 Why Parallelism

2.2 A Brief History .

2.:J Taxonomy of Parall<'I Architectures

2.:J. l Flynn's Taxonomy

2.:J.2 ~lore on ~ll~ID Architectures I:;

2..t Some Issues Hclatcd to the Design of Parallel Numerical Algorithms 19

2..1.1 Complexity and Degree of Parallelism I!)

2..1.2 Communication and Synchronization . 21

2 .. 1.:i Synchroniz<'d vs. Asynchronous Parallel Algorithms

2.1.·l ~lcmory Acc<'ss and Data Organization

Programming As1wct s ...

2.G. I C'o11t rol Flow C:rnph 21;

2.fi l'<·rfor111;111cP ,\11alysis

2.(i. l Pnformanrc A 11alysis for Vee! orizat ion

•) --·'

2.6.2 Performance :\nalysis for Parallelization

Conclusions

3 DOMAIN DECOMPOSITION METHODS

:J. I Origins

:J.2 Saint Venant ·s Torsion of a Cylindrical Shaft with an Irregular Cross

Sectional ShapP

:n

40

·10

12

:J.:l Three Decomposition Strategics for the Parallel Solution of PDE's ·l·I

:u :\lot ivations for Domain DPcom posit ion Iii

:u; Some Domain Decomposition Algoritl11ns .J8

:U).J The :\lultiplicativc Schwarz Overlapping Domain Decomposi-

tion Algorithm . ·IS

:L5.2 The Additi\·e Schwarz On•rlapping Domain Decomposition

Algorithm . ;)J

:t5.:l The lteration-by-Subdomain Nonovcrlapping Domain Dccom-

position Algorithm

:J.6 Conclusions

4 THE SCHUR DOMAIN DECOMPOSITION METHOD AND ITS

APPLICATIONS TO THE FINITE ELEMENT NUMERICAL

SIMULATION OF THE SHALLOW WATER FLOW

I.I Introduction

·1.2 Suhstructuring and th<' Schur Compi<'nwnt

·t.:~ :\ :'\ml1• H<'n11111lwring Scl1<•11w

·I..! Schur Domain Dl'rn111position Algorithms

l.:J ltf'raliV<' Lin<'ar Soln·rs and Pn•conditioning T<'chniq111·s for th<' Suh-

(i I

63

''

domain and lnlPrfar<' Prohl<'lllS ~') . (-

\"II

'1..1.1 Direct :\let hods vs. lt1·ratin· :\let hods ..::.•)
• lJ-

·1..1.2 Iterative Algorithms for Linear Systems of :\lgebraic Equa-

t ions

·1.5.:J Preconditioning in the Subdomains

·l.!'l.·I Interface Probing Prccondit ioners !lO

Hi The Shallow Water Equations ...

·Li '.I\ u merical Hesu Its and Discussions JOO

1.8 Conclusions 11.1

5 THE MODIFIED INTERFACE MATRIX DOMAIN DECOMPO-

SITION ALGORITHMS AND APPLICATIONS 117

5.1 Introduction an<l :\lotivat ion I Ii

5.2 The ~lodified Interface ~Iatrix Domain Decomposition MPthod 118

5.2. l The Basic Theory

The Construction of Ku

5.2.:J The Algorithm

5.:J N umcrical Hesults and Discussions

5.:J. l Accuracy of the ~Io<lificd Interface :\latrix

.1.:J.2 The Convergence Behavior

5.:J.:J The Significance of Successively Improved Initial Solutions in

the Subdomains and on th!' lnf!'rfan·s .

7>. I Cond usions

6 PARALLEL BLOCK PRECONDITIONING TECHNIQUES AND

APPLICATIONS

fi.l Introduction and :\lotivation

(. •)

'·- Parallel Domain lkcomposcd Prcrnnditiorwrs

\'I II

I IS

121

I ·)_,

1.,_,
I 2!l

l:Hi

140

I IO

6.:.U An Equivalence Theorem and its Significann• l l:l

6.2.2 Three Types of Domain Decomposed Pn·co11diti01wrs l·l.i

6.2.:J Analysis of Preconditioners 118

6.:l lterati\·e ~lethods For the Solution of ;\on-Symmetric Linear Systems

of Algebraic Equations

{iA ;'\ umerical Hesults awl Discussions

6. I. I The Convergence Behavior . 160

6..1.2 Sensitivities of the Three Types of DD PreconditionPrs to In-

exact Subdomain Solvt•rs l (i.i

6..1.:J Extensions to the CasPs of :\lore Than Four Suhdomains 16!)

6 . .i Conclusions . I 7:l

7 PARALLEL IMPLEMENTATION ISSUES AND RESULTS 175

i. l Introduction

-') '·- Macrotasking, l\licrotasking and Autotasking on the CRAY Y-MP

7.:J A l\lult.icolor Numbering Scheme for Hemoving Contention Delays in

the Parallel Assembly of Finite Elements

7..1 Implementation Details and Hesults

7..1.l Parallelization of Subdomain by Subdomain and El!'mcnt by

Element Calculations

7..t.2 C'o111111!'11ts on tlw Speed-lip and lksults

7 ,;J C'o11cl usions

. l 7?)

177

180

18·1

181

189

191

8 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH DI-

RECTIONS 193

IX

A THE FINITE ELEMENT SOLUTION OF THE SHALLO\V \VA-

TER EQUATIONS 201

:\.1 The Finite Element Approximation . :W2

:\.2 Time Integration 207

:\.:J Properties of Global Stiffness '.\latriccs and the Data Structure . 210

:\..! Element :\latrices . 217

:\.:J Truncation Error for th<' Sing!<' Stage Galcrkin Finite Element

'.\idhod 21!)

:\.6 Truncation Error for the Two Stage ~11nwrov-Ga!Prki11 Finite EIP-

nwnt :\[cthod . 220

A.7 Numerical lmplcmc11tation of the :--;umcrov-Galcrkin '.\ldhod . 221

A.8 Some Numerical Hesults . 22:J

REFERENCES 235

BIOGRAPHICAL SKETCH 265

x

LIST OF TABLES

·I. I Condition numbers associated with tlw I-norm for three precondi-

tio11ed Schur complcnlf'nt matric<'s 1l:;-,1C. G(o)- 1 C and r;- 1c 110

·l.~ '.\IILlT preconditioning in a typical subdomain 112

-l.:J A comparison of CPU time in seconds (number of it<•rations) for the>

itcrat in· solution of the Schur complenwnt linear systems on the in-

terfaccs

5.1 The spectral radii of the matrices / 00 -A:;-
0

1C and / 00 -(A,.+/\,,)- 1C

- •) '1.-

for three mesh resolutions

A comparison of CPU times in seconds for integration to the end

of one hour with a time step of half an hour (numbers of outer it-

erations for solving the gcopotential linear systems at l = l hour)

lwt.W<'f'll the unmodified, modified interface matrix domain dccompo-

sit ion algorithms (timing results for tlw Schur domain d(•composition

. 11 !)

. 1~8

met hod arc also incl udecl for comparison) I :J:J

0.:J A comparison of CPl J times in seconds hetwe<'n the unmodifird and

modified intt•rfacc matrix domain d<'composition algorithms with and

wi I hon I i m pro\"<'lll<'llls of initial sol 11 I ions made i 11 the subdoma ins . . I :J!)

fi. I :\ comparison of t lw amount of work rcquin·d for soh·ing pwcondi-

I io11i11g lirwar syst<-m /Jp =I/ rnrrcspo11di11g tot he I hrcc typ1·s of DD

prcrond it imwrs . I:, I

XI

6.:Z :\ comparison of CPl' time (number of it er at ions) n·quircd for solving

the gcopolcnt ial linear system at the <'IHI of om' hour with a half

an hour time step using G'.\IHES, CGS and Bi-CGSTAB algorithms

accelerated by three types of DD preconditioners. 161

6.:J l\ umbers of G'.\IH ES iterations as a function of 111 using t hrc<' types

of DD prcconditioners 167

6.·I '.\umbers of CGS It er at ions as a function of 111 using t hrce typ<'s of

DD prcconditioners 167

6.:J :\umbers of Bi-CGSTAB lt<'rations as a function of 111 using thrl'!'

types of DD preconditioners 1()7

6.G :'\umbers of iterations when using exact subdornain solwrs l(i8

6.7 Iteration counts of the GMRES algorithm accelerated by three typ<'s

of DD prcconditioncrs for various mesh resolutions and numbers of

subdomains . 170

6.8 Iteration counts: two suhdomains vs. eight subdomains with a scaled

discrete problem size 1-·) . I~

6.9 Iteration counts: four subdomains vs. sixteen subdomains with a

scaled discrete problem size 1-.,
• I~

7.1 Parallel pcrforma11et' results for four different mesh rcsolut.ions us-

ing the Bi-CGSTAB algorithm prl'conditioned by the third typ<' of

domain d<'composed prccon:litiotwrs on tlw four-proc!'ssor CH:\ Y Y-

. I !JO

:\.I local (i. /). i = I. ·2,\1,..1 and I = I. :Z• 6, for t lw global 1111111-

h<·ring shown in Figure A.:Z ...

XII

:\.2 :\ rn111pariso11 of CPl: time (seconds) 011 CH:\ Y Y-~IP /l:J2 lwtwPell

two codes which compute the multiplication of a global stiffne~s ma-

trix by a vector for several mesh re:;olutions

XIII

. 217

LIST OF FIGURES

2.1 The sclwmatic model of a shared memory multi-processor computer. 17

2.2 The schematic model of a distributed nwmory multi-processor com-

put er.

2.:l A samplc control flow or data dependency graph.

2.·I Overall pcrformann~ associated with two modes (high speed and low

speed) of operation. r/ = (.. '/
3
+ I - n)- 1

•

Efficiency for using a multi-processor computing system.

2.6 i\lodific<l efficiency (in comparison with that shown in Figure 2.5) for

using a multi-processor computing system.

:u Saint Vcnant"s torsion of a cylindrical shaft with thr cross sect ion

shown in (a). The original cross-sectional domain n is artificially

divided into five nonoverlapping subdomains fli. fl 2 , ••• , fl 5 , as shown

17

.,-_,

:n

. :J8

in (b) (:J

:J.2 The union of two overlapped regions n = n, U!h in which the solution

of a PDE is sought.

:t:J The original physical domain is decomposed into N 11onm·1·rlappi11g

subdomains n,' i = I. 2• ;\'. To obi ain S()fll(' on·rlapping. each

subdomain ni is t•xtt•ndt•d lo a largt•r Oil<' n:.

:t.1 The original physical domain n in (a) is di\·idcd into two no11ovcrlap-

. :> I

ping subdomains n. and !h in (b). ,)j

XIV

:J . .1 The recl/hlark snbclomain numbrring for strip-wise and box-wist• do-

main dccom posit ion. (iO

-l. l The original domain fl is decomposed into four subdomains of equal

or nearly equal sizes with a quasi-uniform subdomain width II and

quasi-uniform grid size Ii.

·1.2 (a) A five point finite' diffnence stencil: (b) A seven point linear

triangular finite clement stencil.

.1.:3 The typical block-bordered matrix st met un· com•spmuling to a sub-

structure numbering of the nodes for a four-subclomain domain cl<'-

com posit ion. Since the relative magnitudrs of entril's in th<' matrix

A are of no inten•st her<', all non-zero elenwnts (llij f:- O) have lw<·n

set to l.

·1..1 The Schur complement matrix strudure associated with the three in

terfaces of a four-subdomain strip-wise domain decomposition shown

in Figure ·I.I, assuming there arc 15 nodes on each interfacr. Herc,

. 68

-·)
. 1-

each x represents a non-zero entry in the matrix. 7·1

·l.5 A highly simplified control flow (data dependency) graph for tlw it-

erative Schur domain decomposition algorithm.

·Ui A :3-D view of Grammeltvcdt 's initial non-dinwnsionalizcd grnpoten-

tial field.

1.7 The surfan· g<'n<'rat eel by t lw non-di llH'nsional izr<i gcopot :·:·, t ial Schur

compk11H'nt matrix (' at t IH' e11d of on<' hour. Tlw llH'sh n•solnt ion

is I:; x J.'"i in the original physical domain and I lw 1111mlH'r of nodes

on tlw interfaces is 11., = ·1.1.

xv

. 81

102

. IOI

·1.8 The surface generated by A,. - C = A,.JA,j:J A1, com•sponding I he

gcopotential at the end of one hour of mocl<·I integration. The nwsli

resolution is 15 x 15 in the original physical domain and the number

of nodes on the interfaces is 11, = ·15. I 05

-1.9 Entries of the sixteenth row of the matrices (a) :1 .•.• : (b) C: (c) G(O)

and (d) G. The n11mber of nodes 011 the i11terfaces is 11, = 15. . 107

·LIO Entries of the t\\"c•nty fourth row of the matrir<'s (a) .-\.,: (b) C': (c)

G(O) a11d (d) G. The number of nodes on the interfan•s is 11., = !;'). 108

·I.I I The surface generated by the no11-dimensionalized gcopotential Schur

compleme11t matrix C at the end of 01w hour of model integral ion.

The mesh resol11tion is ;'):) x ;') l in the original physical domain and

the number of nodes on the interfaces is 11, = 16:). Note that the

mesh lines hav<' been thinned by a factor of four in both directions

along i and j. l O!J

·1.12 The evolution of lo9w E11clidean residual norms as a function of 1111m

bcr of iterations in the subdomain for the non-dimensionalizcd gcopo

lential matrix system at the end of one hour with and without :\IILU

preconditioning. The mesh resolution is (a) ()Qx;,;J and (b) 120x I l;'J.

Tlwre arc 780 and a:wo nodes, for case's (a) and (b), r<'spcctivcly. in

c.·ach of the four su bdomai ns.

·I. l:J The <'\"olut ion of lo9w Euclidean residual norms as a function of num

IH'r of itt·rat ions for I lw Schur complc•1111·nt matrix li1war sys!Pm on

t lw int Nfan·s for the non-di nwnsional iz<'d gcopot <'ll t ial matrix syst <'Ill

at tlw <'tHI of one hour of model i11t1•grat ion. Tlw nwsh r<'sol11t ion is

. 111

:rn x 27. For I his choice, I here an· !)() 11od1·s on I lw interfaces. . I J:l

XVI

·1.1·1 The evolution of lo!]w E11did1·an residual norms as a function of num

ber of iterations for the Schur complement matrix linear systPm on

the interfaces for the non-climcnsionalized gcopotcntial matrix system

at the encl of one hour of model integration. The mesh rcsolut ion is

GO x 55. For this choice. there arc 11'\0 nodes on the interfaces.

I.I.~ The c\·olntion of /o9 10 Euclidean residual norms as a function of 1rnm

bcr of iterations for the Schur complement matrix li1war system on

the interfaces for the non-dimcnsionalized geopot1·ntial matrix system

at the end of Ollt' hour of model integration. Tlw nwsh resolution is

. l l :l

!)0 x S:J. For this choice. there arc 2i0 nodes on the inll'rfaccs. . 111

·1.16 The <'\'olution of lo!] 10 EuclidPan residual norms as a function of num

ber of iterations for the Schur complement matrix linear system 011

the interfaces for the non-dimcnsionalizcd gcopotential matrix system

at the end of one hour of model integration. The mesh resolution is

120 x 115. For this choice. there arc :l60 nodes on the interfaces. . 11·1

5. l A highly simplified control flow (data dependency) graph for the mod-

ified interface matrix domain clernmposition algorithm 122

5.2 The surfarc generated by the entries of the matrix(' - (:1., + A'0 .,)

for the non-dinwnsionalizccl geopotcntial system at the end of ont'

hour of integration. Tlw mesh resolution is 25 x I!) for tlw original

domain. For this choice. t h1•n• arc 7:> nodes on the inll'rfan•s for

t ht• fo11r-s11hdomai11 domain d1·co111posit ion. :\ot1· that the mesh li111·s

have h<'en th i 111wd by a fact or of t. wo i 11 hot h cl i reel ions along i and j. I :m

X\'11

;1.:J The c\·olut ion of /og10 EuclidPan residual norms of the Schur comple

ment matrix li1war system on the int<'rfaccs as a function of numlwr

of outer iterations for using th<' modified and unmodified interface

domain decomposition algorithms. The results correspond to a non

dimcnsionalized geopotential matrix system at the end of one hour of

integration with a time step of half an hour. The mesh resolution is

(a) GO x !JI and (b) 10-l x 95. rcsp<'ctivcly. .

5.·I The history of improved initial solutions in the subdomains using

the unmodified interface matrix domain d<'composition algorithm for

t lw non-dimensionalized geopotential matrix system at t lw end of

one hour of integration with a time step of half an hour. Tlw nwsh

resolution is GO x 51.

!J.;'J The history of improved initial solutions in the subdomains and on the

interfaces using the ~IIMDD algorithm for the non-dimensionalized

geopotcnt ial matrix system at the end of one hour of integration with

a time step of half an hour. The mesh resolution is 60 x 51.

5.6 The history of improved initial solutions in the subdomains using

the unmodified interface matrix domain d<"composition algorithm for

the non-dimensionalized geopotential matrix system at the end of

on<' hour of integration with a t imc step of half an hour. The nwsh

resolution is I 0 I x !J5.

5. i Tlw h isl ory of improved initial solutions i 11 t lw subdomai ns and on th<"

interfaces using the ~ll~IDD algorithm for tlw 11on-di11w11sio11alizccl

g1·opotential matrix system at th<' end of otw hour of inll'gration with

. I :J8

1:rn

a t inw step of half an hour. Tlw mesh rcsolut ion is 10 I x !}:1. . t:l~l

X\'111

6.1 Th<' <'rnlut ion of log 10 Eurlidenll residual norms as a fund ion of

tlw numb<·r of iterations for tlw iteratin· solution of tlw 11011-

dimensionalized geopotcntial linear system at the end of 011c hour

of model integration usi11g G:\IHES. CGS a11d Bi-CGST:\B no11-

symmctric iteratin· linPar so!wrs without prccondit ioni11g. . . Hi2

6.2 Tlw ernlution of log10 Euclid<•a11 n·sidual norms as a function of

the 11umher of iterations for the iterati\'e solut io11 of the no11-

dimensionalized geopote11tial linear sysl<'m at the e11cl of 011c hom

using G:\IHES. CGS and Bi-CGSTAB 11011-symmetric iterativ<' lin<'ar

solwrs with a preconditio11er of ti\(' first type.

6.:l The crnlution of log 10 Euclid<•a11 residual 11orms as a fun ct io11 of

the number of itcratio11s for the iterative solutio11 of the 11011-

dimcnsionalized geopotential linear system at the end of one hour

of model integration using G;\IRES, CGS and Bi-CGSTAB 11011-

symrnctric iterative linear solvers with a prcconditioner of the s<'co11d

type.

6..1 The crnlution of log10 Euclidean residual norms as a fu11ctio11 of

the 11umbcr of iterations for tlw itcrati\'<• solutio11 of the non

dinu·nsio11alized g<'opoknt ial linear system at the e11d of one hour

of model integration using G :\IH ES, CGS and Bi-CG STAB non

symmet ric iterative linear solvers with a prcconclit iorH'r of the third

typ<'.

xix

I (i:l

. I (i I

G.0 The e\·olut ion of log 10 Euclidean residual norms as a fun ct ion of

the num her of iterations for th<> it er at i ve solution of the non

dimcnsionalized gc'opotcntial linear system at the end of one hour

of model integration using C::\IHES. CC:S and Bi-CGSTAB non

symmetric iterative lirwar sol\"ers with a preconditioncr of the third

type and with interface probing con st ruction of G.

7.1 :\Iulticolor 1111mlwring of elements for a triangular finite element mesh.

Each integc•r stands for a unique chosen color. A node in the mesh is

I fr!

surrounded by <'lenwnts of different colors. l~n

:\.I The global linear shape functions on a triangular clement mesh. . :w:;

A.2 A row-wise global nmnlwring of nodes. 21-1

A.:J The sparse matrix structure corresponding to the discretization 011

a seven point stencil li1war triangular finite clement mesh shown in

Figure A.2. assuming that the computational domain consists of only

the fost three grid lines. Herc, each x represents a non-zero entry in

the global stiffness matrix. '210

:\.·I C:rammelt.vcdt 's geopotcnt ial initial condition. . 221

:\ . .') The gcopotmt ial field at the end of 1 day. . . '2'2.')

A.6 The geopotential field at tlw end of 2 days. . 22()

:\. 7 The geopot cnt ial field at t lw end of :J days. . 227

:\.S The g<·opotenl ial field at t lw end of ·I days. . 221'\

A.!) The gmpotent ial field at th<' end of :1 days. . 22!)

,\.10 The geopotential field at the <'nd of() days. . '2:W

A. I I Tlw geopof<>nt ial field at th<' end of 7 days. . 2:11

A .12 Tlw g<·opotent ial field at th<' end of 8 days. . 2:!2

xx

A .1 :3 The geopol<'nt ial field at t lw <'lid of !) days.

A.H Tlw geopotential field at the end of IO days.

XXI

. 2:n

. 2:0

ABSTRACT

The parallel numerical sol1Jtion of partial differential equations (PDE"s) has been

a very active research area of numerical analysis and scientific computing for the

past two decades. Howe\'er. most of the recently developed parallel algorithms for

the numerical solution of PDE"s are largely based on. or closely related to. domain

decomposition principles.

In this dissertation. we focus on (1) improving the efficiency of some iterative do

main decomposition methods, (2) proposing and developing a novel domain decom

position algorithm. (3) applying these algorithms to the efficient and cost effective

numerical solution of the finite element discretization of the shallow water equations

on a 2-D limited area domain and (4) investigating parallel implementation issues.

We have closely examined the iterative Schur domain decomposition method.

The Schur domain decomposition algorithm, described in detail in the present dis

sertation. may be heuristically viewed as an iterative ... divide and feedback'" process

representing interactions between the subdomains and the interfaces. A modified

version of the rowsum preserving interface probing preconditioner is proposed to

accelerate tnis process. The algorithm has been successfully applied to the solution

of linear systems of algebraic equations. resulting from the finite element discretiza

tion, which couple the discretized geopotential and velocity field variables at each

time level. A node renumbering scheme is also proposed to facilitate modification

of an existing serial code, especially the one which is based on the finite element

discretization, into a non-overlapping domain decomposition code.

XXll

In the Schur domain decomposition method, obtaining the aumerical :.>olutions

on the interfaces usually requires repeated exact subdomain solutions . ..,·hich are not

cheaply available for our problem and many other practical applications. In view of

this, the modified interface matrix domain decomposition algorithm is proposed and

developed to reduce computational complexity. The algorithm stc.rts with an initial

guess on the interfaces and then iterates back and forth between the subdomains and

the interfaces. Starting from the second outer iteration. it becomes increasingly less

expensive to obtain solutions on the sub<lomains and interfaces due to the availability

of successively improved initial soiutions from the previous outer iteration. The

numerical results obtained by applying this algorithm to our problem improve upon

those obtained by employing the traditionai Schur domain decomposition algorithm.

We then investigate parallel block preconditioning techniques in the framework

of three frequently used and competitive non-symmetric linear iterati,·e solvers.

namely, generalized minimal residual (G~IRES), conjugate gradient squared (CGS)

and Bi-CGSTAB (a variant of bi-conjugate gradient method) algorithms. l\lany

hybrid methods of non-ov..!rlapping domain decomposition resu!t from various com

binations of linear iterative solvers and domain decomposed (DD) preconditioners

(generally consisting of inexact subdomain solvers and an interface preconditioner).

Two types of existing DD preconditioners are employed and a novel one is pro

posed to accelerate thP convergence of GMRES. CGS and Bi-CGSTAB. The> newly

~roposed third type of DD preconditioners turns out to be computationally the

least expensive and the most efficient for solving the problem addressed in this

dissertation. although the sc~ond type of DD preconditioners is quite competitive.

Performance sensitivities of these preconditioners to inexact subdomain solvers are

also investigated.

XXJIJ

Parallel implementation issues of domain decomposition algorithms are then dis

cussed. ~Ioreover. a multicolor numbering scheme is described and applied to the

parallel assembly of elemental contributions. aimed at removing critical regions and

minimizing the number of synchronization points in the finite element assembly

process. Typical parallelization results on the CRAY)"-~IP are presented and dis

cussed.

This dissertation also contains a relati\·cly thorough review of two fast growing

areas in computational sciences. namely. parallel scientific computing in general

and iterative domain decomposition methods in particular. A discussion concerning

possible future re~earch directions i~ provided at the end of the last chapter.

XXJ\"

CHAPTER 1

INTRODUCTION

... \V . .\::\TED for Hazardous Journey. Small wages. bitter

cold. long months of complete darkness. constant danger.

safe return doubtful. Honor and recognition in case of sue-

cess.

- Ernest Shackleton 1

The commercial a\·ailability of high-speed. large-memory computers which began

to emerge over a decade ago has made possible the solution of a rich variety of

increasingly complex large-scale scientific and engineering problems. For efficient

and cost effective utilization of these high performance computing facilities which

offer. as peak performances. several hundred millions of floating point operations per

second (Mflops) or even a few Gfiops (103 .Mflops). one has to revisit and adapt many

of the extant serial numerical algorithms and research further into novel parallel

methods. algorithms. data structures and languages which arc well suited for the

Il('W generation of supercomputers2 .

There is an ever increasing demand for high performance computers in the areas

of computational fluid dynamics. aerodynamics simulations. fusion energy research.

1 From a newspaper advertisement for an Antarctic Expedition.

2 Supcrcomputcr~ arc loosely defined a.' thr fastest computing machines at any given time.

military defense. elastodynamics. weather prediction, large-scale structural analy

sis, petroleum exploration. computer aided design. industrial automation. medical

diagnosis. artificial intelligence. expert systems. remote sensing, genetic engineering

and even socioeconomics.

The past several decades have witnessed a rapid development of various numeri

cal methods whose algorithmic implementation was designed to fit the architecture

of a single processor serial computer. Although the development of new generation

of computing. namely. parallel computing. has already taken off the ground. the

research in this area is much less mature compared to serial computing. Indeed.

the area of parallel computing is in a state of flux and the marketplace for high

performance parallel computers is volatile.

Although large-scale scientific and engineering computing is the major driving

force for the design and development of multi-processor architectures. the recent ex

plosion of research activities in the area of parallel computation is largely motivated

by the commercial availability of various powerful high performance computers. It

has been a great challenge for numerical analysts and computational scientists to

design efficient numerical algorithms and develop suitable programming languages

that can fully exploit and utilize the potential power of such advanced computing

architect ure:i.

One of the research focuses in the area of parallel computing has centered on

t lw issue of how to cost-effectively introduce parallelism into very strongly coupkd

problems. such as the parallel solution of very large linear or non-linear systems of

algebraic equations. which arise from the finite difference or finite clement discretiza

tion of PDE's in solid mechanics. fluid dynamics and many other areas of industrial

applications. l\umerous approaches (see. for example. [66]. [9·1]. [115]. [117]. [185].

[188] and [18~!]) have already been developed and implemented on different types

3

0f parallel computers. However. most of the parallel numerical algorithms recently

proposed for this purpose are largely based on. or closely related to. the principle~

of domain decomposition.

Many of the so-called iterative domain decomposition methods arc just organiz

ing principles proposed to effectively decouple the system of algebraic equations. cor

responding to which there is an underlying continuous physical problem abstracted

in the form of PDE's. The term '·domain decomposition~ sterns from the fact that

these smaller decoupled algebraic systems correspond to the discretization of the

original differential operators restricted to the subdomains of the original given do

mam.

Domain decomposition tecillliques have been receiving great attention in the ar

eas of numerical analysis and scientific computing mainly due to their potential for

parallelization. However. we note that the usefulness of domain decomposition ex

tends well beyond the readily apparent issue of parallel computing. In fact. domain

decomposition algorithms are well suited for carrying out locally adaptive mesh

refinement and for taking advantage of the fast direct solvers which may only be lo

cally exploitable for problems defined on irregular regions. The flexibility of domain

decomposition methods makes it Jess difficult to incorporate different mesh resolu

tions or numerical methods 011 different parts of the original physical domain and to

couple different mathematical models defined on different subdomains whenever the

physics behind the problem has a variable nature therein. \Ve will discuss some of

these issues in detail and provide relevant references in Chapter 3. although the pri

mary motivation of employing domain decomposition methods in this dissertation

work is related to parallelization concerns.

For the pa.st eight years. thcrc has been a sizable amount of research on various

domain decomposition techniques for second-order self-adjoint linear scalar ellip-

tic PDE's. Great progress has been made in this direction and some optimal or

nearly optimal methods have been de\"eloped (see [130] for the most recent re\"iew

of this fast-growing area). The most often used mathematical tools for analyses are

the Galerkin finite element formulation. subspaces of functions, projection theories.

multilevel and Krylm· methods. However. both the theory and numerical experience

with non-self-adjoint elliptic PDE's are much less satisfactory. Little work has been

carried out in devising domain decomposition methods for the solution of linear or

nonlinear systems of algebraic equations arising from the finite difference or finite

element approximation of the hyperbolic PDE's.

In this dissertation. we arc mostly concerned with the extension of domain de

composition ideas to the finite element solution of a set of coupled hyperbolic PDE"s.

namely. the shallow water equations and to the practical issue of parallelization.

Many successful analysis methods for elliptic problems are not directly applicable

here. Some extensions have yet to be made. The work contained in this dissertation

represents one of the first attempts in applying domain decomposition principles to

the hyperbolic equations, especially to the shallow water equations. Direct numeri

cal experience indicates that some of the domain decomposition algorithms propo:;ed

for elliptic problems may also apply successfully to the hyperbolic PDE's. Appar

ently, a vast amount of theoretical studies and numerical experiments still need to

be carried out in this direction.

As part of this dissertation. an o\·en·iew of two fast growmg areas. namely.

parallel computing in general and domain decomposition in particular, is absolutely

necessary. We will review the past research efforts, report what we have done up to

this point and look into future research directions.

i\o attempt was. howe\"er. made to give a comprehensive re\"iew due tot.he huge

amount of work already having been done in these areas and the broad sense of par-

5

allel computing, e.g., parallel image processing. parallel pattern matching. parallel

matrix computations. parallel structural analysis. parallel numerical optimization.

to mention just a few. Different domain decomposition approaches, many possi

ble combinations of relevant techniques and various subtle implementation details

on different parallel em·ironments ha\'e already led to a plethora of the so-called

iterative domain decomposition algorithms. In view of this, we will concentrate in

stead on an overview and discussions of some important terms and concepts. some

novel and challenging issues in the design of parallel numerical algorithms for scien

tific computation. programming aspects and the performance evaluation for parallel

implementations. as well as on issues closely related to the parallel numerical so

lution of partial differential equations and some well-known domain decomposition

algorithms.

Specifically, m Chapter 2. we will briefly present some historical aspects and

developments of parallel computers and parallel scientific computing, explain the

motivation behind these developments and analyze architectural features and help

ful classifications of some currently commercially available multi-processor systems.

Through some examples. we emphasize that parallel computing has brought in many

new and challenging issues one need not consider for serial computing. In particu

lar. we point out that the quality of a parallel numerical algorithm can no longer be

measured by the classical analysis of computational complexity alone. Equally im

portant. we have to take into account such issues as the degree of parallelism in the

algorithm. communication. synchronization and the locality of reference within the

code. Performance analysis and measurements for parallelization arc also briefly

discussed. Many relevant references arc furnished for those who want to explore

further for subtle details.

G

Starting from Chapter 3. we will focus exclusively on a relatively new and promis

ing branch of parallel numerical methods - domain decomposition, the main topic

of this dissertation. \Ve introduce domain decomposition ideas, in Chapter 3. by

considering solving a classical elasticity problem. namely. the famous Saint Venant "s

torsion of a cylindrical shaft with an irregular cross-sectional shape. We then ar

gue that domain-based decomposition is the best among three possible decomposi

tion strategics for the parallel numerical solution of PDE's. Three specific domain

decomposition methods developed for soh·ing elliptic PDE's. namely, multiplica

tive Schwarz. additive Schwarz and iteration-by-subdomain domain decomposition

methods are presented a11d discussed in some detail. Origins and motivations of

domain decomposition arc also given in this chapter.

Chapter 4 consists of a detailed study of the Schur domain decomposition method

and its application to the finite element numerical simulation of the shallow water

flow. Two Schur domain decomposition algorithms arc presented. Various precondi

tioning techniques are described. The efficiency of the Schur domain decomposition

method largely depends on the effectiveness of a preconditioner on the interfaces. To

accelerate the convergence of the Schur complement linear system on the interfaces.

we employ the traditional rowsum preserving interface probing preconditioner and

also propose a modified version. which is showr. to be better than the traditional

one. A node renumbering scheme is also proposed in this chapter to facilitate the

modification of an existing serial code. especially the one which uses the finite el

ement discretization. into a non-overlapping domain decomposition code based 011

the substructuring ideas. Various numerical results of the Schur domain decomposi

tion met hod as applied to the finite clement solution of the shallow water equations

are reported and discussed.

7

As will be explained in Chapter ·L the Schur domain decomposition method may

not be cost effective in the absence of fa.st subdomain soh-ers and the unavailability

of fa.st subdomain solvers is usual. rather than an exception, for most application

problems. In view of this potential disadvantage of the Schur domain decomposition.

we propose. in Chapter 5. a novel approach to handle the coupling between the sub

domains and the interfaces. We name this new algorithm as the modified interface

matrix domain decomposition (~11~100) method. Different from the Schur domain

decomposition method. in which the numerical solutions on the interfaces are deter·

mined first. the '.\11.\IDD algorithm starts with an initial guess on the interfaces and

then iterates back and forth between the subdomains and the interfaces. It turns

out that this approach allows successively improved intial solutions to be made both

in the subdomains and on the interfaces. The reduced cost in obtaining subdomain

solutions due to the improved initial guesses mitigates the aforementioned disad

vantage. Both theoretical and algorithmic aspects of the ~flMDD method as well

as numerical results will be presented and discussed in detail.

Chapter 6 is concerned with the development and application of parallel block

preconditioning techniques. !\Jany hybrid methods of non-overlapping domain de

composition result from various combinations of linear iterative solvers and domain

decomposed preconditioners (generally consisting of inexact subdomain solvers and

interface preconditioners). Two types of existing domain decomposed precondition·

ers are employed and a novel one is proposed to accelerate the convergence of three

currently frequently used and competitive iterative algorithms for the solution of

non-symmetric linear systems of algebraic equations. namely. the generalized min

imal residual (GMRES) method. conjugate gradient squared (CGS) method and a

recently proposed Bi-CGSTAB method. which is a variant of the bi-conjugate gra

dient method. \\'hilc all three types of these prcconditioncrs are found to perform

8

well with G~lRES. CGS and Bi-CG STAB. the newly proposed third type of domain

decomposed preconditioners turns out to be computationally the least expensive and

the most efficient for solving the problem addressed here. although the second type of

domain decomposed preconditioncrs is quite competitive. Performance sensitivities

of these preconditioners to inexact subdomain solvers is also investigated.

Parallel implementation issues are discussed in Chapter 7. We argue in this chap

ter that. while the domain decomposition method offers an opportunity to carry out

subdomain by subdomain calculations. which can be parallelized quite efficiently

at the subroutine levcL the parallelization of the element by element calculations

corresponding to the finite element discretization is also important for achieving

a high efficiency of parallelism. A multicolor numbering scheme is described and

applied to the parallel assembly of elements. aimed at removing critical regions

and minimizing the number of synchronization points in the finite element assem

bly process. Three parallel processing software packages currently available on the

CRAY Y-!\IP. namely. macrotasking. microtasking and autotasking. are compared.

Autotasking utilities are exploited to implement a parallel block preconditioning

algorithm. Speed-up results for several mesh resolutions arc reported.

Major results and conclusions based on the research work of this dissertation

are summarized and a discussion concerning possible future research directions is

provided in Chapter 8.

Finally. Appendix A is pro\'ided for the purpose of completeness. but it can

also serve as a document for those who may not be familiar with the finite element

solution of the shallow water equations.

CHAPTER 2

PARALLELISM: TOOLS AND METHODS

Should we build it if we could'? Its potential for solving the

problems of a complex world may well justify the expense.

- \Yillis H. \Vare1

2.1 Why Parallelism

Computation speed has increased by order!> of magnitude over the past four

decades of computing. This speed increase was mainly achieved by increasing the

switching speed of the logic components in computer architectures. In other words.

the time required for a circuit to react to an electronic signal was constantly reduced.

Logic signals tra\'el at the speed of light. or approximately one foot per nanosec

ond (1 o-r• second) in a vacuum~. This signal propagation time could largely bP

ignored in the past when logic delays were measured in the tens or hundreds of

nanoseconds. However. the delay caused by this '"extremely fast" signal propaga-

tion has become today "s fundamental hurdle which inhibits the further increase of

the computing speed (see, among others, [66. 188. 211]).

1 From "The ultimate computer ... IEEE Spectrum. 9(3):84-91. 1972.
2 ln practice. however. the speed of electronic pub(,"S through the wiring of a computer ranges

from o.:l to 0.9 foot per nanosecond.

10

Faced by the limitation of the speed of light. computer designers have explored

other architectural designs to achieve further increase in computation speed. One

of the simplest of these ideas. yet hard to implement effectively and efficiently, i~

parallelism. i.e .. the ability to compute on more than one part of the same problem

by different physical processors at the same time.

2.2 A Brief History

The idea of using parallelism is actually not so new and may be traced back to

Babbage's analytical engine in lS-lOs. A summary of Babbage's early thinking on

parallelism may be found in [156]:

D"ailleurs. lorsque !'on devra faire une longuc serie de calculs identiqucs.

com me ceux qu 'cxige la formation de tables numeriques, on pourra met

tre en jeu la machine de maniere a donner plusieurs resultats a la fois.

cc qui abregera de beaucoup !'ensemble des operations.

Although many of the fundamental ideas were formed more than a hundred years

ago. their actual implementation hasn't been made possible until recently.

Limited technology and lack of experience led early computer designers to

the simplest computer design model of \"On !\eumann - a single instruction

stream/single data stream (SISD) machine in which an instruction is decoded and

the calculation is carried out to completion before the next instruction and its

operands are handled. :\s an improvement of this model. parallelism was first

brought into a single processor. The parallelism within a single processor was made

possible by. for example.

• using multiple functional units. i.e .. dividing up the functions of arithmetic

and logical unit (:\LC) into several independent. but interconnected func-

11

tional units. say. a logic unit. a floating-point addition unit. a floating-point

multiplication unit. etc .. which may work concurrently.

• using pipelining. i.e .. segmenting a functional unit into different pieces and

splitting up a calculation (addition. multiplication. etc.) into correspondingly

several stages3
• the sub-calculation within each stage being executed on a piece

of the functional unit in parallel with other stages in the pipeline.

The pipelining technique is often heuristically compared to an assembly line in

an industrial plant. Successive calculations arc carried out in an overlapped fashion

and. once the pipeline is filled. a result comes out e\"ery clock cycle. Of course,

the start-up time, i.e .. the time required for the pipeline to become full. incurs an

unavoidable overhead penalty. The evolution of the vector processor was considered

to be one of the earliest attempts to remove the von l\eurr.ann bottleneck [82].

Coupling the pipelining technique with the vector instruction, which results in

the processing of all elements of a vector rather than one data pair at a time. leads

to the well-known vectorization - parallelism in a single processor. The vector

instruction made it possible for the same operation to be performed on many data

items and thus multiple fetches of the same instruction are eliminated.

As a first commercially successful vector computer which has had an important

impact on scientific and engineering computing. the CRAY-1 was put into sen·ice4

3 For instance. a floating point addition may hr split up into the following four stages. namely.

choosing the larger exponent; normalizing the smaller number to the same exponent; adding the

mantissas; renormalizing th!' mantissa and exponent of the result. A pipelined floating-point adder

with four processing stages. for which a simplified description was given above. was illustrated in

[12.J. p. 149]. A simplistic five-stage pipeline foi the floating-point multiplication may be found in

[66. p. 5].
4 Four years after Seymour Cray started his company. Cray Hcsearch. Inc., in 1972.

12

at Los Alamos :'\ational Laboratory in 1976. Since then. tremendous achievements

ha\'e been made in the area of \'ector processing for scientific computing. Today

various techniques are quite well established to take advantage of this architectural

feature efficiently. For a detailed discussion and account of the history of pipelining

and vector processing. see [82. 120. 12·1. l:).j].

In comparison with the already available hardware and software technology for

Yectorization. parallel computers and parallel computing techniques are much less

mature. :\ lack of proper definitions. confusion of terms and concepts and the

plethora of different parallel computing systems remain. The difficulty of program

ming for parallel operations has even led some researchers to the conclusion that

sequential operations were to be preferred to parallelism (see [188] and references

therein).

The attempt to actually build various parallel computing machines can be. how

ever, traced bac!; to the 1950s. A sizable amount of research on parallel scientific

and engineering computing was carried out in the 1960s due to the impending ad

vent of parallel computers. An excellent survey which covers most research activities

in parallel scientific computing before and up to the 1970s was provided in [162].

In particular. the author reviewed studies of parallelism in such numerical analysis

topics as optimization. root finding. differential equations and solutions of linear sys

tems. :\ complete annotated bibliography up to the time of its publication on vector

and parallel numerical methods and applications in meteorology. physics and engi

neering. etc. can be found in [191]. A re\"iew of early results on vector and parallel

solutions of linear systems of equations and eigenvalue problems. along with back

ground information concerning the computer models and fundamental techuiqucs

Wa.'i providPd in [l 17]. The early recognition of fundamental differences between

parallel and sequential computing was re\"icwed in [219]. Factors that limit com-

13

puter capacity. the need to build powerful computing systems and the possible cost

ranges were discussed in detail in [234].

During the past twenty years. the literature on parallel computing has been in

creasing at a \'cry rapid rate. One of the most frequently referenced works is [120].

which contains detailed information on the history. parallel architecture hardware

as well as parallel languages and algorithms. ~lore about the history and evolution

of architectures may be found in [148. 240]. Detailed discussions on both hardware

and software for quite a number of currently commercially available parallel com

puters ha\·e been pro,·ided in [15]. Several supercomputer architectures and some

technologies were reviewed in [142. 143]. [188] contains a thorough re\'iew of vector

and parallel scientific computing and a rather complete bibliography up to 1985. A

more recent contribution, [189] collects over two thousand references on vector and

parallel numerical algorithms research up to 1990.

2.3 Taxonomy of Parallel Architectures

2.3.1 Flynn's Taxonomy

The most frequently referenced taxonomy of parallel architectures was pro\'ided

by Flynn in [89]. He characterized computers to fall into the following four classes.

according to whether they possess one or multiple instruction streams and one or

multiple data streams'':

l. SISD - single instruction stream/single data stream. This is the conven

tionally serial scalar von ~eumann computer. mentioned in Section 2.2. Tbis

type of computer performs each instruction of a program to completion before

starting the next instruction.

5 A stream i~ defined a.~ a sequence of items (instruction~ or data) as executed or operated on

by a processor

'> SU\ID6
- single instruction stream/multiple data stream. This type of com·

puter allows new instructions to Le issued before previous instructions have

completed execution or the same instruction to be operated on different data

items at the same time. Thus. the simultaneous processing of different data

sets within a single processor or a collection of many identical processors (re

ferred to as processing clements) becomes possible. This classification includes

all types of vector computers.

3. MISD - multiple instruction stream/single data stream. Although Flynn [90]

indicated special cases to support this classification of the architecture. there

are. currently. no computers that issue multiple instructions to be operated

on a single data stream.

4. MI.MD7
- multiple instruction stream/multiple date stream. Computers in

this class usually have arrays of linked physical processors, each processor run

ning under th<' control of its own inst.ruction stream. Thus. a great flexibility

is permitted in the tasks that processors are carrying out at any given time.

This classification includes all forms of multi-processor systems.

Typical examples of computing systems which belong to each of the SISD. SIMD

and !vlll'vfD types were given in [183] (see also [192]). Block diagrams for SISD.

SIMD. MISD and ~HMD machines may be found in [1:!4. p. 33].

Th<' taxonomy discussed above provides a simplistic and broad characterization

of quite different computer architectures. There exist other more complicated clas

sifications. Notable is the one introduced by Hockney [120]. which was based on

6 This type of machines is often referred to as array processors.

7 This typt> of machines is commonly known as multi-processor systems.

15

a structural notation for machine systems. However. this classification scheme was

considered too fine to be useful [240].

Flynn's taxonomy of computer architectures. although coarse. is certainly helpful

to computational scientists. It should be borne in mind. however. that the current

(super) computers are much more complicated and endowed with a hybrid design.

i.e., an architecture which falls under more than one category. For example. the

CRAY Y-l\IP is a l\111\ID machine in general. with each individual processor being

of Sll\ID type8
. In addition. the complication is even furthered by the memory

organization - local. shared or local ~. shared. and by numerous inter-connection

schemes between memories and processors. These intricate factors have led some

researchers to suspect that there will never be an absolutely satisfactory taxonomy

for parallel computing systems (sec, for example. [240]).

A more complete description and discussion of both hardware and software on

l\HSD and l\1IMD machines (including multiple SIMD (l\1Sll\1D) and partitionable

Sll\ID /l\11.MD machine architectures) and other relevant theoretical issues arc given

in [19. 124. 210].

2.3.2 More on MIMD Architectures

l\fost of the current research interest lies in the architectures. programming lan

guages. data structures and algorithms for the l\IIMD type of machines. l\1Il\1D

architectures may be further divided into two categories. namely. multi-computer

networks and multi-processors. The former category refers to physically dispersed

8 1t is believed that a hybrid Mli\ID/SIMD machine is ideal for adaptive m<'.sh refinement (A!\IR)

numerical algorithms [198).

l(i

and loosely coupled computer networks9
. The latter category may be further di-

vided into another two cia'ises: shared (or common) memory or tightly coupled and

distributed (or local) memory or loosely coupled parallel computers.

For a shared memory paralicl machine. for which a schematic model is presented

m Figure 2.1. all processors share a common pool of the main memory and every

processor ca11 access any byte of memory in the same amount of time.

Date items associated with private \·ariables are located in physically disjoint

memory spaces and only locally visible to the processors. Different processors have

their own private variables. Communications between different processors are ac-

complished through explicit declarations for the memory space to be shared between

processors. In other words, data items associated with shared variables are made

globally visible or accessible to all the processors involved (see [26] for a good pre

sentation of relevant concepts).

A major advantage enjoyed by this type of architectures is the fast communica-

tion between processors when the number of processors is relatively small.

An obvious disadvantage is. however. that several processors may try to access

the same memory location (or the shC1red variable from a programmer's point of

view) at thP same time. Because of the random sc;1eduling of the processes. a

synchronization mechanism must be used to ensure that different processors are

working in the correct order and with the correct data. This accounts for the so·

ca.lied contention delay. which obviously aggravates as the number of processors

increases 10
.

~The computing 011 multi-computer net.works is usually referred to as distributed computing.

This type of computing was considered not to speed up the execution of individual jobs. but to

increase the global throughput of the whole system [183).

tclt is generally considered to be a practical limit for 16 processors to share a common memory.

[82].

17

Memory

Switch

Figure 2.1: The schematic model of a shared memory multi-processor computer.

p

M

Switch

p

M

p

M

Figure 2.2: The sch<'matic model of a distributed memory multi-processor computer.

18

For a distributed memory parallel machine. for which a schematic model is pre

sented in Figure 2.2. there is no global memory. Each processor has its own local

memory and thus there are no direct interactions with the memory on any other

processor.

This type of computer architecture is heuristically termed as a "message passing"

multi-processor computer because of the fact that the communications between \·ar

ious processors are made possible by sending and receiving messages through some

inter-connection networks. For distributed memory machines. different from shared

memory computers. there is no explicit hardware synchronization. Synchronization

must be explicitly coded by the programmer. In general. this requires major recod

ing efforts for porting programs written for serial machines onto distributed parallel

computers.

There are numerous inter-connection schemes [66. 124. 188] in which processors

are connected. \Vhatever schemes are used, they all suffer from the same shortcom

ing. namely. data may need to be passed through several intermediate processors

prior to their reaching their final destinations. An important parameter which may

be used to measure the seriousness of this disadvantage is the communication diam

eter or length. which refers to the maximum number of transmissions that must be

made in order to communicate between any two processors [18.5].

Due to the coexistence of these two quite different l\lll\ID types of parallel ar

chitectures. there is constantly an ongoing deb:ite iiS to which one is to be preferred

with regard to implementing numerical algorithms. An excellent discussion on this

issue is provided in [204].

To conclude this section. we point out that another simple and clear classifi

cation strategy was proposed in [183] which classifies multi-processor systems into

19

the following three categories. namely. fine-grain. medium-grain and coarse-gram

machines.

2.4 Some Issues Related to the Design of Parallel Numerical

Algorithms

The arnilability of multi-processor systems has introduced new issues and chal

lenges [182. 204] for numerical analysts and computational scientists. To take advan

tage of such advanced architectures. one has to partition his problem into separate

computational tasks. schedule each task for exc>cution on a processor and perform

communication and synchronization among the tasks. This generally goes well be

yond some trivial reo~ganization of an existing sequential code, but requires signifi

cant redesigning and restructuring of the basic algorithm. As a consequence. some

good sequential algorithms were found unsuitable and, on the other hand, some

old and inefficient sequential algorithms have been re\·isited and resuscitated due to

their potential for parallelism (see [219] and references therein).

2.4.1 Complexity and Degree of Parallelism

Traditionally, efforts were made to design such algorithms as to minimize th<'

number of arithmetic operations {computational complexity) involved. Although

computational complexity is still a fuudamental consideration for parallel scientific

computing. there are other more important factors to take into account: the degree

of parallclism 11 • i.e .. the amount of work (measured in percentage) which can be

executed in parallel. and the communication t.:. synchronization penalty [95].

11 which is a key parameter in the Amdahl's law (see Section 2.6). Note that the definition her~

for the degree of parallelism is different from that given in [185].

20

The availability of various parallel architectures requires computational scientists

(1) to adapt alrea<ly existent sequential algorithms to the new architecture and (2)

to directly design and develop novel parallel algorithms for the efficient task-to

processor mapping. In order to impose a parallel structure on a given problem

and/or incr~ase the degree of parallelism. one usually applies (often simultaneously)

the following two related ideas [2. 183. 18.j. !Si. 20i]. namely. (1) renumbering or

reordering and (2) divide and conquer or decomposition strategies.

Renumbering or reordering is used for restructuring the computatiorn1l domain

and/or the sequence of operations in order to increa."e the percentage of the com

putation tliat can be carried out in parallel and. sometimes. remove critical regiom:

and minimize the number of synchronization points [35. 36. 85]. The divide and

conquer approach itself is concerned generally with breaking up the original prob

lem into several smaller subproblems and computations into a number of stages.

then assigning the different subproblems to different physical processors for inde

pendent treatment within each stage followed by inter-processor communication and

synchronization at the end of the stage. Quite often, renumbering or reordering is

applied to decouple the original problem and realize the divide and conquer ap

proach. Domain decomposition ba.5ed on substructuring ideas. to be detailed later.

is one good example.

It should be pointed out. however. that the degree of parallelism is often improved

at the cost of introducing extra computational work. In a series of papers which

address tlw problem of soh-ing bi- or tri-diagonal linear systems [48. i6. 116. 140.

218. 233] on vector and parallel computers, the authors developed the following three

techniques. namely, recursive doubling, cyclic reduction and divide and conquer.

l;nfortunately. all these three techniques resulted in a substantial increase in the

number of floating-point operations which made these methods less attractive. This

~1

emphasizes the important role of computational complexity analysis even in the

study of parallel computing. Au efficient parallel algorithm should possess a good

degree of parallelism and. at the same time. result in only a small amount of extra

computation.

In general. an algorithm with a high degree of parallelism docs uot necessarily

result in an efficient parallel computing method (remember that point Jacobi method

as an iterative scheme for solving algebraic linear systems possesses a perfect degree

of parallelism. but it is seldom used due to its slow convergence rate). There is a

balance to be found between parallelism and the amount of computation necessary to

find the solution to a given problem [240]. The ultimate goal of parallel processing is

to reduce the wall clock time by a factor close to the number of processors allocated

to a job without having to pay significantly more for the increase in CPli time. In

other words, parallel processing shortens the production time of computing results

but. at the same time. usually introduces an extra cost and is computationally

more expensive than its sequential counterpart. It is this extra cost that we try to

mm1m1ze.

2.4.2 Communication and Synchronization

Another critical issue that has an important impact on the performance of a

parallel algorithm involves communication and synchronization. which constitute.

if several physical processors are employed to cooperatively soh-c the same prob

lem simultaneously. an unavoidable overhead which we strive to minimize. During

communication and synchronization. processors arc not performing any useful com

putation and some of them. in order to coordinate their steps. may be forced to

stay idle. J\1cmory contention delays for a shared memory system may cause seri

ous problems. depending on the amount of computational work within the critical

region of the code and the number of processors involved. Hence. communication

and synchronization should be used sparingly in order to achie\'e high efficiency of

parallel processing on a single job.

Sometimes. a clever renumbering (e.g. a multicolor renumbering). which is es

sentially equivalent to a proper reordering of computational sequences. may remo\·e

the critical regions and. at the same time, minimize the number of synchronization

points [35. 36. 85]. In general. instead of devising algorithms of small granularity

that require relatively frequent communication and synchronization between pro

cessors. a non-interacti\'e way of apportioning the work among different processors

should be found so that tasks of relatively large granularity are created. However.

this may lead to additional difficulty in load balancing12
- another important is

sue in parallel computing. An unbalanced load distribution will, in turn, increase

synchronization costs. Indeed, parallel computing has brought about much more

complicated issues than sequential computing.

2.4.3 Synchronized vs. Asynchronous Parallel Algorithms

In all of the above discussions. we have tacitly assumed that the algorithm un

der consideration is the so-called synchronized parallel algorithm. This type of

algorithms consists of more than one process with the property that there exists

a process such that some stage of the process can not be acti\·ated until after an

other process has completed a certain stage of its program. The elapsed time for

completing a certain stage of the computing is determined by the slowest process.

This constitutes the basic weakness of a synchronized algorithm. which may re5uJt

in worse than expected speedup results and inefficient processor utilization.

12 Load balancing is easier for tasks of smaller granularity. e.g., splitting a loop and distributing

I hem across proct'Ssors [66).

As a remedy. some researchers have been concerned with designing and devel

oping asynchronous parallel algorithms [12·1]. in which, although contention delay

is still a potential problem, processes generally do not have to wait for each other

and communication is achieved by reading dynamically updated shared variables

stored in the shared memory. It should be pointed out. however. that in developing

asynchronous parallel iterative numerical algorithms. the iterates generated by the

asynchronous iterative algorithm may be different from those produced by the se

quential algorithm or synchronized parallel iterative algorithms due to the random

scheduling of processes. hence th<' convergence or convergence rate is hard to predict

and a general theory is not yet available.

2.4.4 Memory Access and Data Organization

As a final, but not the least important issue, we address concisely those concepts

and techniques which arc most relevant to vector and parallel computing, namely.

memory access and data organization.

In fact, with the increasing power of functional units, it is important to match. at

a reasonable price. the information transfer rate (the so-called memory bandwidth 13)

with the processor speed. In other words. to sustain the fastest possible processing

speed offered by the computational units. one has to ensure that the memory is able

to deliver instructions ~ operands fast enough to the computational units and that

the computational units can get rid of their output sufficiently fast. The movement

of data from and to the main memory can be as costly as arithmetic operations on

data. An example was given in [237]. which showed. for matrix-matrix multiplication

13Thc bandwidth of a system is generally defined as the number of operations performed per

unit time. The memory bandwidth is measured by the number of memory words that can be

accessed per unit time.

24

problems, that the execution of a vector code can be slower than that of a scalar

version due to improper memory management.

The data flow between the memory and the computational units is the most im

portant and critical part of a computer design. It is too expensive to build a large

memory with such a high speed as to match the fast procc>ssing speed. To get around

the dilemma of needing rapid access to the memory. on the one hand. and also having

a large amount of memory space. on the other hand, computer designers built a hier

archical structure into the memory. A typical memory hierarchy (consisting of a fast

but small cache 14 and the slow but large main memory. etc.) was illustrated in [183].

From bottom to top. each level in the hierarchy represents an order-of-magnitude

increase in memory access speed. and se\"eral orders-of-magnitude decrease in ca

pacity, for the same cost.

In generaL efforts should be made to obtain a high ratio of time spent on com

putations to time spent on memory references in order to efficiently and effectively

utilize high speed processors. Typically. processor speed is much greater than the

access (either fetch or store) speed to the main memory. The speed gap between

the processor and main memory is closed by using a fast. but small. cache memory

between them. To prevent the memory from becoming a possible bottleneck. one

must exploit and make use of the locality of references in the code development.

Specifically. memory references to data should be contained within a small range of

addresses and the code exhibits reuse of data [66]. Thus. most memory references

will be to data in the cache and the overall memory access rate will be effectively

approaching that of the fast cache memory. which is typically 5 '"" 10 times faster

14Cache memories are high speed buffers inserted between the processors and main memory.

which are typically fiw to ten tim~ faster than the main memory

than the main memory. resulting in a bandwidth balance bet.ween processors and

the memory.

As a very good example. we mention here that one of the reasons that Basic

Linear Algebra Subprograms (BLAS) [63, 14L 65, 64] were gradually brought to

higher levels is to increase the ratio of floating-point operations to data mo\'ement

and make an efficient reuse of data residing in cache or local memory. Typically. for

level 3 BLAS. it is possible to obtain 0(11
3

) floating-point operations while requiring

only 0(n 2) data movement. where 11 specifies the size of matrices involved.

2.5 Programming Aspects

l\lany different types of parallel computers ha\'e been provided by various com-

panies. Each one of these types has its own unique architecture and characteristics

equipped with extensions, for parallel programming, to an existing programming

language such as FORTRAN. or a new language specially designed for a particu

lar machine (sec, for instance. [15, 26, 83] and [6i] along with references therein).

Imposing a standard model of parallel computing language is still too early and is

impeded by the current level of understanding about parallelism. In fact, there is

no agreed-upon point of view about what a parallel programming language should

be or, at least. in which direction the extension should be made to currently avail-

able serial high-level languages. Researchers interested in implementing their par

allel algorithms on different types of parallel computers are, therefore. faced with

formidable tasks.

The purpose of this section is. of course, not to review different parallel pro

gramming tools supported by their respective hardware and operating systems.

Appropriate computer manuals should be consulted for this purpose. However.

26

knowing where to impose a parallel structure in the code is essentially a data prob

lem. not a coding problem. Indeed. the major consideration that limits parallelism

within a program is the scope of data items. Whichever machines and program

ming languages are chosen. a parallel code consists of some logical and machine

uuderstandable expressions of control flows which enable the computer to process

those sections containing data capable of being operated on simultaneously without

adversely affecting other data. In \'iew of this. we discuss. in this section. topics

related to data dependencies. control and execution flow.

2.5.1 Control Flow Graph

A control flow or data dependency graph is an invaluable aid to parallel pro

gramming which was presented and recommended in [67, 6S]. Although it was

originally employed to illustrate and facilitate the use of a software package called

SCHEDULE for portable FORTRAN parallel programming, the technique actually

has a much wider applicability in the development of codes for both fine-grained

and coarse-grained parallelism.

A typical control flow graph consists of two basic elements, namely. nodes and

directed edges. which stand for processes or subroutines and execution dependen

cies, respectively. A process (represented by a node) can not be initiated unless all

the other processes with edges directed to it ha\'e completed their execution (i.e ..

the incoming edges have been removed from that node). Processes without incom

ing edges (as have been remo\'ed) have no data dependencies15 and hence may be

executed in parallel.

15For shared memory systems. this means that there is no contention for "write" access, but

•·read·· access to a shared variable is allowed.

0 Level e

II
(0 ® © Leveld

\/\ //\
© 0 ® @ Levelc

!\ I
® ® @ © Levelb

\I
® Level a

Figure 2.3: A sample control flow or data dependency graph.

2S

\Ve present a sample data dependency graph in Figure 2.3. where level a ,....,

level e have no real meaning but are labels used for an easy and clear description

of the graph. The computations begin with H. G [level c] and D [level c] working

in parallel. As soon as H is completed. D [level b]. E [level b] and G [level b] can

proceed simultaneously and. possibly, in parallel with the already existing processes

G and D mentioned above. if they have not finished yet. Two copies of D at

level b may be understood as two identical subroutines operating on two different.

independent data sets (the same convention applies to other identical copies of the

nodes). The execution of I can commence and continue simultaneously with other

existing processes pro\·ided that G [level c] has completed its calculation. However.

processes B and C can not be initiated even if G [level c] and D [level c] have

finished their jobs. E [level c] may start immediately after the completion of G

[level b]. However. F can not be started unless all four processes at level b ha\'e

completed their calculations. B (C) can be executed as long as G [level c] and F

(D [level c]. E [level c] and F) have been completed. Finally. as soon as B. C and

I finish. one can execute A, which terminates the whole computation process upon

its completion.

It is obvious that the control flow graph to a given problem is not unique. Even

using the same pa.ra.llel algorithm. the graph can be made at different levels of

detail and granularity. In principle. given a target machine. the control flow graph

may readily be translated into a parallel program. A parallel algorithm and the

corresponding control flow graph for the solution of a triangular linear system of

equations T:r = b was pro\•ided in [66]. A control flow graph for evaluating :r 2",

where k is a positive integer. was given in [237]. Some more examples [67. 68] are

available in the context of developing a user interface to the SCHEDULE softwar<'

package. Simplified control flow graphs for the iterative Schur and modified interface

matrix domain decomposition algorithms arc provided later (see pages Sl and 122).

A control flow graph respects data dependency relations and identifies the next

schedulable process(cs). Following the logical flow of such a graph. the computa-

tion can be expected to proceed in the correct order leading to correct computing

results. However. the graph <loes not take performance efficiency into consideration.

For load balancing and other implementation details. an execution graph may be

constructed to properly partition the computation and/or data as well as to force

certain processes to complete before others. Such a graph must not, of course.

violate the execution <lepeudencies specified by the control flow graph.

2.6 Performance Analysis

2.6.1 Performance Analysis for Vectorization

The computational speed of today·s high performance architectures is usually

measured in terms of ~lflops (millions of floating-point operations in one second) or

even Gflops (1 Gflop = 1000 :\Ifiops). Extensive research is yet to be carried out for

achieving a sustainable teraflop (1000 Gflops) peak performance in the future.

By definition. the rate of computing may be expressed the following way

·\"
r == .:_ !\lflops

t
(2.1)

where N is the number of floating-point operations (flops) carried out int microsec

onds (10-6 seconds).

Vectorization is capable of sustaining a high speed of computing by performing

exactly the same operation (no multiple fetches of the same instruction from the

memory) on many data items and hy using pipelining techniques. However, due to

30

the delay before obtaining the desirabl(• results for timely loading of operands into

the pipeline. there exists a problem of data dependency and recurrence which will

prevent a given loop from vectorization. resulting in a low speed of calculation. In

fact. the computational speed is often far from uniform for any realistic numerical

simulation of a process. Therefore. the classical way of evaluating the efficiency of

an algorithm by simply counting the number of flops is obviously no longer valid for

vector processors. :\ew ways of analyzing and modeling the computational perfor-

mancc had to be developed.

A formula capable of predicting the improved performance as a result of vector-

ization was introduced in [6] while vector machines were still in the design stage.

The formula is the well-known Amdahl's law for vector processing. If we assume

that there are only two modes of operation. namely. one with a high speed and the

other with a low speed. then the formula predicting the overall performance may be

expressed by
0 1 - 0

r = (- + --)- 1 ;\lflops (2.2) ,. ·'
where

• r -- overall or a\'crage speed of computation:

• t· - high computing speed or vector processing speed:

• ~ - low computing speed or scalar processing speed:

• a - degree of vectorization. i.e .. fraction of the total amount of work carried

out with a computing speed of r Mflops.

In order to quantitati\'ely appreciate (2.2). we plot. in Figure 2.4. the spe~dup

r/ s due to vectorization as a function of a and the ratio of vector processing speed to

scalar processing speed t'/ ,'-. It i~ clear that the overall performance is unfortunately

31

l.(l

Figure 2.4' Overall performancc associated with two modes (high speed and low

speed) of operation. r/:;; = (,~. + l - o)-
1

.

32

dominated by the low-speed mode. In other words. the overall computing speed can

be drastically reduced for even a small portion of calculations (1 - o being small)

which are carried out with the rate s. Increasing the vector processing speed t· will

only marginally improve the overall performance if the bottleneck due to the low

speed mode of operation is not removed or made less serious. All this suggests that

it may not be cost effective for computer manufacturers to invest a lot of human

effort and material resources to improve vectorization without investing into the

enhancement of the scalar processing speed (see also [61]).

The formula corresponding to n modes of operation can easily be generalized as

follows
~\'

r = :-.Iflops
(Xi/r1 + J\'-ifr2 + · · · + I\"n/rn)

(2.3)

where. for i = 1, 2 •.... n,

• r; - computing speed corresponding to i-th mode of operation;

• 1\'1 - number of flops carried out with a computing speed of r·, ~Iflops

and J\' = ;\'1 + .f\.;.,_ + · · · + N ... is the total number of flops required of a given task.

2.6.2 Performance Analysis for Parallelization

For parallel processing. the goal is to reduce the wall clock time (elapsed time

for execution). while the total err time involved in parallel computing is usually

larger than the err time consumed by the execution of a sequential code for the

same problem. Ideally. the wall clock time would be reduced to l /11 of the wall clock

time required for sequential calculation if the work can be divided into n equal-size

parts which are executed by n equally powerful processors. However. this is not

possible due to the existence of non-parallel segments contained in a parallel code

and various parallel processing o\·erheads involved.

33

The performance of a parallel code is usually measured by the speedup. namely.

(2A)

where

• Sn - speedup for a system of n processors:

• W, - serial processing wall clock time:

• H'n - parallel processing wall clock time by n processors.

The corresponding efficiency for using a computing system with n processors 1s

defined by

(2.5)

It should be ?Ointed out that lF, in (2.4) was proposed to mean the wall clock

time for using the best sequential algorithm on a particular architecture [188]. How

ever. determining the fastest sequential algorithm for a specific application problem

on any particular computing system may be more difficult than developing a parallel

algorithm itself. Consequently. the speedup as defined by (2A) often measures how

a given algorithm compares with itself on one and n processors. This measurement

properly incorporates any communication and synchronization o\'crhead and. in a

sense. expresses how busy the processors are kept computing (rather than comm uni-

eating and waiting). Howe\'er. a potential pitfall is that an algorithm with a perfect

speedup may not run much faster or may even run slower than a serial algorithm

designed for sol\'ing the same problem.

Amdahl's law (2.2) is easily extended to the parallel case. The assumption is

that the whole computational work can be divided into only two parts. i.e., a strictly

sequential part and a part which can be carried out simultaneously on 11 processors.

Then. in the absence of communication and synchronization overhead. the speedup

IS

1l
Sn=----

o+(l-O')n
(2.6)

where

• Sn - speedup obtained on a system with n processors:

• 0 - degree of parallelism. i.e .. percentage of the total work (measured in err
time) which can be carried out in parallel using n processors.

The similarity between Amdahl's laws for vector and parallel processing is no

table. Specifically. if we make the following substitutions

v
n-+ -

s
(2.7)

and understand a in the context of parallel processing, then the speedup Sn obtain-

able on a system with 11 processors is graphically shown in Figure 2.4 as a function

of o an<l n. Similarly. we conclude that the overall performance of using a multi pro-

cessor system is dominated by the sequential part. A small amount of serial work

(I - o being small) will result in a large reduction in the speedup. especially for

large n. Moreover. no matter how close o is to 1. the speedup will soon fall behind

n. In Figure 2.5. we show that the efficiency (obtained by (2.5)) is a decreasing

function of the number of processors involved, while keeping o fixed.

For a vector-parallel computing system. i.e .. a multi-processor system in which

each of its processors has vector capabilities, the most efficient utilization of the

resources requires that the product r / ~ · Sn of speedup r / s due to vectorization

and the speedup Sn due to parallel processing be maximized. It was illustratively

explained in [83] that both the degrees of vectorization and parallelism must be high

...
ci

...
t>o
c
" (j
;;:
" ci

"' ci

0
ci

41
:u -:lo!r:------·

nuniber or 1
11

Pl"Occaaol'B

Figure 2.5: Efficiency for using a multi-processor computing system.

35

:36

enough in order to ensure substantial improvement over serial processing and the

overall performance will be deteriorate as the number of processors increases.

Amdahl's law for parallel processing casts a pessimistic shadow on the possible

benefits one can obtain from massively parallel comp11ting. The implicit assumption

behind :\mdahrs law is that the size (measured in tr •. sec (2.4)) of the problem

under consideration is fixed. The formula given in (2.6) was obtained by assuming

that part of this fixed-size problem may be carried out in parallel and the rest be

done sequentially. By this formula. the possible maximum achievable speedup is

only 100 even if 99~(of work is carried out in parallel on a multi-processor system

with an infinite number of processors. Is massively processing really meaningful and

beneficial or is :\mdahl"s law inappropriate in this context'?

An alternative formulation was put forth in [106] in an attempt to explain some

unprecedentedly excellent speedup results [107] on a 1024-processor hypercube in

Sandia National Laboratories. The fundamental observation is that. in practice.

the problem size is not fixed, but scales with the number of processors involved in

the actual computation. The key assumption in this new formulation is that H ·n

(measured in a dedicated mode for multi-programming operating systems) being

held fixed. If a fraction a (measured as a percentage) of H'n is spent on parallel

computing and the rest time 011 serial processing. then the same work woul<l take

ff. = (I - o) 11 ·., + an H'n to run on a single processor. Therefore. the speedup is

i.; tr, l '
~ n = W = - 0 ~ 071

n

(2.S)

In contrast to Amdahl"s law. (2.S) indicates a predicted speedup of S., = 0.01 +0.99n

on a multi-processor system with n processors if 997' of the work (measured by lf.,)

may be carried out in parallel.

37

For comparison with the efficiency predicted by Amdahl's law (see Figure 2.5.

we produce a similar 3-D figure indicating how the modified efficiency. as calculated

by using (2.8). depends on the number of processors and a (see Figure 2.6).

The abo\'e discussion did not. however. take into consideration the communica-

tion overhead. which may dominate the o\·erall performance. The o\'erhead issue

was incorporated into the formulation in [7] for analyzing the expected performance

due to massive parallelism. The result is. unfortunately, discouraging. Due to this

result. it was claimed in [61] that. in the future. there may be a convergence of ideas

and techniques around architectures comprising only a few hundred processors.

2.i Conclusions

• Parallelism was introduced to be one of the novel architectural features of

today's computers for further increasing processing speed. Although the ideas

of parallelism are old and simple, the efficient and cost effective implementation

of parallel numerical algorithms is not an easy task. l\Iore difficulties originate

in a plethora of different parallel computing systems.

• Flynn's taxonomy provides one of the simplest c:haracterizations of essentially

different parallel computer architectures. There are other more refined clas-

sifications. However. the intricate nature of parallel computing systems may

make an absolutely satisfactory taxonomy impossible.

• In the MIMD category, we have

!
multi-computer networks

:-.n~m
multi-processors

{

shared memory parallel computers

local memory parallel computers

0

Cl
0

3S

figure 2.6, Modified efficiency (in compariwn with that shown in Figure 2.5) for

using a multi-processor computing system.

39

It is generally considered that the shared memory (tightly coupled) paral

lel computers represent conventional architectures: while the local memory

(loosely coupled) parallel computers stand for novel or modern computer ar

chitectures.

• In the context of parallelism, the quality of a numerical algorithm can not be

judged by the analysis of computational complexity alone. equally important

factors are the degree of parallelism (i.e .. the percentage of the total work

measured in CPC time which may be done in parallel) in the algorithm. com

munication /.,:, s~ nchronization issues and the locality of reference within a

code.

• A control flow or data dependency graph is an invaluable aid to parallel pro

grammmg.

• The performance analysis for vectorization shows that the overall computing

speed is dominated by the scalar processing rate. Rather similarly. the perfor

mance analysis for parallelization reveals that the efficiency cf parallelism is

very sensitive to the cxistenn· of even a small amount of serial computational

"\\"Ork.

CHAPTER 3

DOMAIN DECOMPOSITION METHODS

3.1 Origins

Over the past thirty years. a tremendous \'ariety of parallel numerical algorithms

for scientific and engineering computing ha\'e been proposed [189]. ~lost of the

recently proposed parallel computational strategics for sol\'ing partial differential

equations (PDE"s) were based on domain decomposition ideas.

Domain decomposition ideas are actually not new. but are rather old ones which

have been forgotten. It is widely acknowledged that Schwarz [209] was the first

to employ domain decomposition ideas for establishing the existence of harmonic

functions on regions with nonsmooth boundaries. by constructing the region under

consideration as a repeated union of other regions. A class of domain decomposi

tion techniques based on the early work of Schwarz is now known as the Schwarz

alternating method (sec. among others. [16. 98. 14-1. 145. J.16. 160. 161. 215]).

The Schwarz alternating procedure is now. however. generally called multiplica

tive Schwarz method in contrast with the more recently proposed additi\'e Schwarz

algorithm. which may be regarded as a method for constructing parallelizable do

main decomposition prcconditioncrs (relevant references and some details will be

furnished later in Section 3.5.2).

Another class of domain decomposition methods. namely. iterative substructur

ing methods 1• may be traced back to the work of structural engineers in the sixties

1 The methods arc closely related to some mathematical theories developed by PoincarC: and

Stcklov in the !!Ith century (sec [197] and references therein).

41

(see [93. 193. 202] and. in addition. we mention. among numerous other papers.

[3. 37. 84, 131. 236]). Substructuring techniques were developed in the sixties pri

marily for the following two reasons:

• the substructuring treatment of aerospace structures provides a way to save

a significant amount of computer storage and thus made possible the finite

element modeling of very complex structures at that time:

• the substructures themselves may be \'iewed as complex (super) elements

whose stiffness matrices can be stored for later use in an overall different

problem but with the same or rather similar structural components to avoid

repetitive work.

\Ve refer to [235] for some further, however, general remarks on the aforementioned

two classes of domain decomposition methods.

The term "domain decomposition", in a rather general sense, refers to a class of

numerical techniques for the replacement of PDE's defined over a ~i\'en domain with

a series of problems defined over a number of subdomains which collectively span

th<' original domain. Th<' solution to the original problem is obtained by solving

a subproblem (which is probably much easier to sol\'e than the original) defined

on each of these subdomains (different grid resolutions and numerical technique:-;

may be used in different subdomains) and by patching together the subdomain

solutions. The computational work on each subdomain is usually associated with

a task or :o;oftwarc process which will be scheduled onto and handled by a different

processor of a parallel computer.

42

3.2 Saint Venant's Torsion of a Cylindrical Shaft with an Irregular

Cross-Sectional Shape

As an example. let us consider the torsion of a cylindrical shaft - an important

problem in engineering. The cross section (in the x-y plane which is not shown in

the figure) of the bar is of the shape given in Figure 3.1 (a). The problem is to

determine the stress distribution and deformation of the shaft under the action of

an external torque. The solution to the problem can be obtained by Saint Venant 's

theory of torsion [9:2]. The corresponding mathematical problem may be formulated

in either of the following two ways:

1.

inn

subject to l\eumann's boundary condition

a~

ay = y cos(.T, 7l) - I cos(y. 71) on an
11

(3.1)

(3.2)

where :p(x. y) is the warping function and 71 is <1 unit outward normal vector

to the lateral surface of thP shaft:

a2 11· 82t·
~1 .., + ~1 .., = -2Go in n
(J.r· vy·

subject to Dirichlet's boundary condition

t' = 0 on an

(3.3)

(:t.i)

where t:•(.r, y) is Prandtl"s stress function, G is the shear modulus of the shaft

material and o is the angle of twist per unit length.

43

I I

0
(a)

I 01 a, I ---- ----

~ f1
' °'1 '
' ' ' ' ' '

(b)

Figure 3.1: Saint \'enant"s torsion of a cylindrical shaft with the cross section shown
in (a). The original cross-sectional domain n is artificially di\'ided into five nonover
lapping subdomains n1. 02 !''ls. as shown in (b).

Domain decomposition techniques can be applied to solve the above Laplace "s or

Possion ·s equation by artificially dividing the original domain n into five nonover

lapping subdomains f2 1 , f2 2 •..•. f!s (see Figure 3.1 (b)). In principle. as long as

the numerical values on the interfaces (represented by the dash lines in Figure 3.1

(b)) are known. the subdomain problems are well defined and may be solved inde

pendently and. due to the regularity of the subdomain shape. by using fast solvers

[221. 222]. The key issue is how to determine the interfacial degrees of freedom

efficiently. An iteratiw procedure with appropriate preconditioners [38. 46. 131] is

usually carried out to find interfacial values with desired accuracy. Because fast

solvers are locally C'Xploitable. the application of domain decomposition methods to

this particular problem can be beneficial even for serial computing. provided that

the computational cost involved in enforcing proper conditions on the interfaces is

not greater than the computational work already saved. The possibility of mapping

each of the subdomain calculations onto a different processor for parallel computing

would result in a further reduction in execution time.

3.3 Three Decomposition Strategies for the Parallel Solution of PDE's

In general. given a boundary value problem in n of the form

Lt1 = f (3.5)

there are three different ways of devising parallel numerical algorithms for the solu

tion of (3.5). These are operator decomposition. function-space decomposition and

domain decomposition. The main algorithmic features of these three approaches are

explained below:

45

• Operator decomposition: The main idea is to decompose the original differen

tial operator. namely.

L = L1 + L~ + ... + Ln (3.6)

The parallelism is usually exploited by separately inverting L,. i = I. 2 n.

or when n is small. by taking advantage of the independent tasks within each

phase embedded in an outer iteration which encompasses all terms of L,. i =

1,2 n:

• Function-space decomposition: For this approach, one decomposes the solu

tion u E C into n component solutions u,. i = 1. 2 n. which belong to

appropriate subspaces C;. i = 1. 2 n, of the space C. namely.

U = U1 + U:z + ... +Un (3.7)

r\umerical algorithms are designed so that u., i = 1, 2 , n. may be obtained

in parallel:

• Domain decomposition: In this algorithmic paradigm, one decomposes the

original physical domain n into n subdomains. namely.

(3.8)

The form of the original differential operator is preserved in each subdomain

and the smaller problems defined in the subdomains are coupled only at their

common boundaries (interfaces).

Three examples are furnished in [130] corresponding to these three types of

decomposition just described, which are the classical alternating direction implicit

(ADI) scheme. the spectral method and the additive Schwarz overlapping domain

decomposition method. Generally speaking, by employing domain decomposition

46

algorithms. each processor operates on a subset of the data and the amount of

data flow for sustaining the parallel computation among processors is rather small.

However. for the other two forms of decomposition. each processor performs a subset

of the calculations operated on all of the data. Hence. the expensive global data

flow or exchange costs proportional to the discrete problem size are expected.

According to the classification proposed in [237], there arc broadly two types of

strategies for partitioning a given task for distribution across the a\·ailable proces·

sors. namely. (1) partitioning of the computation. and (2) partitioning of the data.

Although these two types of partitioning are not mutually exclusive. domain-based

parallelism may be roughly classified into the latter while the other two decomposi

tion approaches usually fall into the former type.

3.4 Motivations for Domain Decomposition

During the past decade. there has been a significant increase of research activ

ities in the area of domain decomposition. The primary motivation for developing

and extending this "old'' technique is. no doubt. to exploit potentially high level

parallelism it can offer and to take advantage of the commercially available high

performance parallel computers.

In fact. from the discussion above. domain decomposition algorithms are gener

ally superior to either function-space or operator decomposition from the perspective

of parallel computing2 . Thus, for the purpose of parallel computing. the original

physical domain is often divided into a number of regular subdomains in such a

2see [130. p. 9) and references therein for a more detailed exposition in terms of the interprocessor

data flow analysi~- In particular, it can be argued that, among aforementioned three decomposition

strategics. only domain-based decomposition does not require the global movement of a significant

amount of data between processors.

41

way that computational work may be approximately equally distributed across all

subdomains (processors).

However, even for sequential computing, there are good moti\·ations for this

revival of interest in domain decomposition. Some of these, among others, are listed

below:

1. Domain decomposition techniques offer a possible way to solve PD E's defined

on irregular domains with a finite difference or spectral method [136. 201]. To

this end. one di\·idcs the original problem domain into subdomains of simpler

structure on which standard solvers (possibly. fa.st suLdomain solvers based

on fa.st Fourier transform or cyclic reduction techniques) are effective.

2. Domain decomposition techniques allow us to use different numerical schemes,

orders of approximation and resolutions for different subdomains (see, for ex

ample, [131]). Thus they offer opportunities to combine the advantages of

finite element, spectral and multigrid methods for devising more efficient and

accurate algorithms applicable to multi-processor architectures (see [224] and

references therein).

3. The technique also provides us with possible means for isolating regions which

require special treatment. Thus the computational effort can be focused upon

regions where large gradients. boundary layers. shocks or even singularities

occur [96. 138]. by. for example. carrying out local adaptive mesh refinement.

·1. The technique may be applied to some physical problems which require dif

ferent mathematical models for different su bdomains, for instance, in fluid

dynamics. using a viscous model near the boundary and an invi~cid model in

4S

the far field [G2. 97]. Interested readers are also reierrc>d to [19G] and references

therein.

3.5 Some Domain Decomposition Algorithms

Domain decomposition consists of two major classes of techniques which are

characterized by the way subdomains are partitioned. namely. with and without

overlapping of the subdomains. For both overlapping and nonoverlapping domain

decomposition methods. the original physical domain can be constructed as a union

of strips or boxes. while the corresponding subdomain solvers may be exact or

inexact. Box-wise domain decomposition methods arc more likely to be used on

parallel computers with a very large number of loosely coupled processors, while

partitioning of the original domain into strips is better suited for parallel computers

with a small number of powerful vector processors. like the CRAY Y-~IP (see [l.57]

for more information).

It shoul<l be pointed out that the o\·erlapping and nonoverlapping approaches are

not fundamentally different. In some cases and under some conditions. for a given

Schwarz overlapping algorithm there corresponds a Schur complement nonoverlap

ping domain decomposition algorithm. with a particular preconditioner. which pro

duces identical iterates on the interfaces [21. ·l2].

3.5.1 The Multiplicative Schwarz Overlapping Domain Decomposition

Algorithm

A typical example of overlapping methods is the Schwarz alternating procedure

which is now discussed in detail. Consider solving an elliptic PDE Lu= f defined

in domain n = n1 u !1:.: shown in Figure 3.2. subject to some specified boundary

rnndition on an. Tlw restricted problems of the original problem to subdomains

49

f! 1 and f! 2 can be independently solved as long as the boundary conditions are

correctly specified on the artificially introduced interfaces 11 and ; 2 . These boundary

conditions are iteratively updated until a desired accuracy is obtained by repeatedly

soh·ing subdomain problems as follows:

l. Start with an initial guess on one of the interfaces. say, 1 1 :

" Solve the problem Lu = j on n1 using the boundary condition on 11 together

with the original boundary condition on the rest of the boundary:

3. Based on the solution from step (2). the boundary condition on -12 is updated:

4. Solve the problem Lu = j on n2 using the boundary condition on 12 together

with the original boundary condition on the rest of the boundary:

5. Based on the solution from step (4), the boundary condition on 11 is updated.

go back to step (2).

The convergence of the above procedure is guaranteed [144] using an analysis in

terms of projections in Hilbert spaces. The rate of convergence depends on the extent

of overlapping. The larger the region 0 12 = f2 1 n ft 2 , the faster the convergence.

Some numerical results for the Possion ·s equation defined on a unit square can be

found i11 [15i]. The procedure may obviously be extended to the case of more than

two subdomains. although there is a decrease in convergence rate as the number

of subdomaim increases. i\loreover. a classical red/black numbering of subdomains

may parallelize the procedure.

50

Figure 3.2: The union of two overlapped regions D = 0 1 U f22 in which the solution
of a PDE is sought.

51

3.5.2 The Additive Schwarz Overlapping Domain Decomposition Algo

rithm

The additive Schwarz algorithm [32. 33. il. i2. i3. i·L i5. 130. 151], proposed

for the solution of elliptic PDE's with the Galerkin finite clement method. is an

approach for constructing domain decomposed preconditioners by deriving an alter

native linear system which has the same solution as the original problem. As the

simplest example. the additi\·e Schwarz method without overlapping corresponds

to transformiug the original linear system into a block-Jacobi preconditioned linear

system.

I..:rylo\· or conjugate gradient-like algorithms arc usually employed for the solu-

tion of this transformed linear system of algebraic equations. At each iteration. one

solves a global coarse grid finite element problem and a number of local problems

defined in the overlapping subdomains. which collectively span the original physical

domain. The local subdomain problems may be solved either exactly or approx·

imately and in parallel. This approach is very competiti\·e for certain classes of

elliptic problems due to its use of overlapping subdomains and the incorporation

of a global coarse mesh. The introduction of additive Schwarz algorithms w~ mo

tivated by the error propagation operator (a polynomial of projections) associated

with the multiplicative Schwarz method.

To fix the~e idea~. let us consider solving a steady state heat conduction problem

specified hy tlw following equations

iJ Du
-a (k,;-a)+f=O inn

X, X 1

(:J.9)

II = fl on f u (:J.10)

(:U 1)

52

where k,1 ·s. i,j = 1. 2 are conductivities and u is the temperature. !\ote that

Einstein ·s summation convention has been used here.

If we define a bilinear form

11 Du· au
a(u·. u) == k;j-a . -a dP.

11 :r, :T;

and two inner products

(u:.f) == j in wfdD.

(w.q)Jr = r wqdr q lrq

(3.12)

(3.13)

(3.14)

our original boundary value problem (3.9). (3.10) and (3.11) (known as the strong

form) can be shown to be cqui\·alent to the following so-called weak form

a(w.u) = (w,f) + (w,q)Jrq (3.15)

Here u and u· belong to properly defined Sobolev spaces F and W of trial solutions

and test functions. respectively (see Appendix A).

To solve numerically the heat conduction problem by the Galerkin finite element

method. we need to construct a finite dimensional space H'h to approximate the

function space 11 · defined a~

(3.16)

JJ I (n) = { u· j u· E L 2
(n): vu· E L 2

(n)} (3.17)

Assume that the function gh = ii on r u and let u1· = r 1
· + gh for rh E H'h. Then

the Galerkin finite element formulation may be stated as follows:

('.3.18)

53

From (3.18). we deduce that a(tLJ'. l') = a(wh. vh). As a result. the finite element

solution rh (from which. we obtain uh = i·h + gh for the solution of the original

problem) is the projection (with respect to the inner product definition in (3.12))

of the exact solution l' onto the finite element space wh.
To be specific. let us think of u·h as a piecewise linear triangular element function

space (see Appendix A). l;pon specifying a set of global shape functions Ni "sin the

space wt.. (3.18) reduces to a linear system of algebraic equations

At·= g. (3.19)

\\"e now decompose the original physical domain P. into :\' nonoverlapping sub

domains n,. i = 1. 2 1\' (see Figure 3.3). In addition to the Ii-level finite element

space H'h' we define another piecewise linear H-levcl function space n•11 • whose typ

ical clement tv11 is continuous in f2. linear in the subdomain f2, and vanishes on f u.

To obtain some overlapping, WC extend each subdomain to a larger region n; which

does not cut through any h-level clements. Subdomain extensions lying outside the

original physical domain arc cut off (see Figure 3.3). Associated with each extended

subdomain n: is a finite element space w/· = //J(n;) n nrh. which is inherited from

the already defined Ii-level function space W".

The finite clement function space H'h may be represented as the sum of the

following :\' + I subspaces

(3.20)

where W 11 is replaced by Wt. The projection operator

P,: (3.21)

for each i = 0. 1. 2 '\·. may be defined as follows

(3.22)

____ ,,_ __ _

'
L.- ----·----

' ' .. _ ----j~---- --'

Figure 3.3: The original physical domain is decomposed into A nonovcrlapping
subdomains !1;. i = 1. 2 I\'. To obtain some overlapping. each subdomain n, i~
extended to a larger one n:.

Instead of directly soh·ing the linear system (3.19) resulting from (3.lS). in the'

additive Schwarz algorithm. onC> works on a transformed equation of the following

form

(3.23)

where' P is the sum of X + 1 projection operators defined above' in (3.22). namely.

P :::: Z~"=o P,. The right hand side b == I:;"=0 P, rh. where P;rh. for each of i ==

0. L N. is obtained by solving

(3.24)

Algebraically. the equation (3.23) is nothing but a transformed linear system of

(3.19)

s- 1 Ar :::: s- 1 g (3.25)

where ,.,.
B- 1 = :L Rr(A1:r 1 Rk (3.26)

A typical entry of the subdomain matrix Ak is defined by (1h) 1; = a(S,. :\';)·where

N, ·s are piecewise linear global shape functions which span thC> space' H'17. Each

matrix R;,;. k = 1. 2\". plays thP role of restricting the global solution vector

to the interior of the extended subdomain n~. Finally. the matrix ~ serves as a

fine-to-coarse grid restriction operator.

3.5.3 The lteration-by-Subdomain Nonoverlapping Domain Decompo

sition Algorithm

As one of many possible nonoverlapping domain decomposition methods. we de

scribe the so-called iteration-by-subdomain method [91. 150. 19·1, 195]. The method

allows for th<' reduction of the original problem into a number of independent sub

problems of reduced computational complexity at the differential equation level.

5G

rather than at the algebraic level. by enforcing proper transmission of information

(according to some applicable physical laws) between adjacent subregions. Because

the method is based on solid physical ground. the resulting domain decomposition

algorithm is rather robust and may be applied to a wide range of physical problems

of practical interest.

To illustrate these ideas. WC consider the physical domain n shown in Figure 3..1.

The original domain n is divided into two nonoverlapping subdomains of smaller

size n1 and n2 with an artificially introduced interface 1 · The model problem under

consideration is Lu = f with some specified boundary condition. say u = g, on an.

where L = - :C~.J=t d~, (a,1 &~,) + ao. Denoting by u, the restriction of u to n,. for

i = 1, 2. the original problem is equivalent to

(3.27)

with the original boundary condition on ant - 'i· i.e.,

(3.28)

and

(:3.29)

with the original boundary condition on an2 - ;. i.e ..

(3.30)

provided that the following transmission conditions arc imposed on the interface :

<li(ut) = <1>(112) on; (3.31)

and

(3.:32)

57

(a)

(b)

Figure 3.4: The original physical domain n in (a) is di\·ided into two nonovcrlapping
subdomains n1 and n2 in (b).

5S

For the Possion·s equation. <l>(u) = u and llt(ll) ==~·where n is the unit normal

vector on 1 directed from D1 to D2 . In the case of linear elasticity. by using Einstein's

summation convention, we have the foliowing well-posed problems in the domain n

(see [139] for the meaning of notations and additional details)

• Equations of motion

(Ji;.j +pf, = pu, (3.33)

• Stress-strain relationships

(3.3.f)

• The constitutive law

(3.35)

or for isotropic materials

• The boundary condition of specified displacements

tl; = u, on an,, (3.3i)

• The boundary condition of specified stresses

(3.38)

Appropriate initial conditions are also required for this initial boundary value prob

lem. The interfacial transmission conditions consist physically of the continuity of

displacements and stresses across the common interface, i.e.,

u 1 = u 2
t t

(:3.:.39)

59

(3..10)

where n; is a unit normal vector to the interface : shown in Figure 3.2. Hence. in

this case. <l>(ui) = u; and W(u;) = a;jn;.

The iteration-by-subdomain algorithm assumes the following form, for l· =

0. 1 until convergence.

(3..11)

on; l Lu~+> ~ f in fh

u;+1 = g on iJfh -1 (3.-12)

'11(11~+ 1) = W(u~+ 1) on/

where 0 > 0 IS a relaxation or acceleration parameter and uo
I and u~ are given

initially.

The algorithm just presented for the case of two subdomains is sequential. i.e ..

calculations in f2 1 and f2 2 can not be carried out simultaneously. However. this does

not really matter. since parallel computing involving only two subdomains is of little

interest. In the case of n subdomains (n being much larger than 2). the subdomains

may be renumbered a~ red/black (see Figure 3.5) such that calculations in different

subdomains with the same color can be carried out in parallel.

The iteration-by-subdomain algorithm is also known as the Dirichlet-!\eumann

method. It is interesting to note that. at the disrrete level. the method can be

related by the Poincare-Steklov's operator [4, 197] to the Schur complement (to

be introduced in Chapter 4) of a linear syst.cm of algebraic equations. Precisely.

an iteration-by-subdomain iterative procedure can be shown to be equivalent to a

preconditioned Richarson "s ite:rative method for the solution of a linear system with

the coefficient matrix being the Schur complement matrix C.

60

red

black

red

black

I red

black

red

black

black red black red
red black I red black

black red black red
red black red black

Figure 3 .. 5: The red/black subdomain numbering for strip-wise and box-wise domain
decomposition.

(i 1

3.6 Conclusions

• Although ?. tremendous variety of parallel numerical methods haw lwcu pro

posed for solving PDE"s over the past thirty years. the most recently in

vented parallel computational strategies for the numerical solution of PDE's

arc largely based on or closely related to domain decomposition principles.

• Among many other desirable properties. the domain decomposition method

extends the usefulness of some special numerical techniques (for example. fast

<lirect solvers). The local applicability of tlwse spccial numerical techniquC's

makes the domain decomposition method attractive <'\'en for serial computing.

The possibility of mapping subdomain calculations onto diffcrent processors for

parallel processing puts a further premium on the application of the method.

• Decomposition by domains is the best among three possible decomposition

strategies for the parallel solution of PDE"s. namely, operator decomposition.

function-space decomposition and domain decomposition. The nature of do

main decomposition techniques guarantees that only a small volume of data

(relative to the scale of the discretization) ne<'ds to be exchanged between

processors and the global rcmapping of the data onto processors is avoided.

• The iteration-hy-subdomain. rnultiplicati\'t' and additive Schwarz domain de

composition methods introduced in this chapter as well as the Schur and tlw

modified interface matrix (advocatt'd here and proposed bcfore by the au

thor) domain decomposition methods along with parallel block precondition

ing techniques to be introduced in later chapters are some general approaches

of domai 11-basen decomposition mct hods for solving elliptic PD E's or time

evolution problems (of paraholic or hyberbolic type) discretized with implicit

r.•)
\)_

temporal schemes. These general approaches. with a modification of one or

more of their ingredients. pro\'ide almost infinitely many \'ariants of the so-

called iterative domain decomposition algorithms. :\nolher dimension will Le

added to this \·ariety if implementation details ar<' taken into account.

CHAPTER 4

THE SCHUR DOMAIN DECOMPOSITION METHOD AND ITS

APPLICATIONS TO THE FINITE ELEMENT NUMERICAL

SIMULATION OF THE SHALLO\V \VATER FLO\V

4.1 Introduction

We have pointed out and illustratt•d two approaches of domain decomposition

methods, namely overlapping and nonoverlapping. Generally speaking. the multi

plicative Schwarz overlapping approach is rather robust. It can be applied to various

difficult physical problems of practical interest. With this approach, different nu

merical schemes, different mesh resolutions or even different mathematical models

in different subdomains may easily be used or incorporated into the formulation.

However, it is usually less efficient than a nonovcrlapping domain decomposition

approach designed for a specific application which sets up an itPrativc procedure

acceleratl'd by appropriate precond it ioncrs.

To reduce the serial complexity oi the nonovcrlapping domain decomposition

algorithms, most. oft.he research, up to now. has almost exclusively focusl'd 011 thf'

interface(s). or morf' spPciftcally. 011 finding good pr<'rnnditioners for the conjugatl'

gradient (CG) aigorithm [;j~] or for any com pd it ivc iterat in· nwthod (C: :\IH ES [:Wfi].

for (·xamplc) for symnwt rir or non-symmd ric lin('ar systems of algebraic cq11at ions.

arising from finite diffpn•nce or finite pft·nwnt discrd izations of Pili pt ic partial dif

ferential equal. ions i 11 two or th re(' di mcnsiona I rq~ions. To n·rnm 11wml j 11st a f1•\\'

(i I

papers. sec [:W, :n. :JS, .1:3, ·l·I. ·Hi, 69. 70. !)!}, I:3l. l:J:L 1·19, l:J/. l:JS. l.19, I /:L 17·1]

fur more details.

The primary reason for this focus is that the itcrati\·c solution of the intcrfact·

Schur complement matrix system involves repeated solutions of all the subdumain

problt•ms (sec Figure I.ii for a highly simplified data dependency graph) and the

interface solver itself is a potential hottlc1wck for the coar:w-grained parallelism. :\

good interface prcconditioncr can drastically reduce the number of iterations on the

interfaces. thus allows significant saving of computational work in the subdomains

and in the whole solution process.

Due to the paramount importance of tlw shallow water c'luations in meteorology

and oceanography, where they S<'f\·c as test models for the dcn·lopmcnt of new

algorithms, the efficient finite clement solution of the shallow water equations has

attracted the interest of many researchers. :\ tremendous amount of work has been

carried out in this direction, sec, for example, [58, 166, lGi, 168, 169, liO, li2, li5,

lii, li9, l8L 2li]. to cite but a fow references. Unfortunately, these algorithms

were not designed to run efficiently on various multi-processor architectures.

In this chapter we extend applicability of nonovcrlapping domain decomposition

methods to a set of coupled no11li1war hyperbolic shallow water partial differential

equations defined 011 a 2-D limited-area domain, using finite element discretization

in space and an implicit integration scheme in time (sec Appendix A).

Specifically. we report on our work on the Schur domain decomposition md hod

applied to a finil<' t•kment model (App<'ndix A) of the nonlinear shallow water

t>quations ov<'r a limit<'d-arca domain. We h<'gin with t)w id1·a of suhst met uring and

tlw Schur rnmplemcnt matrix. Then \\'('gradually introdun· tools and algorithms

designed to solw ef!irie11t ly I he caparit an re li1war systems a.'isoriated with inkrfan·

nodal variabks. :'\11111crical results and disru~sions ronrcrning tlw finite c1"11wnt

domain decomposition solution of a set of nonli11ear shallow water cqu~tio11s arc

given in Section ·Li. Considerations related to parallelization will be postponed to

a later chapter for a unifi<'d treatment.

4.2 Substructuring and the Schur Complement

It is well known. in the finite element method. that int<'rnal degrees of freedom

can be condensed out at the clement level prior to the assembly process (st't'. for

examp!P, [2·16]). When this idea is applied to a group of el!'mcnts. i.e .. a subst met urf'

or a subdomain. it leads to what is known among engineers as the substructuring

techniques.

The idea is that the whole structure or domain is considered to be an assembly

of substructures or subclomains (sec. for example, [9:J, l!):J, 202]). Each substructure

or subdomain, in turn, is idealized as an assembly of finite clements, and all internal

degrees of freedom arP statically condensed out (see also [2,l l]).

To fix ideas, two classes of variables arc usually identified, namely the internal

variables relevant to nodes within subdomains, and the interface variables relevant

lo nodes belonging to two or more subdomains. The internal variables may lw

numbered either before or after the interface ones.

We only consid<•r :mlving time dependent PD E's with implicit. t.inw discrct izat ion.

Explicit methods are algebraically equivalent to a matrix-vector product problem

and thus n·adily parallelizabli•. llow1·v1·r. implicit time schc111<•s involvP matrix in

n•rsions and, rnns<'qm·ntly, ar<' highly S<'Cfll<'lllial. As a standard practic<' in paralkl

computing (s<'<' Chapter 2). a n•numlwring or rPor<kri11g st ral<'gy may lw 11s1·d for

r!'structuring tlw sPqttencP of calculations i11 such a way as to rt'VPal tlw parall<'l

st rnctm<' of th<' prohh·111.

.L J-L L J-'- L J _l_L .L J-LL J-'-L J -'-L .L J_l_ 1 J-'-L J-•-L.L J-L L J -'-L J -'

.! _,_,_ !. J _•_ !.. ..! _,_ ~ .! _,_,_!. .J _I_!.. J _I_ L .! _,_._ ! J _•_ L J _I_~ l -•-·- .!. ..!-'- !.. ..! _,_
I
i -,-,- r 1-,- r 1-,-1 i -,-,-r ,-,- r, -,-, 1-,-,- ii-,- ii-,-, 7 -,-,- r ,-,- r 1-,-
1 -.-r T -.-,- r ,-,-r T -.-rr ,-,-r, -,-r T -.-r T ,-,-r ,-,-r1-,-,- r ,-,-r ,-,
T ,-,.. T ,-,- r ,-,-r T ,-r T ,-, r ,-,- r "'f ,-,.. T ,-r r ,-,-rT ,-r- T ,-,- r .,-,
.,. .,- r-,.-. -1- ~ , -.- r- 1' ;- r-,. ., -.- r.., -.- ,... 'T -,- r- " ., -.- r, -.- .- .,. -,- r- ,. .., -r- r 1 -..-
"t -t-t- ""-1 -1- t- ""-.- t- -t -t- t- .. -t -1- t- 1 -1- t- "" -t-,... " ... -1- .. ""-1- r -t -.- t- ,. "'1 -t- t-"" -t-
.. ..,._._ _,_ -+ -1- -t-1- _ -1- -4-1- -1- ... -+ _,_,._._ _,_ -I-
.I. -'- &... .L .J -'- L ~ -'- L .I. ...1-1,-I-'-&.-' -1- L.. ..&. ~- L. A. _, -l- A..~ -1- L.. ..£ ...i- L- .L ..I-'- L-' -'-

.L-'-'- L J_l_ L J _l_L .L-'-'-1 J-•-L J-'-L .L J_L 1 J-'-L J-'-L.l J-'- L J-'-L J -'-
1-'-'-l ..! -·- !.. J -'-l ! -'-'-! J _I_!.. J -·- L l -'-'- .!. J-'-L .! -•-L l _._,_!_!_I_ L J -·
I 1-,-,-1-,-,-11-,-1 i-,-,-, -,-,- i ,-,- i 7-,-,- r 1-,-r 1-1-11-,-,- r 1-,- I 1-,
T -.-r T ,-,-r ,-,-r T -.-rr ,-,-r ,-,-r T -.-r T ,-,-r ,-,-rT -.-r T ,-,-r ,-,
T ,-r T ,-.- r ,-,-r T-.-.-r ,-,- r, -1-r T ,-,.. ,. ,-,- r ,-,-rT ,-,- T ,-,- r ,-,
T 1-r T ,_,_ r., _,_,.., '"1-r,. .,-.- r ,-1- r- 'T -,-t-1" -.-r, _..-,..., , ,.. T' ..,-r- r .,-..-
1' -1-t- .. -t -t- -.- t- - ~ -1- t-1-1-,.. - '"1-1- t- -t -t-t- .. -t-t- "'1-1- .. "t-1-
........ _ -4-1- _._ ~ _,. _._ ~ ~ _._,._..., .. _._._ ~ _._ -t-~ .. _. _._ _._
... _,_&. ... _._a_._&~- " ..1-L-'""' -'-'"' ~-L.. .L .J-1-&.. ... _._ ~-1- .&. ... _._ ... ,, _._

.L ..1-L LJ-'-L J-•-L .L J-LL J_l_ L J-'-L .L J_L L J_l_ L J _l_LJ ..1-L L J-'-L J_I_

.!-'-'-! J_I_ !.. l-'-~ .!-'-'-!. J_l_ !,. J ... t_ !_ l-'-'- ! J_I_!., .l-'-Ll-'-'-lJ_l_ L J_I_
I 1-,-,- r ,-,- r i-,-r i-,-,-r i-,- i ,-,-r ,-,-,-r ,-,-ii-,-,,-,-,-.,-,- r i-,-
1 -.-r T ,-,-r ,-,-r T -.-rr ,-,-r ,-,-r 1 ""1-r T ,-,-r ,-,-rT -.-r T ,-,-r ,-,-
1 ,-,.. T ,-,- r ,-,-,.. T ,-,..r ,-.-r ,-,-r T ,-r T ,-,.. r ,-.-rT ,-,.. T,-,- r ,-,
., ..,-r ,...,-r- r ,-.-.-.,. -,-,.." .,-r- r, 1-r T ..,-r T -,-.-r ,-.-.-"T -,-r ,..,-r- r ,-,-
,. -t-t-,. "1-1- -t- -t-t-" ~ -t- -t- t- .. .,.._ "-t-t- t-1-t-, - ,. -1-1- ... 1-1-
..... _ _,_,..._,._.,__ -1- _._ _._,._ _. _,_ ... ,.. _._

..&. """-'-A...,_._ L ..1-1-L .I. -'-L-.L .J-1- ~..I -1- L.-' ~-L.. A. -'-I-&.~ -1-L. .& -1-1- .L..J-1- ~-'-I-

h...._-t-'.L-J ___ L_L_J __ ,•_•L•J-_1-_-L•.LJ ___ L_L_J __ •,_ML_J __ -,_•L•.L•J-_-L•L•J--'--L•J•_•,_-L_.L_J __ •,_•L•J-_-,_•L_J_J~_t---r

l-'-'-1 J_,_ L J _l_L 1-'-'-l-'-'-L J-'-L l-'-'- ! J-'-L J-'-Ll-'-'-lJ-'-L J _1_
I t I I I I I I I I I I I I I I I I I I i-.-,- T ,-,- r ,-,-r 1-,-,-i i-,- i ,-,- i ,-,-, i -,-,-r i-,-,,-,-,-.,-,- r ,-,
T -.-r T ,-,- r ,-,-r T -.-rr ,-,-r ,-,-r T -.-r T ,-,-r ,-,-r T -.-r T ,-,- r ,-,
T-.-r T ,-,- r ,-,-r T ,-rT ,-,- r ,-,- r- T ,-.-T ,-,-r ,-,-r,. -.-r- r,-,- r ,-,
., ...,-,... T "1-r- r ,-.-~ T ,-rT .,-,- r., -.- r- T ..,-r T ..,-,- r ,-.-~ T ..,-,... .,.,-r- r ,-.-
• -1-t- + -t-1- -t- _.._ -t-t- ~ .. -·- -.-.-,. _,_ -t- '"1-t- .. -t-1- -·-
.. _,_..., .. -t-1- _._.,.. _,._._ .. ,. _,_ _,._._ -t-t- ... _._.,_ _._, _,_

.l ... _._ ... -1-'- ~ _._ ""'-'-"-'-'- &. ... ~-l -1-~ a. ... _ &. ... -t-1- .l _,_.._ ... _._,_"",., _,_

H

(i{i

Figurt' ·l.l: The original domain n is drcomposrd into four :mbdomains of equal or
nearly <'qual sizes with a quasi-uniform subdomain width // and q11asi-11niforrn grid
siZP /i.

G7

Here we arc particularly interested in the computational speedup resulting from

applying the domain decomposition technique. Our targ<'t machine for the im

plementation of various algorithms is the one with a number of powerful n•ctor

processors sharing a common nwmory, such as the CHAY computer family. For

this type of computer architecture. it is more suitable to di\·idc the physical domain

into strips instead of small boxes in order to yield longer vectors [157]. Thus. \\t'

will consider subdividing the domain n under consideration into // 11011on•rlapping

horizontal strips !1;, i = I• n of equal or nearly <'qua! sizes (sec Figure ·l.l). Tlw

11 - l interfaces !';, i = L 11 - I separating these n subdomains from each otlwr

are collectively denot<>d by r. We· have the following rclat ions

n = n1 u n2 u .. · u ntl u r

n; n nJ = 9 for i -:/: j

I' = I' 1 U 1'2 U · · · U I'n-1

Clearly, cross points arc eliminated frum our consideration.

(-1.l)

(-1.:2)

(·l.:J)

The differential operator governing the problem on n can be split up into oper

ators acting Oil the interfaces (' and tJw 11 subdomains n;. i = l, ... , 11 at <'ach time

sl<~p, as can be realized by identifying two typ<•s of variabl<'s and n·numlH'ring. To fix

id<'as, let us consider solving PDE's involving only first and/or second ord<'r partial

derivatives. which an· typical of computational fluid dynamics (CFD) problems. by

<·mploying n11m1·rical schemes having a five point finit<· diffcwnn· or a s<·n·n point

li1war triangular linitl' Plcnwnt st<'ncil 1 as shown in Figure• ·l.2. If we denote th1·

matrix n·pn·s<·ntations of these reduced 01><·rators as .·\;;.i =I, 11 on each of th<'

subdomains and ;_,, on t lw interfan·s I'. we obtain syskms of ;tl~Pbrair equal ions

1 ,\ 11i1w point. litwar rl'cta11g11lar finite dl'llll'lll strnril may similarly lw taken into arcmmt.

•
{i-1,j)

{i-1,j+l)

•
{i,j+ 1)

•
(i,j)

•
(i,j-1)

(a)

(i,j+ 1)

(i,j-1)

(b)

68

•
(i+l,j)

Figur(• ·I.~: (a) :\ fivP point finil<' differPncc stencil; (b) :\ sPwn point linf'ar t ria11-
g11lar finite t>lf•ment. slpnril.

()!)

at each time step of the following form

:\.r = f (I ..I)

where tlw matrix :1 assumes the following block-bordered st met 11n•:

(-1.::i)

In (·1.5). :1,u is a block diagonal matrix

Au = diag[:\ 11 •Au A,.n] (·LG)

with each block A;;, for i = I. 2 11. being thl• discrcl<' analog of tlw r<'striction

of the original differential operator on each subdomain.

Aa. and A,d r<'prescnl connections between subdomains to intcrfan•s. Tlwy

assume the following block bi-diagonal forms

and

wlwrc

1~· .. -1

(;I 112

:1.,.f =
C:2 11:1

' ' T 1~. = (o. o '() ' /~; . .,.,) ..__._..
m,-1 blocks

(·l. 7)

(1.!l)

T 1-i = (/'i.1' 0.0 0) ,,_____...
m,-1 blocks

G; = (0.0 0 ,G;.rn)
'-..-' '

m,-1 blocks

II;= (//;.1. 0 ,0,0)
'---v---'

m,-1 blocks

70

(1.10)

(.1.11)

(1.12)

111; being the number of horizontal grid lines in the i'th subdomain. The blocks

E;.m,• 1-i.i. G;.m, and 11;.1 in matrices /:';. 1-i, (;; and //;. rcspcctiv<'ly. ar<' either

diagonal or bi-diagonal point matrices. depending on whether a five point finite

difference scheme or a seven point stencil resulting from a linear triangular finite

clPment method being used.

i\ote the matrix A consists <'ssentially of tlw assembly of the subdomain stiffness

matrices, sec also [20]. If we let 11;, i = 1,2, ... ,n, be the numlwr of unknowns

in each of the subdomains and 11., be the number of unknowns on the interfaces.

then each of the matrices A;;, A;, and A,; is of size 11; x 111, 11; x 11, and 11, x ri;,

respectively, for i = l, 2 , 11. Likewise A., is of the size 11 .• x 11,.

A,, corresponds to the discretization of the original differential operator re-

stricted to the interfaces. The interfaces include 11 - I internal boundaries I';,

i = l, 2, ... , 11 - l, and no mesh points from different internal boundaries will appear

in the same stencil. This accounts for the special struct me of the matrix 11.,. For

instance. A.,. is diagonal for a three point stencil 1-D problem aucl the following

block diagonal form for a five point finite· diff<·n·ncc or a seven point triaugular fiuil<'

<'l<'nl!'nt stc·ncil in t lw 2-D case

(I.I :q

where ead1 block is as~ociatcd with 0111· of tlw interfaces.

71

The non-zero entries of T;;. i = l. 2 11 - l. amount to th<' following cyclic

tridiagonal structure induced by the prcsenn· of periodic boundary conditions im-

posed on our physical problem (to be detailed in Sect ion Ui)

T;;=

(i)
C2

(i) h(•) (i)
<In-I n-1 Cn-1

(1.1.1)

By plotting the surface formed by the entries of a matrix as a function of its

indices. the typical block-bordered structure of the matrix :\ given by (1..J) com·-

sponding lo a subslrud urc numbering of tlw nodes is generated for a four subdomain

case (sec Figure ·l.:J), where the following modifications arc made to the t•ntries of

the matrix A:

.~r { I a;i -
0

if fli; #- 0

if llj) = 0

Th<' numerical solution of Ar = f is equivalent to solving the following

C.r, = g on r

(·l.15)

(·l.I G)

(·I.II)

where I' and n., i = I, 2• 11. stand for the int«'rfarcs and subdomains. re;pectin·ly

and

(' drf
:\,, - :\,dA:i,f :\d .•

" :\,. - L A,;11~ 1 :1 .. , (I. I !l)
i=I

and

drf J.. - :\.,,fl\;/,) f.1 g (1.20)

"
= 1.. - I: l1 ... :1~ 1 f; (1.21)

i=I

~;

-
II

~

.. ~

~

II r
= ... ~ t:i

j El ... "'
::

/:l+1=I. tt ~ J

H -H
~,.. -4- ~

II

J w
f-

Figure · 1.:lo The l.ypical block· hord••rcd matrix ,1rnct u re corrc>pon<li ng to a ,ul»l n<< ·
I ti re nu mhcri ng o[the nod« for a [our-'" hdom• in domain dccom p•>'it ion. Since t 1«'
relative magnitudes o[entri<'' in the matrix ,\ ar<' o[no in\<•r<'>t \wrc, all non-zero

cknwnts (<1;
1

f- O) have been sci lo l.

wh<·re C is th<' wdl-known Schur complement matrix. capacitance· matrix or Gauss

transform in differt'nt contexts (sec [iJ:J, l l!l. 18::i]).

It is clear that tlw sub<lomain problems (l.l i) are trivially d<'rnupled (indepen

dent of each other) and the subdomain solutions may be sought in a highly parallel

Way OnCt' tht' internal boundary conditions .r5 on the intcrfact'S I' between artificially

divided subdomains are obtained by solving Cl.16).

It should I)(' pointed out that the Schur complement matrix C is g('l]t>rally d<'ns<'.

although <'ach of the matrin·s A11 • i = I.~ , /1 and 11,. corresponds to a IO\wr

dinwnsional local diffen•ntial operator and lwnce arc sparse. Conseq1wntly. the so

lution of (·l.l 6) is <·xpensive to obtain using a dir<'d solver. t•sp<'cially as t lw dt•gn•t•s

of freedom on the interfaces increase• as higher m<'sh n•sol11tions are introdnc<'d.

We illustrate the denseness of the matrix C associated with the three interfaces of

a four-suhdom<1in strip-wise domain decomposition (sec Figure ·LI) in Figure ·IA,

where each x represents a non-zero entry of the matrix C, assuming that there

are 15 nodes on each interface. The fact that th<• matrix C assumes a block tridi

agonal structure, as clearly shown in Figure ·IA, may readily be explained in the

context of the finite clement method by observing that tlw Schur complcmC'nt ma

trix C consists essentially of the assembly of th(• substructure (or sometimes called

a "stqwrelcment") stiffness matrices.

It is also important to note that sizes of 11.id and 11,. in (-1.G) are very diff<·n·nt.

Spcrifically, the disrrd<· dim<'nsions of A,u and A •• are, respectively, 0(/1-'2) and

O(l/- 1/i- 1). wh<'r<' II charaderizt•s the s11bdomai11 length seal<· and his the nwsh

sizt· (st·<• Figur<' ·I. I). Tl111s. in g1·1wral. wt• hav<· a rclat i\'<'ly sJ11aller problem to soh·t·

011 t lw inl<>rfaces tha11 that in rach oft lw subdomains. \V<' point out that. in t lw cast•

of hox-wis<' domain dcrnlllposition, the cross poi11ts of intNfarcs (or cq11ivah·11tly.

s11bdoJ11ain vertin•s) ronstit11t<' a rnarsc grid discretization in the original physical

7·1

1 xxx x x x x x xx x x x xx
xx xx x x x x xx x x x xx
xxxxx x x x x xx x x x xx

5 xxxxx x x x x xx x x x x
x xxxxx x x xxx xx x x x

x xxxxx x x xx xx x x x
9

x xxxxx x xx xx xx x x
x xxxxx x x xx xx x x

x xxxxx x x xx xx x x
x xxxxx xx x xx xx x

xx x xxxxx x x xx xx x
13 xxx x xxxxxx x x xx xx

xxx x xx xx x x x xx xx
x x x x x xx xx x x x xx x

xx x x x xx xx x x x xx xx x x x xx
17 x xx x x x xx xx x x x x xx x x x xx

xx xx x x xxxxxx x x xx xx x x x xx
xx xx x x xxxxx x x xx xx x x x x

x xx xx x x x xxxxx x x x xx x x x
21 x xx xx x x x xxxxx x x xx xx x x x

x xx xx x x xxxxx x x xx xx x xx
•""'4 x x xx xx x x xxxxx x xx xx xx x xx

25
x x xx xx x x xxxxx x x xx xx x x

x x x xx xx x x xxxxx x x xx xx x
x x x xx x x x xxxxx xxx x xx xx x

x x x x xx x x x xxxxx xx x xx xx
xx x x x xx x xx x xxxxxx xx x xx xx

29 xx x x x xx x x x x xx xx x x x xx x
xx x x x xx xx x x x xx xx x x x xx

x xx x xx x xx xx x xx x x
33

xx xx x xx x xx xx x xxx x
xx xx x xx xxxxxx x x x x

x xx xx x x xxxxx x x x
x xx xx x x x xxxxx x x x

37
x xx xx x x x xxxxx x x

x x xx xx x x x xxxxx x x
x x xx xx x x x xxxxx x

x x x xx xx x x x xxxxx x
x x x xx xx xxx x xxxxx x

41 x x x x xx x xx x xxxxx
xx x xx x xx x xx x xxxxx

xx x xx x xx x xx x xx xx
45

xx x xx x xx x x xx x xxx

1 5 9 13 17 21 25 29 33 37 41 45

J

Figur<' ·l.·I: The Schur compl<'ment matrix strudur<' associat<·cl with th<· t hr<'1' i11-
terfan·s of a four-s11hclomai11 st ri p-wis<· domain dee om posit ion shown in Fig11 n· I. I.
<1ss1m1i11g thcr<' arc 10 nodes on each interface. 111-n•, Pach x rq1ws1•11ts a 11011-z<·ro
entry in t lw matrix.

domain. The discrete dimension of the matrix corr<'spo11di11g to the discretization

of tlw original difforcntial operator restricted to this coarse grid is only 0(//-i).

Finally. we mention that. for box-wisP domain decomposition approach. two k\·

els of discretization aw usually considered for the original physical domain. namely.

a global coarse grid constitutPd by subdornain vertices and a local fine grid cl<'

fined within each subdomain. Then.fore, two length scalPs, i.e., the //-scale and t lw

Ii-scale. respectively. han• been taken advantage of in the construction of domain de

composition preco11<litioners. We refer interested readers to [22. :rn. :H. 10 l. !Oii] and

references therein for details on two-lcwl Krylov domain decomposition methods.

4.3 A Node Renumbering Scheme

In a computer program designed for solving partial differential equations, we

may introduce a modification of the code in order to accommodate various mesh

resolutions aimed at obtaining higher orders of accuracy and testing the convergence

of the method.

Let us now denote the original nodal numbers by the old numbering, while tlw

nodal numbers after renumbering (i.e. the substructurcd numlwring) will be denoted

by the new numbering.

If we discrd ize the partial differPntial equation hasPd 011 the rww n11mlwring

schenw. the relations between the interface nodal numbers and those nodal numlwrs

of the subdomains adjan•nt tot lw intt•rfaces lwconw difficult to pr<'dirt for arbitrary

high nwsh rcsol 11 t ions.

This hcconws evid<'nt for tlw cast' of the finitP eknwnt discretization in which

I lw relationship amongst global nodes.)oral nodPs and P)Pm<·nt 1111mlH'ri11g I urns

out lo be \'<'ry diffpn•nt if W<' try lo for11111latP the prohlt·11111si11g the 1ww 1111mlH'ri11g

sys1<'111s for various mesh resol 11 t ions.

7G

In vi<'w of this. other efficient ways for transforming the original sys!!'m matrix

into the block-bordered matrix like that in (-1.5) need to be devist•d. For cxampll'.

the following node renumbering scheme may be used for this purpose:

Step 1

Step 2

Step 3

Set up the relationship betwcPn the old and the new numbt>ring system

by defining an array number(11). wlwrc 11 is the total numlwr of nodes

and the numbcr(i) is the nodal number under the 1ww m1111bering schenw

corr<'sponding to the old nodal numlwr i:

Henumber the nodes by putting tlw j'th column of tlw original matrix

into the j 1'th column of the transformed matrix, when· j 1 = m1111ber(j):

Change the posit ions of nodal actions by putting the i'th row of the matrix

obtained at step (2) into i 1'th row of the transformed matrix, where i1 =
number(i).

After these three steps have been implemented wr obtain the block-bordered

matrix which has the same structure to that of (·1.5) corresponding exactly to the

new nodal numbering defined by the array number(u). This idea also provid<'s an

easy way for implementing multicoloring techniques.

A segment of computer code for calculating number(i), i = I,:? , 11 is provided

below for illustration purposes:

*
* Renumber the nodes in the subdomains

*
do 10 i=l,kd

ib=(i-l)*ns

do 20 j=(i-l)*ni+l,i*ni

num(j+ib)=j

20 continue

10 continue

*
* Renumber the nodes on the interfaces

*
do 30 i=l,ks

k=kd*ni+(i-l)*ns

ib=i*ni+(i-l)*ns

do 40 j=ib+l,ib+ns

k=k+l

num(j)=k

40 continue

30 continue

77

where ns is the number of nodes on one interface, ni is the number of nodes in tlw

i'th suhdomain, kd is the number of suhdomains and ks is the number of intcrfan·s.

4.4 Schur Domain Decomposition Algorithms

llistorically. it. was con1111011 pradke to apply t.lw LU or Cholesky factorization

in each suhdomain and form the Schur complenwnt matrix C' and its right hand

sid1· !I· Thus tlw solution to (I.Hi) can be obtainPd, followed hy that to each of the

subsystems (-1.17). llow<'wr. cxplidtly obtaining tlw Schur rompl<·tll<'lll matrix('

is an cx1wnsiv<' process ill\·olving 1111,, suhdomain solvPs, whcrP 11 is tlu• numlwr of

s11hdomains and 11., is I he 1111mlH'r of inl<'rfarial dPgrces of frPcdom.

78

The coupling between subdomains is now handled more <·fliciently usmg pre

conditioned iterative soh-crs without constructing the Schur compl<'mcnt matrix

explicitly. However. as has been pointed out in [t:H]. the approach based on explic

itly forming the Schur complement matrix st ill remains a useful procedure for sOl!l('

cases. As an example. tlw computational cost of constructing the Schur comple

ment matrix (' may be amortized over multiple right-hand sides (g in (I. I fi)) when

a discrete linear system with an identical coefficient matrix appears at each time

step for a time dependent problem (see [190]}.

1\s formulated in [185], it requires 11(11. + I) forward and back substitutions to

obtain C and g. :\minor im1>rm·cment can lw introduced here to reduce this numlwr

to 1111,. The algorithm assumes the following form:

Algorithm 4.1

Step 1

Step 2

Step 3

Step 4

Carry out the LU decomposition for each of the subdomain matrices

A;; = /,;£/;, i = l. ... , 11. This part is highly parallel.

Solve }~;l/; = A.; and X,; L; = Y,; row by row for i = I, ... , Tl. Form

C = A .. - L.:~ 1 X,;A;. and g = J. - L.:i=t X,;f;. This part can also be

cakulated in parallel, where X,; and }'~; arc two 11, x 11; matrin•s.

Solw (·1.Ifi). This is a bottleneck for parallelism.

SolV<· (-l.li) in parallel by using tlw LH decomposition of Ai;.i =I •.... 11.

Tiu• aforcment ioned algorithm requir<'s t II<' formation of t II<' Schur comph·nwnt

matrix ''Xplicitly. a computationally cXJH'nsin· procedure for most probh·ms. Like

Ill<' Schur complcnwnt matrix approach formulated by tlH' ('(;algorithm, Ill!' fol

lowing algorithm may be formulated for any no11-sym11wtric ikratiV(' solv<•r in whirh

only matrix-vector multiplications arc r<'quired, although \\'<'specifically rdl'r hPre

to the conjugate gradil'nt squared (CGS) algorithm ([:!Hi]. sci' also Section 1.0.2).

Algorithm 4.2

Step 1

Step 2

Step 3

Soh'c

(1.22)

and form A,1b;, i = I. 2 11 in parallel: Form t hl' right hand side of tlw

Schur complement matrix system

"
g = 1. - z: .. 1.,b;

i=I

lJse tl:e CGS algorithm to solv<' tlw Schur complement system (-LIG).

This is an iterative process carried out until a prescribed convergence

criterion on the interfaces is met. The product of the Schur complement

matrix with a vector w., Cw., may be evaluated as follows: Solve each

suhdomain problem

(·1.2·1)

onn• and form the product A,11~; for i = I,'.! 11 in parallel. Tlwn form

the product
n

Cw,= .,\.,11•. + L A,,1·;
i=I

(-1.2.'))

Onn• the interfan· nodal valu<'s .r .• arc obtairwd, \\'('may solv<' in parallel

(.1. l 7) for each subclomain.

TIH' above algorithm may IH' h<'uristically ch-scribed a:; a "divick and fpcdback"

or ··dividr. C"onq1wr and rnmbinc" pron·ss. I\ rylo\· or rn11j11gat'· gr<1diPnt-lik<' it-

PrativP algorithms (<'GS algorithm in this cas,·) arc cmploy<'d for tlw solution of

80

the intPrfacial Schur complement linear system. Tlw matrix-vector 11111ltiplication

C'IL', is obtained by conc11rrcntly soh·ing 11 smaller problems in the subdomains n;.

i = 1. 2 11. The information gathered from the solution of each oft hl•se subdo

main problems is then fed hack to tlw interface itcrativt> soh-cr. If the con\'ergcnce

criterion is not met on the int<'rfaces. the domain is decomposed again and the suh

domain problems arc sol\'ed. This -di\'ide and fl'cdhack" process continues until t lw

con\'ergence criterion 011 tlw interfan·s is attained.

:\highly simplified control flow (data dependency) graph for tlw iterati\'e Schur

domain decomposition algorithm (Algorithm ·1.2) is illustrated in Figure ·l.0.

After COll\'<'rgence is attairn•d 011 the interfaces r = l'i u 1'2 u ... u l'.,-1. tlw

subdornain problems are trivially decoupled with specified boundary conditions of

desired accuracy on the artificially introduced interfaces between subdomains and

may be solved in parallel. Finally. the solutions in the snbdomains and on the

interfaces arc patched together to obtain the sought-after solution in the original

physical domain.

This "divide and feedback" process described above immediately indicates that

the efficiency of this approach relics on the number of iterations required for ob

taining convergence on the interfaces as well as on tlw computational cost for each

subdomain soh·er. Preconditioning techniques must he used to recluce tlw numlwr

of itPrat.ions on the intcrfan•s. In the subdomains. for tlw cas<· whPre fast sol\'ers do

not <·xist. c•itlwr direct so)vprs hased on Lli factorizations or il<'ratin· methods may

lw a pp) iPd.

• • • G
I

No

\
• • • G

SI

Figm<' ·1..1: ,\highly simplifit>d rnntrol flow (data d<'pcnd<'nry) graph for I he iteratin·
Sd111r domain d1·compositio11 algorithm.

\,)•}
o-

4.5 Iterative Linear Solvers and Preconditioning Techniques for the

Subdomain and Interface Problems

4.5.1 Direct Methods vs. Iterative Methods

For reasons indicated in Section ·1.2, instead of using a direct solver. a Krylm· or

conjugate gradient-like iterative li1war solver is generally c111ploycd for soh·ing the

Schur co111plc11w11t linear system 011 the interfaces. llowc\'er. whether to use a din·ct

or an iterative scheme in each of t lw subdomains is quite case-derwnclcnt.

Direct solving techniques for linear systems are often based on tlw Gaussian dim-

ination or some variant thereof and arc able to generate the exact solution (within

machine accuracy) in a finite number of arithmetic operations. llO\wwr. there are

some funda111ental drawbacks. The direct elimination will caus1~ the phenomenon of

so-called "fill-in'', which results in an increase in hot h the computational complex-

ity and the storage requirement, although some techniques have been developed to

minimize the fill-ins (sec [10], [i7], [78], [1"7]. [153] and referenced cited therein).

For large problems (especially for numerical solutions of PDE's in three dimensions),

periphNal storage devices may be required to store the matrix and 1/0 costs will

dominate. In addition, the build-up of round-off errors or Nrors in the initial data

may be rather severe for direct methods (sec [9] and [IO]).

In contrast, itcratin~ nwthods do not suffer from the fill-in plwnomenon and

have the advantage of minimal storage [127], typically requiring only tlw nonzero

entriPs of the matrix and a few wrtors of corresponding l<'ngt h. For I\rylm· or

rn11j11gat(• gradi(•11t-likc algorithms, all that is ll<'<'ded is tlu• matriX-\"<'clor product

A.r and tlw storagP oft he matrix is not required. As pointed out in [!J]. whl'n t lws<'

algorithms an• l'ff<'ctiwly preconditiorwd. 01w may dNiv1• algorithms with almost

optimal computational rnmpkxiti<'s a11d hy a rnrcfnl l'\"id11aticm of tlw rcsicl11ab, th"

influence of round-off <·rrors may be rcdun·cl by onkrs of magnitude as compared

to direct methods. In addition. iterative nH·thods can benefit from a good initial

approximation in the design of iteratiw soh-crs for boundary value probkms or

time dependent problrms with implicit time discretization (sec [10, p. :JS.'J] and

Chapter .'J) and are much easier to program than direct methods. To appreciatP

how complicated a code may be for performing the sparse Gaussian elimination, see

[77] for a scgnwnt of the Fortran code. which is din·ctly extracted from th<' Harwell

Subroutine Library '.\1:\28. The most recent systematic review of iterative solution

techniques for large sparse linear systems can be found in [112].

:\s a result. Wl' generally prefer to let itPrative methods serve as subdomain

soh-ers. In [17·1]. we compared the rdatin· computational costs of two domain dr

composition algorithms using the same interface preconditioning, but with precondi

tioned CGS (PCGS) iterative and LU direct solvers, rcspecti\'l'ly, in the subdomains.

The results indicate that the algorithm with LU direct subclomain solvers is less ex

pensive than thr PCGS method wlwn the mesh resolution is relatively coarse and

the ratio between the size of each subdomain problem and that of the interface

problem is less than two. However, as the mesh resolutions incn•asc and the degrees

of freedom on each subdomain get larger compared to those 011 the int crfaccs, t lw

algorithm with PCGS subdomain solvers turns out to be computationally more effi

cient. The results obtained th<'r<' agree in some sense with those reported in [200], in

which the Gauss direct soh·er was compared with the PCGS met hod. Similar results

W<·n· obtained in [l!ll] when· tlw din•ct solv1·r based 011 a nm1plet<' Lti foctorization

was compared with t lw prccondit iorwd nmj11gat e gradi<·nt (PC<:) met hod.

\\"e point 011 t that. i 11 most prad ical appl icil t ions, t Ill' su hdoma i 11 prohh·ms aw

much larger than the 0111• ddined 011 tlll' intnfares. :\s a wsult, tlw prcrn11ditio11cd

SI

it<'rativc solution in each of the subdomains is to be preferred (at least for our case).

especially for large-scale problems.

llowcn·r. for certain problems with regular subdomain g<'omctries and nice op

erators (sc<' Section :J.2 in Chapter :J). fast direct solvers, based 011 eitlwr the fast

Fourier transform or cyclic reduction. ar<' available ([221) and [222]. sec also [:J9]).

111 these cases, fast direct solvers arc definitdy to be preferred in the subdomains.

In fact. domain decomposition techniques arc olten applied in order to extend the

usefulness of some special and powerful numerical techniques (fast solvns in this

cas<•). which are only locally <'Xploitabl<' in irregular regions.

4.5.2 Iterative Algorithms for Linear Systems of Algebraic Equations

The basic preconditioned iterative algorithm for solving a linear system

(·1.26)

begins by defining another matrix 13, called preconditioning matrix, which must

be relatively inexpensive to invert. The iterative scheme has the following defcct

correction type, namely. for k = 0, I

(-1.27)

wlwre rlkl = ;\.rlkl - bis the defect or residual and ~.r(k) is tlw correction at stag<'

k.

If we split the matrix A into:\= /) - /, - F. whNe /)is (block) diagonal part

and /,and l' an· the low<'r and 11ppPr (block) triangular parts of 11. then W<' obtain

the following four basic prccondit iorwrs or itcrat iw· schenws ([:t~!J] and [2:l!J])

• th<' (block) .Jacobi prcconditiorwr or it<'ratin· nwthocl if IJ = /J:

• th1· (block) C:a11ss-S1·idel precondit.ioner or iterative mdhod if IJ = /) - /,:

• tlw (blork) s11rrcssivco\'errclaxation (SOR) prcconclitioncror ill'rati\·pmcthod

if JJ = ..,.- 1 D - L;

• the (block) symmetric successive overrdaxat ion (SSO H) prcconclit ioncr or it-

To accclcrat r t hP basic scht•mc (·1.27). one int rodurPs arccl<'rat ion paranwtrrs Tk·

and considers the following more gcrwral iterative sdH'lllt'

(1.28)

If we introcluc<' an iteration t'rror c!kl = .r - .rlkl. th<'n. hy (1.28). r(k+l) = (/ -
rdJ-1 A)clkl. lipon defining a polynomial P,,,(,\) = nz~u(1-TkA), thPt'rror ((m) may

be expressed as elm) = Pm(B- 1 A)cl0 l. Hcquiring that llc{m)ll/llcl0 lll be minimized

leads to the well-known Chebyshev polynomial acceleration of the basic iterativt'

:-;chem es ([l l:J], sec also [9] and references therein).

As is well known, tlw most efficient acceleration method for symnwtric and posi-

ti\·e definite linear :-;ystems is the conjugate gradient (CG) algorithm [52], [60], [118]

(sec also [10], [100], [212] for recent expositions oft his method). Today this method

with suitable precondition<'rs is considered one of the best met.hods available for tilt'

iterative solution of large sparse symmetric and positive definite li1war systems. \\'t•

also nott' that vPclorizccl rnnjugatt• gradient nwtl10cls havt> lwPn applied to large-

scale minimization problems in meteorology [176].

The CC: nwthod is self-aclaptivt' in t lw s<'ns<' that t lit' optimal paranwkrs ar<'

ralculatt'd within th<' algorithm so that tlw t•rror in tlw crwrgy norm llt("')IL1 =
[(cl 111 lff1\rl 111 lj 1

/
2 is automatically minimizt'd. It may lw shown ([IO]) that. when

applying the conjugate gradit'nt mt'f hod with a pwrn11dit iorwr II = /-,' /~'f to th<'

SG

solution of {-1.26). th<' number of iterations will not t•xceed

(-1.2!J)

in order to achieve the result IJ.r - .r(m)ll:i :S fll.r - .r(U)ll:i. wher<' " is the spectral

condition number of the matrix E- 1 AE-T (which is equal to the spectral condition

11umber of n- 1 A) and (is a small positive real 11umbcr (convergencC' accuracy).

~loreover. when the eigen-spectrum of 1~·- 1 AE-T is clustered. th<' upp1•r bo1111d

given by (·l.29) may eve11 be reduced (sec [!J] and rcfcn•11ces therei11).

l I nfort unately, this algorithm is not applicable to t.he solution of non-sy11111wt ric

li1H'ar systems such as arist• from the discretizations of non-self-adjoint l'l!iptic partial

differential l'quat io11s. and of till' hyperbolic system of shallow water equations w1·

are considering here. As such, some other algorithms applicable to non-symmetric

linear systems have to be considered.

A large number of generalizations were proposed in the literature (see [66, 20:3,

205] and rcfc•renccs then·in) for solving large linear systems with non-symmetric

coefficient matrices. However, none of them may claim to be a clear winner.

111 this applicatio11, we choose to apply conjugate gradient squared (CGS) al-

gorithrn for the iterative solution of systems of linear algebraic equations both i11

tlw :mbdomains and 011 tlll' i11tcrfaccs. The algorithm arranged in a form ready for

rnmputer implenwnt.ation (by introducing only seven one dimensional arrays of thP

size• of the probl1•m) is provid<'d below for solvi11g Ar= b. Detailed thcordical and

11u111crical comparisons lwtw1•1·11 various competitive non-symmetric itcrat ivc •;olvers.

such as Bi-CC:STAB [22i], C(;S [2W] and g<'neraliz<'d minimal residual ((;~!HES)

[206] mcthods, applil'd to our problem will lw prcsl'nkd in Chapter (i in cor11wctio11

with domain decomposed pn•condit.ioning trchniq11cs.

87

The CGS Algorithm:

r = b. .r = .r0 • r = r - 11.r

Choose r such that <51 = (1\,.) /- O

Jl=r. 11=r

pl = AJI (-1.:JO)

<So= U.pl). o = fil/bo

q= 11-opl. 11=11+q • . r, =.r,+011

If the convergence criterion is met then stop. otherwise conti111w

pl =Au. ,. = ,. - opl. fi'2 = U. r)

/3 = <52/<51, Fil= b2

u = r + j-Jq, p = u + /J(q + /3p)

goto (·l.:JO)

where the right hand side b and the initial guess x0 arc input vectors and (•)

denotes the usual Euclidean inner product.

It is the pn•conditioning which makes CGS and other itcrat ive methods highly

competitive. While we adopt an untransformed version of PCGS method in [171].

here we USP the transformed PCGS algorithms. Instead of solving A.r = b, if a

preconditiorH'r is applied on the l<'ft. we sol\'!• a t ransfornH'd linear system 1'.r = i1.

When• :l:::: /J- 11\ and i1:::: 1J-lf,; if ii prcrnnditioner is chost'll to lw applied Oil till'

right. w1· sol\'e 1'.r = b. when• A= AIJ- 1 and .r = IJ.r. For the h·ft prcco11ditio11i11g.

tlw transfornwd rPsidual at k'th iteration is related to lh<' original Olli' hy ,:(kl =
n-i ,.(kl. For the right prcrondit ioning. the n·sidual ri·mains u11cha11g1·d but the final

solution needs to lw recovered hy .r = /J- 1 .r.

Typically. the pn•conditio11ing linear systPm (say /Jp = q) is solv<'d by the direct

method. Hence, the so-called pwnmditioning itcrati\·e sd1t·me may be \·iewed it:>

a hybrid of iterati\"f• and direct methods. In the extreme. it becomes a ··purely ..

iterative method (B = I) or, basically. a direct solver (/J = A). fn betwcm, the

matrix /J is usually of a certain special st rncture or form which allows it to lw

clwaply inverted by t lw direct met hod.

4.5.3 Preconditioning in the Subdomains

111 addition to the four basic types of prcconditioners /J 1111·ntio1wd in Sec

tion L'i.2. th<'rc are other preconditioning techniques availahll' which g1•ncrally lw

have better, such as those based on LU or Cholcsky incomph•te factorizations and

truncated series approximations to ,1- 1 (polynomial preconditioning), wlwr<' A is

the matrix to he inverted. For details, we refer readers to [9, 10, 81, t:H] and ref

erences cited therein. Reference [18·1] is especially recommended for a clear and

concise overview of various acceleration methods and preconditioning tcchniquPs.

Incomplete Lli (ILli) or modified incomplete LU (:\llLU) factorizations <m'

among the most popular preconditioning methods which have been incorporated

into the domain decomposition algorithms. Tlw methods arc bas<'d on Gaussian

elimination techniques with restricted fill-ins and can be traced hark to [228]. The

methods are furtlwr developed in [1:2, J:J, 11, 128, J.11, l!i!i].

Before the I Ll l ran be started. <HI<' rhooscs a set of ordPred int1·~1·r pairs ./ C

3 = {(i,j) I i.j = 1.2, 11} whirh defi111·s the allowed fill-ins, wlwrc 11 is tlw siz1·

oft hi' matrix under considPrat.ion. ~lost oftPn. the s('f .I is chost'n to lw

.1 = { (;. J) I if ";1 # o} (-1.:Jl)

wlll'n' 1\ = (a;J) is th1• matrix to IH' inn·rtcd. In all our 11u11wriral 1·xpni11wnts. w1·

employ t lw sl't (-1.:JI) oft he ind1·x pairs. which indiratrs that no fill-in lwyond t lw

non-zero pattern of the original matrix is to be allowt•d in the factorization. Tlw

!LC or '.\IIIX method corresponding to this choice of J is oft1·n denoted by ILF(O)

or '.\l!Lli(O), respectively.

Briefly speaking. upon specifying the indPx-pair set .J and at the k'th stage of tlw

factorization. we use the pivot row a~~). j = k. k + 1, 11 to elirninat<' the nonzero

entries alZ1• i = h" + 1. k + ~ 11 below the pivot a~~. If a\Jl E .J. we com put<•

(k+l) . (k) (k) (k) (l-) . . • • (k).
a;j = aij -aik ak1 /au. for 1,; = k+ 1, h·+2 11. Othcnns<', <1;1 1s unchanged.

or in the case of '.\lllX ([10. 109. 110]). a\~l is unchanged and the modification

!kl (kl/ !kl . I 11 k I . !kl I . I -aik akj au ts ad< cc >ac · tot ic pivot "kk. In the attcr case. 1t lll<ty be shown t 1at

Preconditioning methods based on the :\llLU factorization were propost•d so that

the spectral condition number of the matrix n- 1 A satisfies the following asymptotic

relation (a necessary condition of thc methods introduced in [109]):

(i1.:J2)

where his the mesh size, instead of O(h-2) as for ILU. Herc B = LU= A+ D +fl.

H is the so-called defect or error matrix whose rowsum is zero for l'ach row of H. /)

is a diagonal matrix containing some preconditioning paramcters:.i.

Specifically, for a class of '.\I-matrices or a class of \Wakly diagonally dominant

symmetric L-matrices, it was shown that the :\IILU factorization could he con-

2 'rlw analysis required to ck!Prr11in1~ optimal preconditioning paranwtPrs contairwd in tlw diai;

onal matrix /J is far fro111 trivial •'Vl'n for model problems (ser (110]). llm\·pwr. many 111rrrl<'riral

PXpt•rinwnts (tot\] s11gg1-,;t that lllllllfwr or ilt•rations is rathN ill'-''nsiti\'t' to tilt' rfioire or tilt'"('

parametns. As pointrd otrt in (110]. for many prohlrms, q11ilt' satisrMtory ri-,;11lts art' ohtaiued hy

choosing /J = 01 2 diag(:\), for~.? 0. say~= fi or 1'\'t'll ~ = () (11arrwly /) = 0). /) = 0 is what wr

•'Ill ploy her".

!)0

structed such that (.t.:J:2) holds. For some oth<'r 111on• general coefficient matrices.

as point<'d out in [IO!J]. the same rate of rnnn·rgeuce was observed.

In this application of Schur domain d<•composition algorithms to the finite d-

enwnt solution of the shallow water equations. we use ~IILU factorizations as our

subdomain prcconditioncrs. It is readily obscr\'(~d that. at each tin!<' step. tlw in-

complete factorization has to be carrit•d out only once for each subdomain during

the entire di\·id1•-and-f<'t'dback process. The work requin•d for the preconditioning

of each subdomain then consists mainly of the forward and back suhst it ut ions which

may b<' computed in paralld.

Another class of factorizations is the so-called relax<'d inrnmpl<'le LF factoriza-

tion (HILO). whose algorithm will IJ<' presented in detail in Chapl<'r (i. For this

method, the rowstm1 criterion is only partly satisfied. However, the convergence

rate is often better than that of either ILU or ~IILU (sec [8. 11, :2:Hj).

4.5.4 Interface Probing Preconditioners

The suhdomain preconditioning is not so different from the preconditioning of a

linear system corresponding to the discretization of the original PD E's on the who!<-

domain in the sense that <'ach oft he subclomain matrices A,;, i = I, :2 11 is known

in ackance. Ne\'(~rthdcss, tlw interfarc pr<·conditioning poses a 1ww problem. On

the interfaces, a preconditiorl<'r is to be const.ructcd for the Schur complrnwnt li1war

syst<'m C'.r., =ff. wlwn-. how<'V<'r, tlw matrix(' is not explicitly known.

Sewral interfan· pn•rnnditio1wrs havt' 1><'('11 proposPd for li1war <'lliptic PDE's

(r 1 ['>{) •)•) •)') 1·> 1- <)<) ·>t I] I r ti .) \ 't' 1 s<'e, 1or <'Xamp <'. _ . --· _.,, · .,. · ;> •••• _ · am rt'll'r<'llC<'s . 11•rc1n . 1 <Tl 1ca

rcvit•w of sonw of llws<' intcrfarr prcronclitio1wrs may lw fo1111d in [·Hi]. lTnfort11-

nat<'ly. most of th<' cxisting prcrnnditiorwrs ar<' construdt'd bast'd on at !Past two

of following assumptions about tlw diff<'n•11tial op<'rator. llilllwly. Plliptic, linear.

91

constant-coefficient. second order or self-adjoint, de. It is thus difficult to extend

the usefulness of these preconditioncrs to more complicated differential op<'rators

like the ones of nonlinear shallow water equations. As a result. we arc interested

in some general methods for deri\·ing the interface prcconditioncrs which aw less

critically dependent on the special form of the differential operator.

The interfan• probing ideas proposed simultaneously in [,l:Jj and [W] (s<'e also

[J:H, l:J:!] and references cited therein) an· a class of general and robust techniqw•s

for constructing interface preconditioncrs. We refer to H·IJ for the most recent

and comprehensive re\·icw of this type of preconditioners. The method only takes

advantage of the property that Schur complement matrix opcr;ttor is predominantly

local. reflecting the strong local coupling of the neighboring nodes and very \Wak

global nodal coupling on the interfaces. Hence, the Schur complement dense matrix

may be reasonably approximated, as an interface prcconditioncr, by a very low

bandwi<lth sparse matrix, which is obtained by evaluating the multiplications of the

Schur cornpkmcnt matrix with a few carefully selected probing vectors ([:J9]). Thus.

the interface probe preconditioning techniques arc purely algebraic and may easily

be extended for use to complicated nonlinear differential operators or to higher order

(say, fourth order) linear elliptic operators. For the latter case, we ref1·r int<-rcsted

readers to [·IO].

The observation that the rntries of the Schur complenwnt matrix (' are ··large"

011 or very close to the main diagonal of C and decay vny rapidly away from the

diagonal was first made in [!l!)j. In this wfn1·1u·p, the following est imall• has lwcn

made rPgarding (' = (<'ij) for t lw model prob!Pms and g1·011wt ries and for tlw five

point linitP diffewncc stencil

!J2

For more complicated first and/or S<'Cond order opPrators and geometries using.

say, five point difference or seven point finite elt•nwnt stencil shown in Figure ·1.2,

one may observe empirically that C is close to being a tridiagonal matrix. This

is tllC' motirntion for efficiently constructing appropriate tridiagonal or other low

bandwidth approximations G for the Schur complement matrix C. such that the

spectral condition m1ml>t'r 1i(G-1C) is small.

A class of interface prccondit ioncrs G(k) may he constructed by requiring that

G(k) hr a banded matrix witl1 upper and lower bandwidth l· and have the sanw

action as the Schur complement matrix C on a sd of (probing) wet ors l'J d<'firwd

on the interfaces, namely.

G(k)l'i =Ci·;· for j = l, 2, 2k +I (i.:n)

If we split G(k) into G(k) = A3 , - P(k), by (4.18), the above equation p.:H) may

be written as

The least expensive prcconditiorwr is ohtairlC'd by taking k = 0. Tlw probing

vrct or 1• 1 for this case is chosen Io be

!'1 = [1.1.1, l, I. l. ... jT

Three probing vectors 1· 1• Pi and l':i given below an• rcquin·d for the construction of

the prernnditiorwr (;(I)
.,.

1'1 = [I. 0, 0. I. 0, o]

T
1·i = [O. l,0,0.1.0]

.,.
1':1 = [0.fl. I. o. o. I. ...]

For l· = 2. then• are fi\'c probing \'ectors which assunw the following special forms

1·1=[l.0,0,0.0,1... y

]
1'

1·1 = [O. 1. 0, 0, 0, 0

•1'
1·3 = [O. 0.1. 0. O. 0, ... J

T
1-.1 = [O.O,O. J,0,0]

l's = [0. 0, 0, 0, 0, I. .. Y

The above pron·clun• may be cxt<'t1<lcd in a straightforward manner to rnst•s when•

2 < l· < 11., A :\IATLAB code for constructing the interface probing preconditionf'fs

(;(k) is provided in [.i.t].

It can be readily verified that all non-zero entries in the banded matrix P(k) ar<'

compressed in the 2k+ I vectors P(k)1•1 , j = I, 2, ... , 2k+ I, and can he directly read

off from corresponding entries in A.d A;jJ Adsl'j, j = I, 2, ... , 2k + I. The possible

inconsistency of overdctcrminat ion ([I :J2]) in (.1.:J5) may reasonably be ignored if the

Schur complement matrix operator C is truly predominantly local. It is also clear

that 2k +I solves arc required in each of the :mb<lomains to construct the interface

prPCOJHlitimwr r:(k). For this rPason, in many practical applications, k is 11s11ally

taken to lw 0 or I. In the limit, when l· = u., - I, the exact Schur rnmplcnwnt

matrix C is constructed. On the other hand, when k = 0, the rowsum of tlw matrix

C is pr<•servcd.

It was n•portcd Ill [·l:J] that. relati\'e to its extra cost of formation. (;(I) docs

not yield much improvcnwnt o\'t'r (;(()) in the context of solving a modPI diffusion-

conv<·cl ion equal ions using a fi\'<' point finilP diff<•rp11n· slt'11cil. For sol\'ing t lw

shallow wal<'r equations, W<' fo1111d. i11 [17·1], that (;(I) chws not IH'ha\'c' as well

as r:(O). llcncc. tlw rowsum pwscrving prcrnnditionrr (;(())is to lw pn.f<'rwd for

!).I

our problem. However. as indicated in [:J.i]. Wt' will make som1· modification~ to

G(O) and construct our int<'rface prcconditioner by retaining tlw cyclic tridiagonal

st ruct urr of each 'Ii; in A,. and then replace each en! ry in t lw main diagonal of

A,, by the corresponding rows nm of the Schur complcml'nt matrix C. :\ umcrical

experience indicates that the prcconditioncr modified in this way is better than G(O)

(sec [:H. :n] and Section ·1.7).

S1wcifirally. the prcconclitioner G used for accelt•rat i11g CGS algorithm 1s I he

following block diagonal matrix

This hlock diagonal matrix G is the same as A., (see (-1.I:I) t•xcepl that tlw main

diagonal of G is modified according to the following

diag(G) = Cv (-1.:Ji)

where I' = [I. I. ... , lf. Obviously, only one subdomain solve is required in each

subdomain to evaluate (4.:37).

The preconditioning linear system Gw, = p in the PCGS algorithm may he split

up into the following 11 - l smaller syst1·111s and solved in parallt·I

for i = I, 2, ... , 11 - I. wlwn• till' definitions of w~il and /Ii an• obvious.

Since each (;ii in (-1.:JS) is cyclic tridiagonal (s<'<' also (·1.1·1). W<' can use th<'

so-called (s1·e [220]) AhllH'rg-:'\irlson-Walsh algorithm [!>]. which is an cxl<·nsion of

the w<•ll-known douhle-sweq> algorithm of Thomas [22!>]. For an cflicit·nt 111mwrical

algorithm for solving cyclic pcntadiago:ial lin<'ar sys!Pms, w1· n·rnmm<'JHI [171].

4.6 The Shallow \Yater Equations

The shallow water equations arc a set of first order nonlinear symmd rizabk

hyperbolic partial differential equations having many important applications in me-

teorology and oceanography. These equations may he used in studies of tides and

surface water run-off. They may also be used tu study large-scale waves in the at-

mosplwrc and ocean if terms representing the eff<'rts of the earth"s rotation (Coriolis

terms) are included.

Here we arc concertwd mainly with tlw domain decomposition solution of t lw

2-D shallow water equations on a limited-area domain discretized by finite clement

approximations (sec Appendix A). If \\·<· let fT = (.p, 11, l')'r and

IL 'P 01
IL 0

0 0 ll

(1.:J!)) A=

B=
[

" 0 ~1
0 l' ~
I 0 I'

(.l..tO)

I: : ~)f I 0 f 0

C= (1..11)

tlwn our shallow water equations (continuity and monwnt11m <·quations) modc>l 1111-

dcr our consid<·ration, in its primitive variables, may he presented mm pact ly in I he

following form

iJl' ,mr !Jmr ('f'-!l -+1-+ -+ ·-
i)f iJ.r iJy

(1.·12)

o::;.r::;L 0'.Sy'.SO. t>O

wh<•rc the Coriolis paramct<'r is gi\·cn hy t lw cl-plane approxi111at ion

and

f = j + ,i(y - /J/"2)

L and D - dimensions of a rectangular domain of area :\ = LD:

11 and v - velocity components in tlw x and y direct ions. resp<'ct ively:

h - height of the free surfan• of th<' fluid:

..p = gh - the geopotPntial;

g - the arc<'lcration of gravity:

f - the Coriolis paranwtcr;

j and (J - two constants.

!Hi

The model assumes that the fluid is homog<~1wo11s, inviscid. barotropic and lll

cornprcssihl<•. These pure convection equations an• defined on a limited-area n•ctan

gular domain which corresponds to a channel on tlw rotating earth. Tlw soulh<'m

and nort lwm boundaries are assumed to bP rigid. i.e., 11 = 0 and the flow is assumed

periodic in th<' west-ca-;t direction. Specifically, we have

f!(.r,y,t) = f:(.r +Ly.I) (1..11)

and

n(.r.O.t) = 1•(.r. /J./) = 0 (.I. I!'))

Initial conditions also 1wed to h<' sp<'rifi<'d for th<';:. 11 and 1• li<'lds, nanwly

w(i·. !J. 0) = ll'o(.r. !I) (l.·Hi)

!)7

ruder tlwse boundary and iuitial conditions. the total t'lll'rgy

l 1L 1lJ . ., 'i E = :-- (11
2 + 1·· + :p)-d.rdy

2 u u 9
(·1A7)

is independent of time, i.e .. it is an integral invariant.

This is a standard shallow water equations model which was used to test ,·arious

finil<' difference schemes in [102]1. in which tlw initial conditions n·commcruled are

determined from the following initial height fidd

(
!J(D/2 -y))

h(.r. !J) = /10 + 1/1 tanh '!.D ·

+ ·>St'C I Siii --II 12 (!J(D/'!..-y)) . (2;;-.r)
- 2/) l

The initial g<'opotential c..p and velocity fields 11 and 11 arc derin·d from the initial

height field using the following geostrophic relationship

r..p = gh.
a1i

II= -(gj f)~.
uy

()Ji
v = (g/f)ox (·1A9)

To scale the problem, we need to have a good control of the magnituc!P of tlw

gcopotential field r.p, which is dimensionally the dominant variable. For this reason,

we introduce a pre-selected rderencP gcopotcnt ial <;o to scale' the gc•opotential. \Ve·

use the following set of dimPnsionlt•ss v<1riablcs. which are different from those intro

duced in [102]. to non-dimensionalize tlw equations and auxiliary conditions (e'.g ..

initial conditions, geostrophic rdationship. etc.)

I = .r/ {,. I = !I It,, (I.GO) .r !I

t' = I .JP(,/{,, ...P
1 ='Piro· (-1.:, I)

I = 11/~. 1.'=1·/~. (I :" .,) ll . ,.)_

:iTlw modi•(is •·ss•·ntially tlw s;111w ;~" thr orw rarli"r usnl hy l1011ghto11 d al. [1:!1].

h' =Ii/ L.

11; = Iii/ L.

g' = gL/'-;o,

ll(i = llo/ L.

II~ = 1'2/ L.

J' = f L/0PO.

(-1.;"):J)

(1..'il)

(-U>G)

where 1/0 , 111 and 1/2 arc three constants related to the Cram melt vcdt 's initial

height field.

By using this set of dinwnsionlcss rnriables. the gon•rning equations asstml<' the

same form aft<'r dropping the primes. How<'\·cr. t lw Coriolis paramct<'r and the

gcost rophic n·lat ionship. amongst others, require minor changes (sec [171]). Specif

ically. by using (·I.GO) - (-1.55) and dropping the prinws our problem can be shown

to he governed by (-1.-12) - (l..16), (1.18) and (.t.19) with L being l. D rcplared by

D/L, j by Lj/J<;iO and /3 by £213/ffo.

Experience has shown that the inviscid, incompressible shallow water equations

model is able to describe many important aspects of atmospheric and oceanic mo

tions. Indeed, it has become customary when developing new numerical methods

for numerical weather prediction or oceanography, to study first the simpler non

linear shallow watf'f equations system, which possesses tlw same mixture of the

slow-moving Hossby waves and fast-moving gr;n·ity waves as the mon' complex baro

dinic :J-D primitive equations of motion. It should he pointPd out, howcwr. that

the moclt•l may not he applied to situations in which the dPnsity-st ratification t•ff1•ct

can not be ignored.

WP now bri<·fly dPsrril>I' thP finite elcnu•nt disrrd ization of the shallow water

equations gin·n in (·l.·12). lnt<•rcsted n•;1th•rs arc advis<'d to rc·ad Appendix :\ for

ddails.

lipon using the Galrrkin finil<' <'km1•nt discr<'lization procPdure with triangular

piPn·wise li1war pfcnwnts. tlw rnntin11011s shallow walN equations (-1.12) an· tram-

!)~J

fornwd into the following three sets of matrix Pquations

(-1.%)

(l..i8)

when• ..p. 11 and 1· arc nodal unknown vectors and J/. /\·1 ••••• f\·5 arc mat rin•s

ddirwd by integrals oft h(• (•lcment shapP functions or their spatial dcrivat ivPs and

the nodal unknowns 11 and l'.

A 11 f'Xt rapolated Crank-:\icolson schenw is employed for t hP time discrdizat ion.

in which the nonlinear advectivc terms arc quasilirwarizcd by the following serond

order approximation in time

1
11+1/2_:1,11 i, .. -1

l --l --1
2 2

(·1.60)

After collecting and rearranging terms, we obtain the following three linear systems

which need to be inverted at each time step

where:\", /J" and C" arc nonsymmetric matrices due to the prcsc•11cP of advl'rtivc•

sidf' ll'rms in (-Ui I) arc funct io11s of 11odal 11nk11ow11s at the pr('vious st <'ps.

It is worth pointing out that tlw ahovP discrl'I izat io11 prorPdure I ransforms I lw

originally coupled PDE"s into a set of decoupled disrr!'i(' algebraic equations at I lw

(11 +I)-th levl'I. which corwsponds to rcclucPd storag1• req11in·11w11ts and improved

mm put at.ional d!iril'11cy mm pared to 111<'1 hods which g<·rwral<' rn11pkd alg('brair

100

equations. Tlw explicit appearanc<' of~;;. ~11 and .:lt• instead of ;p. 11 and 1· 1111111-

mizt•s the build-up of round-off errors in the computation (sec [di]) and offers direct

indications as to tlw choice of initial guesses for iterative methods.

4.7 Numerical Results and Discussions

We carried out mmwrical <'xperiments on the CHA\' Y- ~IP j.1:J2 which has a

machine accuracy around 0.8 x 10- 11 for a single precision arit hnwt ic. For our

numerical experiments. we used the following constants whose numerical \·alu<'s arc

summarized below (see Section ·1.6).

L = 6000 km.

g = 10 m/.-;,

1/1 = 220 m,

j = 10-·I .~-1'

/) = ·1·100 b11

110 = 2000 m

Iii= 13:1 m

The geopotcntial field distribution in the present problem has the order of mag

nitude• 10 1 m 2 J.~ 1 • ThP pre-selected reference geopotential has been d1osp11 to lw

<;u = 102
111 2 /.-; 2 so that the initial r<'sidual norm of the Schur complcnwnt lin:·ar

system rnrrespo1uli11g to the 11011-dimcnsionalizcd geopotential r.p' as defined by (-1..') l)

has th<' order of magnitud1· of 0(l). Under this choin~ of reference g1•opotential the

dinwnsionless constants become

/,' = I D' = 0. i:J:J:J;J:J

11; = o.:Jofio<ici x J0- 1 II~ = 0.221 fi(i(i x 10- I

IOI

The initial non-dimcnsionalized geopotential distribution for tlw 2-D shallow

water equations under consideration is shown in Figurl' ·1.6.

In order to allow for further flexibility of the cod<'. a modification has been

introduced which allows, by chclnging just two parameters corresponding to tht•

numlwr of grid points in the x and y direct ions respect in~ly, the introduction of

arbitrary mesh resolutions of the model. The automatic t ransfor:nat ion oft lw global

finite element matrices to the block-bordered (·1.5) forms has been rendPn•d possible

by the node renumbering scheme presented in Section ·Ll.

In the actual implementation. the matrices arc seldom stored in full due to tlwir

sparsity pro1wrty. Ilene!' the general nod<' renumbering sclwmc in Section ·l.:l has

been adapted for transforming the information corresponding to compact matrices

(sec Section A.3 in Appendix A). Herc we essentially transform the arrays which

record the nonzero clements of the sparse matrices. The solutions of shallow water

equations using the Schur domain decomposition algorithm (Algorithm ·1.2) arc the

same as those pr<'scnted in Scrtion A.8 of App<'ndix A.

Jn the following, unless otherwise stated, we prcs<'nt numerical r<'sults corre

sponding to a four-suhdomain domai11 decomposition. Computations arc carried out

corresponding to \'arious spatial IIl<'sh resolutions with a time-step size .3.t = ISOO s.

As pointed out in Section ·1.5..1, empirically, the matrix C is oftl'n close to being a

tridiagonal matrix. rdlcrting a strong coupling IH'twcrn neighboring nodes and weak

global depend1·11cies on the interfaces. To justify our choosing to apply the intcrfac<'

probing prcrn11ditio1wrs to tlw iterativ1· solution of t lw Schur rnmph·nwnt lin<'ar

sysl<-ms d<'fin<'d on tlw inll·rfac<'s. W<' prrs<'nl in Figun· ·1.7 tlw surface ge1wratrd by

t lw 1•111 ries in t h1· non-dimcnsionalizcd g1·opot rnt ial Schur rn111p(,•1111·11t matrix ;is a

N

0

0 ..
Cl

0
ci
Q ..

q
0 ,...

.. -r-r------:~~~-r-.--.-,-..-r-.--.-........-r.,-.-.-.-r-rr-<-r.-'~02-;-r
0.18333 0.38857 0.55000 8 0.6 0.4

0.73333 o.
y x

102

0.0

Fig11r<' ·1.6: A :l-D \'i<'w of C:ramnwllv<'dt\ initial 11011-dinwn~ionalizl'd geopoll'ntial
fiP!d.

function of its two indices at the P11d of one hour with a half an hour time step. The

mesh resolution used for this calculation is 15 x 10. Hence. the numlH'r of nodes 011

the interfaces is 11, = ·15 and the size of the Schur complement matrix (,' is ·15 x 15.

\Ve observe that the matrix structure of C resembles that of A,. and may be

viewed. ignoring small cnt rics, ;is .. truly'' block cyclic tridiago11al. As a mat tl'f

of fact. a plot of the surface formed by the entries of the matrix A., can 11ot lw

distinguished from that formed by the entriPs of the matrix Con tilt' scale show11

in Figure ·Li.

By (-1.18). tlw contributions to the matrix C come from two parts: A.,. i.e .. th<•

discrete counterpart of tlw original differential operator rest rict<•d to tlw intcrfacl's

and those due to the coupling between the interfaces and the subdomains through

bi-diagonal matrices Ad. and A,d (sec (·1.i) and (-1.8)). As can be expected, the

former constitutes the major co11tribution. The probing interface preconditioning is

essentially concerned with how to appropriately and efficiently incorporate the latter

contribution into the matrix A.., so that the spectral condition number 1''.(r:- 1C')

can he rendered as small as possible, without investing much CPU time.

To appreciate how the matrix A., dorni11at<•s, we plot, in Figure ·1.8, the surface

formed by the <·11trics of tlw matrix A.,-C = A.,,11\;/-11 Ai.. We 11otice that, in general,

cnt ries of the matrix J\.,. m·cn•st.imatc those oft he Schur complement matrix ('. To

facilitate the comparison, Figure ·1.8 is drawn on the same coordinate systems as

Figure ·l.i.

We plot, in Figure ·1.9 and ·1.10, tlw <•ntries of tlw sixteenth row (associated with

a bo1111clary 11od1·) and tlw twenty fourth row (associated with an interior grid point)

of tlw followi11g four mat rirPs, n;mwly, A •.•. ('. t lw rows11111 pn·s1·r\"ing pwco11dit io1wr

(;(o) and its modification(; (s<'<' (.1.:Hi)). Siim· nod<· Hi is 011 the rnmp11tatio11al

boundary (s«'<' Figun• A.~). the pcri0<lir boundary co11ditio11 (-IA·I) dl'lcrmirws that

101

...

~

~~-r~~~~~~~~~~~~
...

Figure ·1.7: The surface gencratPd by t lw 11011-dimcnsionalizcd geopol<'nt ial Schur
complement matrix Cat the <'lid of Oil<' hour. Tlw nwsh resolution is Ii> x I!') in tlw
original physical domain and thr numb<'r of nodes on the int1·rfaces is 11., = I!').

Figuri· 1.8: The surface ge1;erated by A_,. - (' = t\.,,11\;J} A-1, corresponding tlw
g<'opotent.ial at th<' end of on<' hour of moclPI intPgrat.ion. Tlw mPsh rc•solution is
l!i x !!) in th<' original physical domain and th<" nmnher of nodes 011 tlw int<"rfaccs
is 11, = ·I!).

JOG

node lG will interact not only with its neighboring node (node 17). but abo with

node :30. This is clearly seen in Figure ·1.9, where the entry in column :JO of tlw

matrix docs not \·anish. In contrast. A.,(2·1. :JO) = G(0)(2·1. :JO) = G(2 l, :30) = 0

and C(2·l. :30) is negligibly small, or precisely. of order 0(10-G) which is. of course.

i!ldistinguishable on the seal<' of Figure ·l.l 0.

Based on the information provided by Figures l. 7. ·l.!J(h) and l.10(b). we con

clude' that there arc only thret' entries on each row of the Schur complenwnt matrix

C whid1 are relatively "large" and all other remaining entries arc comparatively very

small. However. due to the periodic boundary condition imposed on our problem.

C may not he viewed as a tridiagonal matrix. We also notice that. as an approxi

mation of tlw matrix C. the rowsum preserving prcconditioner G(O) underestimates

C on the main diagonal but overestimates C on those off-diagonal '·large" entries.

On the other hand, as a modification of G(O), the preconditioner C: consistently

overestimates C on all ''large'' entries.

For higher mesh resolutions, the conclusions just made above remain true. For

instance, the Schur complement matrix C inherits the block cyclic tridiagonal struc

ture of the matrix ,1 ••. In Figure .1.J J, we show that the matrix structure of C

corresponding to a mesh resolution of;)!} x !Jl. In this case, there arc !(ii) nodes on

the interfaces (11, = 165) and lwncc the size of tlw matrix C is 16.1 x IG:J. It was

also found that structures of the Schur complement matrices go\·C'rning the VC'locity

distributions on the interfaces are all similar to those displayed in Figur<'s ·l.7 and

·I. I I. rcspc·ctivcly.

To show that. 111 general. I lw •n(){lifi<'d prC'co11ditio1wr (; bC'haws lwt I Pr I ban

the rows11111 prc·serving preconditioncr f;(O) in our application. we 1·111ploy an !:\ISL

library rout in<' ([120]) lo 1•stimatc thP condition numlwrs of tlw following thrC'c prc·

rnnditioncd Schur rnmplC'lll<'lll matricC's, namely. 1•(A;}C') = ll1\;,1('jidlC- 1 :l ... 11 1.

~ .,....: :-:-: 1-: :-:-: :,__~ :-:-: :-~:_:_: :-:~-:-: :-:,__:-::_:_~_: :-:-:_:_: :-: :,__~:-: :-::-~ :-:-: :-~:-:-::~:
----~- --- -~ -- --~- ----:- -- -- ---- ~:- ---•! ----i· ---- ~ --- -~- ----- --- .. _____ ... ----·- -- _ ... ____ -___ ____ . ____ _, _____ , ____ .. ____ _

0 : ; : : : : : : :

~ ::::r:::1::::1::: 1:::: ::::r::::r::::r::::t::::r::::
-·-+·+-·+-· !····· ····+···+··+·+··+··· -···'*···---····--- ····-···-·-···"'·······---.. --·-· • I I o I I • I •

I ' • t I ' ' f 0 -............ ----- ····-·--······-----·········--.
0 I ' 0 I I I t ---- .. -----... ----,.-- ---- ---- ----·---- .. -----,----,.-----

::::j:::::t::::j:: :. :::: :::)::::\::)::::\:·::~:::::

~ ····;···~··••:••.:t•••:••••i••••i····r-•••:·•1•••• Cl ---- ~-----~----i- ---+----!- ---+- --- ~----+----~----~- --- -
~-h-...-T4h--T-.+~+r...-T4 -.+~+.......-.n-.-.+~+rrrl....-...-l

!I g 13 17 21 2:i 2tl 33 37 41 ~

j

(a)

(c)

107

~....-::-:-:i-::-:-::-t--.:-::_i_::-::~±-:-::_:,__:-::_:_±-::-::~\-::-:-:i-::-:-::-[·-_:-::_i_::-::~:
---- ~-----~---- ~-- ·-+--------+----!--- -+----!-- --i- -------- ~----_ ... ____ .. _____ ... __ -- ---- .>..----·--- _j _____ ,., __ - -~- --- -.

::! ::::t:::t:t: t::: ::::t:::i::::t:::t::t::::
····i····+·-··i··· l····· ····+····!····+··-·!···-~·--··

~~ ::::F+:::i:~t t:::: ::::E::;::::t::::t:::+::::

u ~ :::·:1:1f {::::1 ·::ttl
~ ---- ~-- ---:- ----~- ----:--- --:- --- -:-- ---! --- -~-- ---~-- --1- ----
1

5 g 13 17 21 25 2tl 33 37 41 4!1

j

{b)

~~::_:_:i-:·-_:-::-L--:-::_i_::-:--:t~:-::-:·-;:-::_:_±_::-:--.1-::_:_:i_~:-:-~:-1:-:-::_i_::-::~:

~ ::::t:::t:::t: -~:::t:t:::t::::t::t:::t:::
..... ~ :. ~. .. :,. ... --~- ,.:a.···!-·-·~-· ; .. --~---- -

··-·i····-~·-·+· !···-+··+···!···+·+··+···
::::F:r::E . :::::F+:::j::::E:r::r::
::::t::::t:::t: :. ·:::t::t:t:t::t::t:::

~ ···-~-----~----~-- ::~ ·--'.·--~~~~-~:~~:-~~~-~:··

::::1::::r:r:::c:t::::r::t::::r::t::::E::
~ ---- ~----+--- -!- ---+----!---- ~-----~ ·--. ~-- ---!-··- ~-----
1

g 13 17 21 25 2tl 33 37 41

j

{d}

Figur" 1.9: Entries of th<' sixteenth row of tlw matrin·s (a)-". •.• : (b) C: (c) C:(O) a11d
(d) C:. Tlw numlwr of nodes on tlw inkrfan•s is 11, =-I:}.

~-.-::-::~1-::-::~:~~:-::-::~~:-::-:~~~:-:-::7i:-::-:~±-::-::~i-::-::~r-.:-::~:1~::_:_:1~::-: .. ::

~ ::::t:::1::::J:::t:::t::·1::::t::::t:::J::::t::::
....... :-----:.--- .. : ;. ; r:--·-- .. ;,: ~----..:
····~·-··-~---+-·+····!·· i·····f ···+·+··+·-··
::::~::::~::::~::::~::::~:: .. ~::::;::::~::::~::::~::::: ---- .. ----- .. ---··-----... ----·-- . ----·-----.-----,,---- ... -----
.... ; ; ; : ; j; i----i---·· . . '
••·••··---L 0.. ,.6.,. • •••••••••~••••••·•••JI••·••

o • o o ' o o I o
O O 0 I I 0 I O I

----·-----·----·-----.. ----·- - ----·-·-·'4-----·····4••···

0 ----~---+-·+-·+··+1--n:---~---+·+··+···

d ::::1::::i::::t:::t::::!::~1:::t::::t::::t::::t:::
.q ····i···+··+···+---+···-l·····!···+·+···l·····
'i'·

I g 13 17 21 2!I 29 33 37 41 45

j

(a)

~~------1--------~-.-.. -.. ~:------~~:------~l------~+------~i------~+-----~-;-.. -.--~~ .. -..... ,... ,

~ ;;~~1;;J;~~l;~J;;;1:;;:t;;;1;;;;t;;;;[;;;;1;;;;;
···-i-----~·-··i····-:----·i··· +···-!···+·-·!-··+····
····~-----:-···-~·····:-··· .. ~-· -:-····~· .. -·7····:····-:·····

::::t: :::t ::: :i:: :::t:::t . ~:: ::1 ::: :t:::t:::t::::
:::t::::t::::L::t:::t: : ·::::t::::t::[::::t:::
···+·--~---+·-+··+r; -·-+·-+-+--+-··

~ ::::1:::::t::::L+:::t::~1:::1::::j:::::\::::j:::::
~ ··--~-----~---·i·····l·····!····+····!···+··-!····~---·-
1

5 g 13 17 21 2!I 29 33 37 41 45

j

(c)

108

~~-----.j-.. -.. -+-.-.. -.. -:--------:-------i-------+-------i-------~-------.;-.. -.--~------~-. ----,---·-.-----.-----... ---··---- ---··-··--.-----.------.-----

~ ~;~;1;::~i:;::l:::;t:l:~:t~:~!:~;;f.::;:1~~;:1::~::
. .•• ; ••.•. j. •••• j .•••. ; .•••• j •.• !-----i----~-----i···-i---··

- ···+--+--+--+··+· r···+··+·-+··+····
~ ~ ::::r:T:::r::r:::r: _ r::::r:::::::::r::::r::::

u ~ IJ:~r::·,:r:!'.'.tt:r
.q ···-i·····i····+-··+····!····l·····!···+··+···i·····
'i'---....-.~.-...,_,_ ~ ---~---....+

5 g 13 17 21 2!I 2U 33 'J7 41 45

j

(b}

~-.--.. -.~-~~--------~~.-.. -.. ~:-------~~------~~------~+-.. -.. ~;-.. -.. ~~-----~-~~----~-~~-_-_.., __
- -- -~-- -... ;.. --- -~- ----~. --. ;. -- .:..- -... ;: -~---. ;. -.. --

::::j:::j::::j:::::t::::\::: t::::\::::t::::~::::j:::::
9 ~ + .. ···!····+··"··!··· +····=····-+-----:--·-~---·-

....... ~--···~ :-...... :. :.. .:... -... ~,: ~ -~--·· -

::::l:~;:t~::l:~J~;:t : i·;::tJ:::t:l:::
:::t:+:::\:::t::t: : ·::+::t::t:J::::

0 ····:·····~---+----~-·-+,-·\···:····i·····:····i·····
ci ~~·!•••!•••, ••·: , o o 1

: : : : ;:: :: :~ ::: : j:: :::~ :: : : F: :: t:::: ~ :: : : ~:: :: :~:::: r ::: :
----~----- .. --- -.-- -·-.-·- --·- --- -- --.. -..... .

q ····i·····~····i····+···+···+····!···+···!····i·····
'j'+.--•~....,....,.....,_,_.....,~..,-,-..+-~+.-.-rt~r+-r-.-.-1h-rM

5 g 13 17 21 2!I 29 33 37 41 45

j

(d)

Figme ·LIO: Entries of tlw tw<'nty fourth row of tlw matrir<'s (a) .-\.,,: (Ii)(': (c)
G(O) and (d) (;. The number of nodes on t lw inll·rfar<'s is 11_, = I:>.

I rn)

-

Figure ·I.I I: The surface gcnerat<'d by th<' non-dinwnsionalized g('()pot<·nt ial Schur
complement matrix C at tlw end of on<' hour of model inl<'gration. The lll<'sh
resolution is;,;, x :)l in tlw original physical domain and the number of nod<'s on
the interfaces is 11., = 16!i. l'\otc that. tlw nwsh li1ws have been thi111wd hy a factor
of four in both dircdio11s along i and j.

110

results are reported in Table ·1.1.

Table .l.J: Condition numbers associated with the 1-norm for three preconditioned
Schur complement matrices A;/C. G(0)- 1C and c;- 1c

!:> l.18 1..12 l.11

155 l.!iO I ..t 7 1.1!)

For all subsequent corl\'ergenc<' tPsts of the pr<'co11<lit ioning iterat ivP met hod.

the 2-norm or Euclidean residual norm will be employ<'cl throughout the rest of this

section. The stopping criterion is based on the 2-norm of the final residual vector

being smaller than 0.1 x 10-10 •

Before confirming numerically that the interface probing prccon<litioner G is

computationally more efficient than G(0) (see Section ·1..5..t), illustrate the effect of

:\IILU preconditioning on the iterative solution in the subdomains. Typical convcr

ge11C<~ behaviors arc <lcpictecl in Figures ·l.12(a) and (b) for two mesh resolutions.

namely, 60 x 55 and 120 x l l!'i. Timing results arc given in Table ·1.2. We observe

that the numlwr of iterations required fer :\llLU preconditioned CCS algorithm in-

creases by a factor of two when moving from the coarser mesh (case (a)) to th<' finer

nwsh (case(b)). This may lw explai necl by the asymptotic n·lation (-t.:~2) giwn in

S<'ction ·1.5.:~ since"" :::::: '!.hh. wlwre h" and hh ar<' the nwsh sizes for tlw smal11•r and

larger m<'sh r<'solutions, respect ivdy. l lm\·1•v1·r, as w1· not1-, a gerwral conver-g<·nn·

theory on PCGS method is not availablt·. It is also worth noting that t lw abm·1· n·-

suit is for :\!ILi! pn·nrnditiorwrs appli<'d from th<' lt·ft. Hight :\llLP pr<'rnnditionin~

is found to hi' not as good for this particular sit 11atio11.

Ill

E
0

~~~!1~11_l _pr~!:~1~<_!_i_~~on ~~-g 
0 MILU prcconclilioning 

i;:: -:'.!.O -

-14.0---" ,--.--r .-..--, -,--,-,--,--r-- .. -, -,--r-- ... -,--,-r-,-... 
o 4 8 I:! lfl 20 24 

llcralinn nu1nbcrs 

(a) 

:!.O -• _.__ ... __ t_J. __ &.__. ___ J __ ._.._ __ ... t __ ... __ ... __ • __ l~•-'--•- L_ .. _,_L_ 

~ 
0 s::: -2.0 

........ 
cc 
=' 
:E 
Ill 

~ -o.o 
i:: 
al 

~ 
c:l 
~ --10.0 

bD .s 

~ilh_o!~_!.___rr?~o11c!~_l:~~z::i-~g 
MILU prccondilioning 

-14.0 --- -..---' --·-- ., -- ' - .. ---, -- 1 - y---, -- ... - T - T - 1' --, - ' - ,. - ' -- ,- -

0 0 IO :'.!4 :J:! -10 

lleralion nurnhcr.; 

(h) 

111 

Figurf' ·L 12: The f'\'olut ion of /oy10 E11clidf'a11 n·sidual norms as a fund ion of 1111111-

bcr of iterations in tlw subdomain for the 11on-di11w11sionalizcd ~1·opot1·11lial matrix 
syslt•m at t lw <'1111 of onr hour with and without ~II LIT pn•rnndit ioning. Tlw nwsh 
n·solution is (a) GO x .1."i and (h) 120 x 11."i. Thrrr are 7SO and :J:J()O 11<Hks. for casl's 
(a) and (h), n·spl'diVl'ly, in rach of tlw four subdomains. 



112 

Table ·l.2: :\llLl; preconditioni11g in a typical s11bclomai11 

Resolutions :'\o preconditioning :\IILlJ preconditioning 

60 x ;).') 0 1·). (')') "t. t" ·) • -'~ -- I era IOllS 0.057s (5 iterations) 

120xll5 O.S!)s (:39 iterations) 0..12s (9 iterations) 

'.'\ow we tum to nunwrical tests on \·arious interface prcrnnditio1wrs. Specifically. 

the following four cas1•s will be considered (sec Section ·!..')..! ): 

• SOD I - without any interface preconditioners. 

• SDD II - the preconditioncr simply taken to lw the matrix A., explained in 

Section ·l.2 (page 70); 

• SOD Ill - the interface probing prcconditioncr G(O); 

• SDD IV - the interface probing prcconditioncr G: 

\Ve present, in Figure ·l.1:3 - ·l.16, the log10 norms of the residual vectors on 

the interfaces versus the number of iterations corresponding to each of the:;e ca:;1•s 

listed above and for four different mesh resolutions, namely, :m x 27, 60 x 55, 90 x s:~ 

and finally 120 x 11!>. Both the number of iterations and CPli time consumed 

for each cas1· arc recorded in Table .1,:1 for the solution of tlw non-dinwnsionaliz<'d 

g1~opotc11tial Schur complement linear system at the end of 0111· hour. 

The suitability and efficiency of the interface probing pn·rnndit imwr (,', which is 

introduced in S<'dion ·1..1..! (page !).I) and is based on a modification of the rm\·s11111 

preserving preconditio1wr G(O) (sec pag1· !)2), haw !wen lllllll<'rically ronfirnwd. \Ve 

may obs1·n·c that, as the nwsh resolution itwn·as!'s. :\,,.,.as an interface precondi-

tioncr. displays poor adaptivity. llm\'<'\"CT, both pn·rn1Hliti01wrs (;(O) and(; possl'ss 



a; 
::l 

"O 
"Cii 
f: 
~ 
al 
cu 

:E 
0 

!!.O - - L--"--·• -~-•-~__.i_..___,___, __ 

0 SDD I 

SDD II 

SDD III 

SDD IV 
-0.0· 

~ -IO.O 

-M.O · -, - .. - • - 1 ~-.,_\_:_ •-' -· 

0 " 0 12 
Ilcralion nun1bcrH 

Figure ·l.l:J: The evolution of log10 Euclidean residual norms as a function of numlH'r 
of iterations for the Schur complement matrix liuear system on tht• interfaces for 
the non-dimensionalizcd geopotential matrix system at the end of one hour of modc•I 
integration. The mesh resolution is :m x '!.7. For this choice, there are !JO nodes 011 

the interfaces. 

2.Q -· --L-.>->-.J-L_L--•. ___ L_s.._~ ,1. __ ..a, __ _ 

~ 
0 

SI>D I 

0 SUD II 
~ -2.0 

bf) .s 

SDD III 

SDD IV 

-1-t.0· --•-~•-t·--1-,---'"--'-T-,--,-,-· 
O -I 0 I:! 

ll.cralion nutnhcrH 

Figure ·I. H: The c>volution of /og 10 Eudid<'an n·sidual norms as a fun ct ion of 1111111lwr 
of il<'rations for the Schur cornpknwnt matrix li1war sysf<'lll 011 th<' inl<'rfac<'s for 
th<' no11-dimensionaliz<'d g<'opotent ial matrix system at th<' end of mw hour of mock I 
integration. Tlw mesh resolution is fi[} x !i:J. Fort his rhoin·. t her<' ar<' 180 nod<'s 011 

t lw interfaces. 



en 
E 
s... 
0 
i:= -:!.O 

bf) .s 

" SDD I 

0 SDD II 

,. SDD Ill 

SDDIV 

-14.0 - ... -- ,.~-•-7---r --r- ... --T-r--,.--,.--1--r---

O 4 8 12 

llcralion nu1nbers 

11-1 

Figure ·l.15: The evolution of lo9 10 Euclidean residual norms as a function of numlwr 
of iterations for the Schur complement matrix linear system on the interfaces for 
the non-dimcnsionalizcd geopotcnt ial matrix sysl<·m at the end of one hour of model 
integration. The mesh re~olution is 90 x 8:3. For this choice, there arc :no nodes on 
the interfaces. 

SDD I 

~ 
0 s:: -2.0 -

o SDD II 

SDD III 

bf) .s 

SDDIV 

-1-t.0 - -,--.-,.~-y -T-r -r-,--,. -T-r- r- r -

0 4 0 12 

It.cralion nun1hcrs 

Figun· ·1.16: The (•volut ion of /o910 E11rlid1·a11 residual norms as a fun ct ion of 1111mlwr 
of iterations for tll<' Schur romple11H'nt matrix litwar system on tlw int1·rfan·s for 
tlw non-dinwnsionalized geopol!·ntial matrix syst1•111 at t lw end of 01w hour of modc·l 
intq~ration. The mesh resolution is 120 x 115. For this choin·. thPn· are :mo nodes 
on the intcrfares. 



11;) 

Table .1.:3: .\ comparison of CPl; time in seconds (number of iterations) for tlw 
iterative solution of the Schur complement linear systems on the interfaces 

~lesh resolutions :10 x 2i 60 x 5,5 90 x s:1 l:.W x l l:J 

SOD I 0.68 (9) :J.33 ( 11) 9.!J:J ( 12) 2:.i.10 ( 1:3) 

SDD II 0.H (5) 2.:u (6) - -., (8) 1.1- 2:u,1 (12) 

SDD Ill 0 .. 5i (8) •) :'") (8) __ .)_ 6.6:3 (8) l·l.iO (9) 

SDDIV o.:1s ('>) l.iO (5) 5.10 (6) 12.12(6) 

much better adapti\'ities to mesh refinement. \Ve also notice that. for the case of 

:m x :H mesh resolution, SDD IV is computationally cheaper than SDD II although 

they both require the same number of outer iterations. This is due to the fact 

that, using the former prcconditioncr. the con\'crgcncc rate of the itcrati\'c solution 

in each of the subdomains tends to be faster, namely, comparatively fewer inner 

iterations arc required. 

4.8 Conclusions 

• Tlw Schur domain decomposition method pro\'id(•s a "divide, conq1wr and 

comhinc'' algorithmic structure for mapping a whole computational effort onto 

ii 1111ml><'r of processors for the parallel nunwrical solution of PDE's, using 

citlwr the finite cliffcrenn• or the finite eh•nwnt discrctization. The resulting 

domain decomposition algorithm is cosy to imph·ment. llm\'('\'('r, this m<'lhod 

may not IH' co:>t (•ffecti\'e in the abscnn• of fast subdomain soh·ers. 

• Thc Schur complPment matrix (.' is so dense that Algorithm ·I. I. alt hou.c;h an 

improvcnwnt of it has been made here o\'C'r t lw t rad it ional 011<', is not rec-

omme1Hlcd in g<'tH'ral. ex rcpt for special cils<'s (for example. discrete linrar 



116 

systems with an identical col'fficicnt matrix at <'ach time step in a tim<' ckp('n

dent problem or :\<'wton 's method for solving a 11onlincar system of algebraic 

equations by freezing the .Jacobian matrix for a number of steps [87. p. lfi6]}. 

In other words, the generally preferred Schur domain decomposition approach 

should be based on Algorithm ·L2 which repwsents a .. divide and feedback·· 

iterative procC'clurc illustrated in Figure ·l.i'i. 

• The node renumbering scheme proposed in this chapter not only facilitates thl' 

modification of an <'Xisting code into a non-overlapping domain ckcomposition 

code. but also provides an easy and alternatin· way for implenwnting classiral 

rnulticoloring techniques. 

• ThC' efficiency of this Schur approach strongly depends on the number of outer 

iterations, i.e .. the number of iterations required for a l\rylov or conjugate 

gradient-like iterative solver for linear systems on the interfaces to satisfy a 

pr<'scribed convergence criterion. The prC'dominantly local characteristic of 

the Schur complement. matrix operator justifies the use of interface probing 

preconditioning idea<; for accelerating the convergence of tlw iterative solution 

of the Schur complement linear system. However. the most oft<'n used W\\'sum 

preserving preconditi1>twr G(O). although well-behawd for most elliptic PDE"s. 

does not carry ov<'r to the current application and requires a modification as 

proposPd in Sl'ction ·l.i'i.·I. Tlw application of this modifil'd rows1m1 pn•51•rvi11g 

prcrondit ion<'r (; rl'sults in a 11111rh better convergcnc<' lwha\·ior. 1•spccialiy for 

fi1wr mrsh rrsolut ion ras1•s. 



CHAPTER 5 

THE MODIFIED INTERFACE MATRIX DOMAIN 

DECOMPOSITION ALGORITHMS AND APPLICATIONS 

5.1 Introduction and Motivation 

In Chapter ·I. we have seen that. as a ~divide and feedback"" pron•ss, tlw iter

ative Schur domain decomposition method provides a good algorithmic structure 

for mapping the computational work involved in the numerical solution of PDE's 

onto multi-processor computing systems for parallel processing. The computational 

cost of this approach is determined by two factors, namely, the number of iterations 

required of an iterative algorithm to solve the Schur complPment linear system 011 

the interfaces and the computational costs of the subdomain solvers. One of the 

drawbacks of the method is that subclomain solutions an' usually carried out ex

actly. For problems where fast direct subdomain solv(•rs arc locally exploitable (sec. 

for example, Section :J.2 of Chapter :~). the Schur domain decu111posit ion met hod 

with an appropriate interface pn·conclit ioner provides an efficient and cost-effect iVP 

algorithm. lJnfortunatdy. fast subdomain soln•rs are not available in most appli

cation problPms. For such cases. the Schur domain dPcomposit ion met hod may 11ot 

IJ<' efficiPnt wh<•n considered from tlw computational comph·xity point of vi1·w. 

Domain decomposition ideas has1·d on thP modified int<'rface 111atrix (i\lli\1) ap

proach [:n. 17·1] are proposed to reduce tlw cost for obtaining :mhdnmain solutions. 

For th is no\'<•I approach. t lw su hdoma i 11 solutions a re st i II ca rri1·d 011 I exactly. how-

117 



118 

e\'cr. with the impro\'ed intial solutious, they cau bl' obtairwd faster and lcss ('XJWll-

siYely as the iteratin• procedure conti111ws. Thus. the disad\';rntage arising from tlw 

absence of fast subdomain solvers is mitigated. TIH' ideas proposed for impro\'ing 

the initial solutions in tlw design of iterative solvers for time-dependent and bound

ary value problems are not new and hav<' been pointed out. for example. in [10. p. 

:J8:J]. These ideas will he further st udicd and implemented here in connection with 

domain decomposition strategies. 

5.2 The Modified Interface Matrix Domain Decomposition Method 

5.2.1 The Basic Theory 

For the Schur domain d('composition method pn.•:wntcd in tlw previous chapt<'r. 

the subdomain problems (-1.17) arc solved only after the solution x, on the interfaces 

is obtained. \Ve propose, in this section, a new approach to handle coupling betw(•en 

different subdornains. This new approach is largely based on the following two 

theorems (Theorem 5.1 and 5.2) and differs from the Schur domain decomposition 

method in that the approximations to the solutions on the interfaces and in the 

subdomains arc successively improved. 

Theorem 5.1 Sequences of approximation ;rlkl. for l ., I I kl 
... , •••• 11, an< .r • pro-

duced by 

For l· = 0, I. 2 .... 

il;;.r~k+I) = f; - ,\; .•. r~k) for i = I. 2 ..... 11 ( !"i. I ) 
71 

\ (k+l) - f ' \ . (k+l) 
1 ,,.,.r., - ., - L-t l ,,..r i ( - •)) :) ... 

rnnvPrg(• to .r;. for i = 1.2 ..... 11. and .r; for <HI arbitrary initial solution .r~0 l on tlw 

iuf<>rfocPs if and only if tlw sp('cfral radius of tlw matrix/_,_, - A_;,,1(,' satisfies 

p(/.,_, - A~,1 
(') < I ( ;;.:J) 



l El 

wh<'rc /,.is an iclc·ntity matrix of siz<' 11, x 11,. J·; and .r;. for i = l, 2 ..... 11. arc tlw 

solutions of ( ·1.1 G) and ( ·1.17). 

PHOOF. Define an error vector c~kl = .r~k) - .r: for the interface approximation. 

Since .dk+tl = A~ 1 (fi - Ai •. r~kl). for i = l, 2 ..... 11, it is then straightforward to 

show that A.,..r~k+t) = g +(A., -C).r~kl, where g is defined by (-1.:!l ). It follows that 

c~k+t) = (/., - A ;,1 C )c~k). ll<'ncc we have .r~k) --+ .r;, as I.: --+ x if and only if (.').:J) 

holds. :\ow let k--+ oo in (5.1). it follows from (-l.17) that .dk)--. .r7. as/.·--+ ac. for 

i = I, 2 ... .. 11. Q.E.D. 

By theorem 0.1. we obtain the following itcratin• proc<'dure for solving the linear 

system 1\.r = f. The iteration starts with an arbitrary initial solution .r~0 l on the 

interfaces I' = f I U 1'2 U · · · U I'n-1 •solves the subdomain problems (5.1) in parallpl, 

then updates the approximation on the interfaces by solving (.'S.2). In this way 

we solve the subdomain problems and the interface problem successively until the 

convergence criterion on the interfaces is satisfied. 

Compared to the Schur domain decomposition method, the algorithm based 

on theorem 5.1 is quite straightforward and the condition ( 5.:J) is satisfic•d in our 

applications for various mesh resolutions. Specifically, our 1111mcrical c•xpcrimcnts 

indicate that for various mesh resolutions of the discretized domain, t lw spectral 

radii p(I •• - A;_,1C) arc about 0.1:3. Ilene~ the asymptotic rate of convergence 

- In p. (see, for example, [1 J:J]) is about 2.0102. Thus, in order to r<'ducc the norm 

of the initial c•rror wctor on tlH' interfaces by a factor of. say. w-1
;. roughly seven 

itc·rations aw required. 

\V<· now proc<'ed to modify this iterative prorcdmc. Sinn• each iteration us111g 

(.'i. l) and (.'"i.2) requires the solutions of all tlH' s11lido111ai11 prolikms onrc', it is 

important to r<'cllln' th<' 1111mlwr of iterations. It is W<'ll k11ow11 that the• small1·r tlw 



120 

spectral radius. the faster the ratt' of convergence·. In order to reduce till' spectral 

radius, we construct a matrix/\·., such that :\,.+/\.,is a good approximation of the 

Schur complement matrix C in the sense that the spectral radius p[(A., + /\·.,)- 1C] 

is close to 1. The matrix A,,+/\., is referred to as the modified interfan· matrix. 

!\ow assume that the matrix /\,. has been chosen, the following result may be 

proved in a similar way: 

Tl S f · · (k) r 1eorem 5.2 . equences o approxm1at10n .r; , 10r == 1., 1 ....... 11.. and .z·~k) oh-

tained by 

For /.: = 0, I, 2 .... 

,\ ..• (k+I) _ f \· (k) 
4 11 J 1 - 1 - I ,,,.r $ for i = l, 2, .... II 

n 

(A .. + l\".,)Ll.r~k) = J. - A,..r~k) - L .tl,;.rlk+I) ( .5 .. 5) 
i:::l 

converge to .ri, for i = l, 2, ... , 11, and .r; for an arbitrary initial solution .r~0 l 011 

the interfaces if and only if the spectral radius of the matrix/,. - (A •• + l\,.,)- 1C 

satisfies 

p( '·· - (A ... + K •• r 1
c) < l (:>.f>) 

i = l,2 .... ,11. are the solutions of (·1.16) and (.1.17). ~loreovcr. the following norm 

relations hold 

(0.7) 

wlwre ('is the Schur comph•nwnt matrix and g is tlw rnrrcsponding right hand side. 

defined hy (-1.2 l ). 

Based on tlworem 0.2, tlw it Nation st arts with an arhit rary i11it ial solution .r~0 l 011 

t lw interfaces and\\'<' sucn•ssi\'!'ly solv<' t.lw suhdomai11 problems (0.1) in paralh·l a11d 



121 

the linear system (i> . ."i) on the interfaces until tlw norm gi\·en by (0.i) is sufficiently 

reduced. A highly simplified control flow (data dependency) graph is pr<'sPnt<'d in 

Figure .j. l. l\otice that the computational work involved in 11 - l interfaces may 

also he rnrried out in parallel with smaller granularity. This fact is hidden in tlw 

figme. 

It is intPresting to make an analogy here and think of each of th1· equations in 

(5..1) as the governing equation for the displacenwnt distribution within a substrnc

tun• subjected to a load f; originally acting upon it. and the boundary int<'raction 

forc<'s -:1;,.r~k) dm' to interface comwctions betwc<'ll the substructures. 

By taking .r~0 l to lw some initial solution on the interfaces that differs from 

tlw true solution .r:, we arc actually imposing sorn<' constraints in addition to tlw 

original constraints (the boundary conditions) to the structure and thus making it 

stiffer. However, as guaranteed by theorem 5.2, the extra constraints introduced 

due to the incorrect initial solution will be continually relaxed by solving the linear 

system ( 5.5) repeatedly. 

A Krylov or conjugate-gradient like algorithm is applied to both (5.'1) and (5.5), 

accelerated by the ;\lILU preconditioner for the former and a modified version oft he 

rowsum preserving interface prcconditioner (H'<' Section 5.2.:J) for the lattt'r. The 

stopping criterion for the iterativc procedure int roduc<'d in Theorem 5.2 is hascd 

on the final Euclidean residual norm Ilg - C.r~klll being smaller than a pre-delin<'d 

small nmnber, say. 0.1 x 10- 10 • and this residual norm information is conn·ni<'ntly 

and kss <'Xp<'nsively providPd by Ii(:\,_,+ /\·, .• )~.r~k)ll (s1·1· (5.i)). 

5.2.2 The Construction of /\· .•• 

\V1· now in wst igat 1· th<' rnnsl rud ion of th<' matrix /\'.,. d<·sigrlt'd so that t lit' 

modified inl<'rfan• matrix:\.,.+/\·,, rn11stit11tt's a good approximation of th<' Srh11r 



G G ··· ® 
\/ 

No convergence 

G ® ... ® 
'l 

Figttn• 0.1: A highly simplifiPd rnnt rol llow (data dq><'nd<'ncy) graph for the modili<'d 
i11tcrfan· matrix domain decomposition algorithm. 



1:n 

complement matrix C. Since we are mainly interested in non·symmct ric i terat ivc 

methods for which only mat.rix-\·cctor products aw n·quired for the solution of the 

system (5.5). it is more efficient to consider the algorithm of computing /\,.w, for 

a given wctor w, rather t ban first forming the matrix and then the product. 

:\s a first approach. let us consider a splitting of each of the subdomain mat rices 

(5.8) 

where /';; is a nonsingular matrix and h is the identity matrix of size 11; x 11;. 

Assuming that the spectral radius of /l;; = /;; - Pii 1 
A;; is less than I. we may 

obtain the following :\eumann series expansion 

rxo 

1-1 - ["(£ [>-1 1 )k]/J-1 
i ii - ~ ii - 11 l ii ii · (5.9) 

k=O 

C - A •• can be approximated by using only a finite truucatcd expausion. i.e .. 

n 

C 1 ......, /' " l v(m+l) - I ,. ,....., \ 33 = - ~I 3 j.\;3 
(5.10) 

i=I 

where 
m 

v(m+l) _ ["( / [>-I 1· )"]fJ-1 1 ,,•\i,_, - ~ ii - ii I 1i ii / i.s· ( 5. l l) 
k=O 

To derive an iterative rncthod for computing l\.,.w, = - I::~. A.ix.',;"+
1

l11· •. W<' 

consider solving each of the following litwar systems of the form :li,1·1 = Iii· for 

1 = l,:!, ...• 11. by a linear and stationary iterativesclwnw 

(I).!:!) 

(I 11-I \ ) (k) + 11-I ai - i1 I ii I\ i1" lli (:i. I :J) 

From (I). I :J). WP oht a in 

,I•) - (I· - 1)-1 -1 ·) ,(oJ />-• I I - II 1i ' II I I + ii 111 (I). I ·I) 



12 t 

(l) (/ ,J-1 \ )~ (0) ' (/ jJ-1 \ )/J-1 + ,)-1 
l\ = 1i - ii ,1 1i l\ I ii - ii I ii it llj 1i Ui 

(I JJ-1 1 ):i (oJ + (I fJ-1 1 . )2 /J-1 ii - ii / ii l\ ii - i1 ~~ ;, ii II i 

+ (I /J-1 \ )JJ-1 [J-1 
ii - ii ,/ ii ii u, + ii llj (5.1 G) 

and in general 

,,. 
,(m+I) _ (/·· _ [J.-:1 ·\··)m+l ,(0) + '""'(/·· _ /J.-:1 •\··)k/J-:1 . 
l, - U II • ll l, ~ II 11 ~ U H ll, (5.1 i) 

k=O 

Based on (i>.I:J) and (i">.1 i ). t lw following it Prat iw algorithm for computing A"_,.w, 

is obtained 

(5.18) 

where the vector vlm+I) can be obtained by the following iterative procedure: for 

l· = 0. I, ... , m. starting with u)
0 l = 0 

( 5.19) 

for i = 1, 2, ... , n and Ui = Ai.w.. !\oticc that ( 5.19) can be implemented and 

:1,;vlm+I} formed. for i = I, .... 11, completely in parallel. 

Another approach is to us<' ~IILU prcconditioncrs in the subdomains :\;i :::::: /,;Fi 

to construct tlw matrix /\·, •. Specifically. we take 

n 

/\·., = -l:A,;(/,J!;)- 1 Ai.•· (5.'20) 
i=I 

lien• the matrix-vector product may lw <·valual<'d as follows: 

" 
f\· •.• w .• = - l: ,1.;11; 

i=I 

wlwrP 1·; ean IH' df'tcrmirwd by 

( ,.. ')')) ->.--



l 
.,,.. 
-·> 

and 

( ~ •)')) :)._., 

for i = I, 2, ... , r1. The solutions of (5.22) and ( 5.2:J) can be carried out and :1,; 1·; 

formed in parallel. 

:\umcrical results indicak that the spectral radii p(I., - (A.,+ /\',,)- 1C) for 

\'arious resolutions arc around .01 by retaining just the first term in the '.':t·umann 

series and 0.002 by using th<' :\!IL U factorization. Tims, roughly either only four 

or two iterations. respcctivdy, will be required in ord<'r to reduce the norm of tlH' 

initial error \'ector on the intcrfar<'s by a factor of 10-•>_ 

5.2.3 The Algorithm 

Prior to presenting an algorithm of the l\111\1 domain decomposition approach, 

we discuss here how to choose the initial guesses for the solution of ( 5..1) as well as 

that of ( 5.5) and how to precondition ( 5.5 ). 

Hat.her than making a random gu<'ss of the initial vector for an itcrati\'e solver 

to start with, we take .z:~k), for i = l, 2, ... , ri, as the initial guess for the solution of 

each oft he linear systems in ( 5..t ). for l· = l, 2, ... , as well as the zero wctor as the 

initial guess for the modified interface matrix linear system (5..1), for l· = O. l, .... 

It is clear from theorem 5.2 that, ask increases, rlk+') - .dkl --t 0 in the suhdo· 

mains n;. for i = l, 2 .... , 11, and ~.r~k) - 0 Oil the interfaces r. Cons<·quently. the 

initial \'ectors selected this way become better approximations to the subdomain 

solutions .dk+'l, for i = l. 2, ... , 11. as well as to the solution on tlw i11l<'rfaces ~.r~kl. 

as the i krat ivc procedu n· ddi ned by ( .')..J) a11d ( 5.5) proceeds. a11d tl111s requiring 

fewer iterations1 for the it<'rati\'t•solutions in the suhdomains (0..t) a11d 011 tlw inter-

1 Tlw 1111111Priral n-sults on this ;m· vrry rnrnuraging. S('I' Figur('s :u; and .'"i. 7 on pagrs I :Is and 

I :!!J. 



l:W 

faces (ii.!>). :\s a rPstilt. th<' rnmputat ional cost oft he :\11;..f domain d<'co111positio11 

algorithm decreases as ~· increas<'s. The reduced cost for tlw s11bdomai11s mitigatPs 

the disadvantage of 1111a\·ailability of fast imbdomain solwrs. 

For any fixed k. WC USC' here essentially the same prccondit imwr G (sec c1.:rn)) 

as pr<'viously used for the preconditioning of (,l.lfi). with the Schur complement 

matrix replaced by the matrix ;\33 + /\.,.. Only a single probing W\tor of th<• form 

1· = {l. l. l. l.1.1. .. . rr is required for this construction. ThP product /\·,.,, is 

Pvaluatcd by using citlwr (5.18) or (5.:!l). If (5.:!l) is used. it is <'asy to sc<' that 

just on<' inexact solve is required for the construction of this prl'conditionPr in Pach 

suhdomain. 

Based on tlw above discussion. we present in the following an algorithm for the 

;\ll~I domain decomposition approach, where Steps l to :J arc required for set-up 

purposes. The iterative procedure is described by Steps ,, through 6. To fix ideas, 

we specify CGS to be our iterative solver in the algorithm. 

Algorithm MIMDD (:\lodified Interface Matrix Domain Decomposition) 

Step 1. Carry out the :\IILU factorizations of A;;. 11;;::.::::: f,J!;, for i = I. 2 .... , 11, in 

parallel. 

Stt•p 2. Construct a modified rowsum pre!'ierving interface probing pr<'condit ion<'r 

for ( 0.ii). :\ larg<• part of th is rakulat ion may IH' carried 011 t in pa rallcl by 

using citlwr (!>.18) or (ii.21 ). 

Step :l. Set k = 0. Sp<'rify .r~0 l on t lw inl<'rfaccs and :min· subdo111ai11 problems 

(i'i.·1) in paralld by using il ;..111,u prcronditioncd cc;s soh·cr with a suitabh· 

initial solution. 



Step ·l. Solve (.'i.0) by the CGS soln·r with tlw prcconditioner constructed in Step~. 

and an initial solution taken to be the Z<'ro vector on tlw interfaces. :\otin· 

that the preconditioning system may!)(' solved in parallel and the matrix-

vector product /\,.11•, may be computed by either (0.18) or (0.~l) mostly in 

parallel. where w, varil's bet ween iterations. 

Step 0. Test for convergence on the intcrfact•s (by using (5.7)). If the rnn\·crg<·nn· 

criterion is met, go to Step (i and stop: Otherwise, go to Step G and tlwn go 

back to Step ·l. 

Step 6. Set k b- ~· + I. Solve subdornain problems ( 5..t) in parallt•l by usmg the 

~IILll PCGS solver with initial solutions .r~k), for i = I. 2, .... 11. 

5.3 Numerical Results and Discussions 

5.3.1 Accuracy of the Modified Interface Matrix 

\Ve now provide some numerical results along with discussions to support the 

theory and algorithm introduced in Section .5.2. First, the critical factors affect

ing the succt•ssful applic:ation of the theory and algorithm disrusscd there arc the 

spPctral radii p(/. •• - t1_;.,1C) and p[/,, - (A •• + H •. ,)- 1C]. rcspcctiwly. Our goal 

is to render the matrix A,, + !\.,. lo be an accurate representation of the Schur 

complPmPnt matrix C. in the sew;c that p[/,. - (A,.+ /\,.,)- 1
('] is small. without 

sizably increasing the computational work for the construction of tlw matrix /(,,. 

Our numerical <'Xperimcnts applied to various mesh r<'solutions indicate that t lw 

condition (:>.:J) is satisfied and that the advantilgc of modifying,,\,, to:\, .• +/\-, .• is 

mm put ationally signifirilnt. 



The spectral radii p(I,. - :1-;}C) and p[ /H - ( :1,. + /\,. )- 1 CJ cotT<'sponding to the 

no11-dim<'nsionalized geopotential at tlw end of one hour (for a time step of half an 

hour) for st>n·ral mesh resolutions an• summarized in Table .'J. l, where th<' matrix /\ ,, 

is constructed by ~llLU factorizatio11s. The spectral radius p[/., - (A,,+ /\.,)- 1C], 

for which/\.,. is formed by the ~eumann seri<'s <'Xpansion (sec (5.10 and (.'J.11 )) can 

be found i11 our early paper [17·1]. Compariso11s were also made in [17·1] lwt\\'cc•n 

~IILC and the ~eumann series constructions of/\.,, the general conclusion bei11g 

that ~llLU is more suitable for this particular application. By retaining more terms 

in the :'\eumann :-;cries expansion, we can rendcr tht:> :-;pectral radius p[/,, - (1\., + 

/\".,.)-
1
('] wry small, however, the extra CPU time required 11s11ally outweighs tlw 

gain obtained by the reduction of the number of 011kr iterations of the ~[L\[l))) 

algorithm. As expected, the spectral radius increases with the mesh rcfi11cme11t, 

implying that additional out<'r iterations will be required for satisfying the sanw 

prescribed convergence criterion. 

Table 5.1: The spectral radii of the matrices/,,, - A;,'C and /., - (A.,+ /\.,)- 1{' 

for three mesh resolution:; 

~[esh resolutions p(J .. - A-;,'C) p[I .. - (A •• + /\, .. )- 1CL] 
:J6 x 27 O. I:J.1 J.!):JO x 10-:I 

.16 x .ii O.I:H 2.2:16 x 10-:I 

72 x 6:J 0.1 !JI :us.~ x 10-:i 

Thi' modified interface matrix;\,,+/\.,. constructed according to (.'i.20) rn11sti-

tutt•s quite· a good approximation to the Schm rnmplcmPnt matrix(', dPfined in 

('I.IX) or (-1.1!1) of Chapter ·I. :\plot of tlw surface formed by tlw cl1·11wnts of tlw 

modified interface matrix as a f11nct ion of it:; inclin·s can hardly lw dist inguislu·d 



from Figure ·1.7. In view oft his. W<' pr<'sent. in Figun· 5.2. the surfact' g1·ncratcd by 

the entries in the matrix C - ( 1\,. + /\·,.) com•sponding to the non-dimcnsionaliz<'d 

geopotcntial matrix at the end of one hour of model integration for a tinw step of half 

an hour using, for the illustration purpos<'. a mesh resolution of 25 x 19. llmw\·er. 

similar rt·sults arc obsern·d for cases corresponding to other nwsh resolutions. 

5.3.2 The Convergence Behavior 

!\ow we present some conv<'rgcnce results obtain<'d hy using the itt•rati\"t• algo

rithms introduced in Theorems !i.l. which docs not modify t.h<' interface matrix:\. •.•. 

and in Theorem 5.2, which is referred to as the modified int<'rface matrix domain 

dt'composition (~IE\IDD) algorithm [17·1] (its algorithm is described in d<'lail in Al

gorithm ~ll~IDD on page 126). The stopping criterion is that the final Euclid1·a11 

residual norm 119 - C.r~k)ll of the Schur complement linear system on the intPrfaccs 

he less than 0.1 x 10-10
, essentially the same convergence criterion as employed in 

Chapter ''- However, for the present algorithms, we do not have to deal with the 

Schur complement matrix for convergence tests. but just to take advantage of the 

relation giver. ii1 (5.7) (setting K •• = 0 for the unmodified case). 

For Pach of the suhdomain problems expressed in ( 5. l) or ( .'>..! ), as usual. th<' 

CGS iterative algorithm with an ~JILU prernnditioncr is used. On th<' interfan·s. 

however. for the unmodified case. due to the sp<'cial structure of tlw matrix :\ .•.•. 

it. is mon· cost <•ffoctive to employ the so-calh·d Ahlberg-Nielson-Walsh algorithm. 

nwntiotwd in S1•ction ·1.5.·I; for th1• 1I1odifi<'d casP. wt· use tlw CC:S algorithm ac

n·kratPd by the 1I1odifi<'d row-sum prcspn·ing interface probing pr<'rornliti01wr (sci· 

Algorithm ~IL\IDD). 

In Figur<· .').:~. wt• display I lw com«·rgcnc<' histori1·s for both t lw tllllll<Hlifi<'d and 

modiliPd inlt'rfac<' matrix do1I1ai11 cli·composition algorithms on two mcsh rcsol11tions. 



Q -:::::, . 
• ID .,.. I 

O' 
Q 

c:i ... 
I 

J:JO 

Fig11rc 5.2: The surface generated by the entries of the matrix C - (;\,. + /\.,_,) for 
the 11011-dimcnsionalizcd gcopotent ial system at t iw end of one hour of integration. 
The nwsh rcsoiution is 2.') x J!) for th<' original domain. For this choice. then· are iS 
nodPs on tiw inl<'rfaces for th<' four-:mbdo111ai11 domain drcomposition. Note that 
tlw mesh lirws haw been thimwcl by a factor of two in both directions along i and 
j. 



1:n 

The rc·stdts correspond to the 11011-dinwnsionalized g<'opol<•ntial matrix syst1·111 at 

the end of one hour of model integration with a tinw step of half an hour. \\'e sec 

that the modified version represents a great saving of number of outer iterations 

and. as a result. a saving of n11111ber of subdomain soh«•s. ,.\ct ually, this is to lw 

expected since the spectral radius p[/.,,, - (A,.+ I\ .. t 1C] is of ord<'r 0( 10-J). whil<· 

p(/33 - :t;)C) is of order O(lo- 1 ). We also note that the unmodified approach is 

quite sensitive to t hr mesh rc•finement. On the other hand. t lw n11mlwr of 011tl'r 

iterations required for :\11:\IDD algorithm to rnnv<'rgc do<'s not increas<' \'<'ry much 

C\"<'n for higher mesh resolutions, implying a good adaptivity of the algorithm. 

In Ta bl<' 0.2. we privide some timing wsults which furl her confirm that t lw 

l\ll~IDD algorithm is to be preferrrd to tlw corresponding unmodifi<'d V<'rsion of tlw 

algorithm. Each given CPU time corresponds to the integration of the finite element 

shallow water equations model for one hour with a time step of half an hour. Also 

included in the table, for comparison purposes, arc those timing results using the 

Schur domain decomposition method with the modified row-sum preserving intcrfare 

probing preconditioncr on the interfaces, denoted by SDD IV (sec page 112). The 

number of outer iterations required for solving the geopotential linear systems at 

t = I hour for scn~ral m<'sh resolutions arc also included in the table. 

From the table, we observe that even the 1111modificd inl<·rfan· matrix domain de

composition algorithm is competitive with the Schur domain decomposition ml'lhod. 

while :\ll~IDD met hod is the best (i.<·., computat ional!y cheapest.) among t lwsl' t hrcc 

algorithms. 



:!.0 - - ...___ ... ___ L_., __ ...__ l _i...___., __ ! ___ ., _ ______1.__t_"~--'-- _ 

§ 
0 " Unmodified 
~ -:.:.o 

"' e 
0 

a Modified 

-14.0 · -- ,--.,. --r-- ,-r--r--, --,~r -,--' - r--' - ' -
o :J 6 D 12 IU 

Ouler ilcralion nurnhcr.-; 

(a) 

:.!.O - - • __ ..._ .... __ 1 _ __. -·" _.___1_. _ _._______._ __ J _...______ ._ __ ..__1_ • _ _._____ ,._ '---"-• -•-

i:::: -2.0 " Unrnodified 

Cii 
:::l 

"O ·;;; 
~ -6.0 -
i:::: 
ctl 

~ 
0 
~ -10.0 

Modified 

~"' 
bD .s 

~~ 

-M.O • , .. ,., • • • ,·.-.--,-,-, • .-,-···-~• \ 
0 " 0 12 16 20 

Oulcr ilcralion number.-; 

(h) 

Figure .i.:J: Th<' evolution of /og 10 Euclidl'all residual norms of tlw Srhur rnmpknu·nt 
matrix linear system 011 tlw intrrfarPs as a funrtion of 1111111IH'r of outer itcrat ions 
for using the modified and 1mmodified interfare domain decomposition algorithms. 
Tlw results rnrwspond to a 11011-dinwnsionalizc·d gPopote:it ial matrix sys km at th(' 
end of orw hon r of int <'grat ion with a t inw step of ha If a 11 hour. Tlw mesh wsolu t ion 
is (a) 60 x !) l and ( b) I O·I x !J!i, res pert ively. 



Tablt• 5.2: :\ comparison of CPU times in seconds for integration to the end of 
one hour with a time step of half an hour (numlwrs of outer itNations for solving 
the geopotential linear systems at f = l hour) bet ween th<• 1111modifted, modified 
interfan· matrix domain d<'composition algorithms (timing results for t lw Schur 
domain decomposition method are also included for comparison) 

I Mesh resolutions lf lllllOdificd :..Iodifird SDDIV 

:2'1 x 15 1.07 (l 1I) 0.78 (5) 0.97 

:J6 x 27 2.87 (l·I) •) 1- (.) 
-· I .J 2.7·1 

118 x ;19 5.9·1 ( 1'l) ·1.52 (5) 5.7.5 

60 x 51 10.72 ( l:J) s .. '>!l (5) l l.0-1 

72 x 6:3 17.95 (H) H.6:J (.'>) 17.96 
--

8·1 x 7.j 2!J.08 ( 17) 2·1.01 (5) 28.62 

!)6 x 87 ·16.27 ( l !}) :n.:n (6) 46.:rn 

101x!l5 68.f>!J (22) ;j 1.2:1 ( (i) @.2:J 



1:0 

5.3.3 The Significance of Successively Improved Initial Solutions in the 

Suhdomains and on the Interfaces 

One of the reasons that the '.\Il'.\IDD algorithm performs better tha11 tlw tradi

tional Schur domain decomposition method is due to the impro,·cd initial solutions 

in the subdomains and on the interfaces being systematically made as tlw out<'r 

iterations continue. 

To show how thes<' improwcl initial solutions affect the performance of both 

the '.\11'.\IDD algorithm and the unmodified \'c•rsion. we presPnt. in Figur<'s 0.·I. 0.0. 

0.6 and 0.7. histories of improved initial solutions in tlw subdomains and on the 

interfaces (fort he '.\11:\1 DD algorithm only) for the non-dinwnsionalizf'd gmpoknt ial 

matrix system at the end of one hour of model integration with a time step of half 

an hour, for both unmodified and modified interface matrix domain decomposition 

algorithms. \Ve present these r~sults corresponding to two mesh resolutions only. 

namely, 60 x 51 and 10·1 x 95. However, similar behavior can be observed for other 

mesh resolutions. For the case of higher resolution, we not ice that the unmodified 

interface matrix algorithm fails to reduce quickly the initial residual norms in the 

second and third subdornains after each outer iteration step. IloweV<'r, the :\llMDD 

algorithm self-adapts the mesh refinement and behaves well even for high mesh 

resolutions. 

Finally, we rcport timing results to illustrate the significance of tlw improwd 

initial solutions within each outer iteration. :\s lwforc, we int1•gral<' the shallow 

water equations for one hour by using hot h unmodified interfan· matrix domain 

decomposition and ~IE\IDD algorithms with or without the upda!Ps of tlw initial 

solutions in tlw subdomains. For cases in whiclr no improvements arc made. the 

initial s11hdomai11 solution wctors are simply taken to lw ZN01·s. Tlw 111mwrical 

n·stilts are shown in Table ."i.:J, where the following notation,; have been adoptc·d 



1:r; 

ll:\11:\IDD I: 1111modified interface matrix DD without improved initial s11bdo111ain 

solutions: 

U:\11:\IDD II: unmodified interface matrix DD with improved initial subdomai11 

solut io11s: 

:\11:\lDD I: :\11:\IDD algorithm without impron~d i11itial subdomai11 solutio11s: 

:\11:\IDD II: :\11:\IDD algorithm with improved i11itial subdomain solutions. 

Table 5.:3: A comparison of CPU times in seconds between the 1111modified and 
modified interface matrix domain decomposition algorithms with and without m1-

provenwnts of initial solutions made in the subdomains 

I l\lesh resolutions Ul\Ill\IDD I U:\11:\lDD II :\11:\IDD I :\lll\IDD II 

:H x 15 l .5:J 1.07 1.02 0.78 

36 x 27 ,1.:11 2.87 2.85 :U7 

·18 x 39 8.98 5.9·1 6.06 ·1.52 

60 x 51 1.5.89 10.72 11..16 8.59 
-

72 x 6:J 26.26 Ii.% 19.05 l.Ui:J 

8·1 x 75 ·12.:J6 29.08 :Jl,.10 2·1.01 

!)6 x 87 68.36 16.27 ·l!J.27 :Ji.:J.1 

10·1 x 95 106.28 68.6!) 67.79 51.2:J 

As can lw cxpect1•d that. for higher mesh resolutions. the subdo111ai11 problrms 

lwcom<' mow costly to solve and lwnn' tlw diff<'n•nces of the com put at io11al cost 

bct.wc<•n lf:\lll\ID[) I and lil\lll\IDD II or lwtwee11 l\11:\IDD I a11d :\lll\IDD II lwrnnw 

mon· pro1101111cl'cl. From t lwse examples, it is cl1•ar that tlw import <Ille<' of t lw 



I :J(i 

successive improvements of initial solutions made in Pach of th<' subdornains. as 

proposed in .-\lgorithm '.\11:\IDD. can not lw over<'rnphasized. 

5.4 Conclusions 

• A new domain decomposition algorithm ('.\ll'.\IDD algorithm) has IH'<'n pro

pos<'d in this chapter along with some supporting theor<'ms. In contrast with 

the Schur domain decomposition approach, in which t lw numerical sol11t ion 

on the interfaces is first determi1wd. the :\I I:\l DD algorithm starts with an 

initii-tl guess 011 the interfacPs and then iteratt's back and forth bet ween the 

subdomains and the interfaces until a converg<'nce criterion is satisfi<'d on tlw 

interfaces. Beginning from the second outer iteration step. the iterative suh

domain and interface solvers become increasingly )pss expensive due to the 

successively impro\·ed initial solutions. The reduced computational cost in 

obtaining suhdornain solutions this way mitigates th<' disadvantage of the un

availability of fast subclomain solvers for any specific applications. The results 

obtained by applying this algorithm to our application improve upon those ob

tained by employing the traditional Schur domain decomposition algorithm. 

• With th<• modified interface matrix construct1·d by the MILU factorizations. 

the spectral radii p[l •. ,-(:\ •. ,+ /\,.,)-'CJ for several mesh resolutions tested ar<' 

of ord<'r 0( 10-:1). compared with 0( 10-1 ) for the 1111modificd version. '.\lore

ovcr. we also not<' that a significantly incrPasPd 1111mher of iterations will lw 

rcquir<'d for the 1m111odified interface matrix approach to rom·crgc for higlwr 

mesh rcsol11tio11s. However. the convcrg<'ncc of the ~IJ:\l[)J) algorithm is only 

weakly dep1·n<h·nt 011 tlu• nwsh :--ize Ii, implying a good self-adaptivity to I lw 

mesh rcfi nemcnt. 



• From Figures 0.·I. 0.0. 0.6 and 0. 7 as well as Table .).:L we notice the remark

able plfect of the iteratively improved initiai solutions 011 reducing the overall 

computational complexity. These mm1erical results suggest a lwneficial impact 

of the application of multigrid iterative sol\'('rs in thf' suhdomains. Like any 

otl1<·r it era ti ve schemes for t llf' solution of linear systems. multigrid met hod 

will perform c\'t'n better with an appropriate initial solution provickd at the 

finest lcn'l. In fact. the nested itcrat ion is often combined with the coars<' 

grid corr<'cl ion schenw ( colkctively call Pd full mult igrid schenw) to pro\'idc' a 

good initial solution for th<' next finer h'vel. :;tarting from tlw coarsest kw·! 

(sec. for instance, [20. 127. 220]}. From our experimental results. m' condud<' 

that. cxcf'pt for the first outer iteration, the nested iteration dot's not sPcm so 

important and coarse gri<l correction cycles may be applied directly for improv

ing the solution at the finest level through a sequence of transferred rPsidual 

information from the fincr-grid to the coarser-grid. The MIMDD algorithm 

with multigrid suhdomain solvers is cmrcntly under investigation. 



!!.O i--'--&-.-___.l _..L __ ,.. ___ L_.1-._ 1.~l_,. __ .._ _ __l__ .1._ . .1. ~ 

! ~ 
-:!.O <> 

-o.o -

-14.0 
0 

II<: 

~ 

<> DC 

<> w 

<> 
<> 

D<l 

N 

<> 
<> 

I:\ = Subdornain 1 
u = Subdomuin 2 
x = Subdomain a 
v = Subdomain '1 

-- T --i--T-T--f---,-- ,--.- ,- ·--r--·T~t -

3 6 g 12 u; 
Oulcr ilcralion nurnhcrH 

Figure :>..!: The history of impron•d initial solutions in the subclomains using 
the unmodified interface matrix domain decomposition algorithm for the non
dimensio:talized geopotential matrix system at the end of one hour of integration 
with a time step of half an hour. The mesh resolution is 60 x 51. 

:§ 
....... 
:§ 
b{) 

..9 

--2.0 - • 

-0.0 

-10.0 

I:\ = Subdomain 
c 1 = Subdonu1in 2 
x = Suhdomain a 
v = Subdomain -1 
t = Inlerfuccs 

-14.0 ---.---.---.---,---.---

() 2 " 0 
Oulcr ilcralion nurnbcrH 

Figur<' !).;): Th<' history of improVl'd initial solutions in tht' subdomains and on t lw 
int1•rfact's using tlw ~ll~IDD algorithm for tlw non-dinwnsionalizcd g1·opol<-ntial 
matrix system at I lw t'nd of one hour of inkgrat ion with a I inw step of half an hour. 
Th<' mesh resolution is 60 x !) I. 



:.! .. O t __ _...__ 1~ 1 __J_.i. __ ..... __ .1._ l --t_---.1. __ .1.--l._J_.L_. _ l __ J.____._ . ..__1_ 1 _I._ 

t~ 
-2 .. 0 

-o.o-

" = Subdon1ain 1 
[J = Subdon1ain 2 
x = Subdon1ain 3 
v = Subdon1ain 4 

-14 .. 0 ' ,.--,--y .---r--.,.--y--,---r-r---r--r-,- ... --r- ,-,.-,-1--.---,. 

0 "" 8 12 16 20 24 
Oulcr ilcraliun nun1bcn; 

l :J!) 

Figure :>.6: The history of impro\·ed init:al solutions in the subdomains using 
the unmodified interface matrix domain decomposition algorithm for the non
dimensionalized gcopotential matrix system at the end of one hour of integration 
with a time step of half an hour. The- mesh resolution is 10·1 x 95. 

en 

E 
0 c 

2
.o r--l---~--1= ~ubdo~-1- -

I
' r.: u = ~ubdomn~n ~ 

_ 2 •0 x = Suhdomu.1n ,J 
+ ~ v = Subdumain 4 

~ = Inlcrfuccs 

-11.0 
M 

0 

-M.O --· --,--. -- I -- • ---,-- ,--

() 2 4 o n 
Oulcr ilcralion nurnhcrs 

Figun· :>.7: The lii~;tory of improved initial solutions in tlw suhdomains and 011 I h<' 
inl<'rfac<•s using I lw ~11~.Jf)f) algorithm for tlw 11011-dinwnsionalizcd gmpolcntial 
ma I ri x s~·stcm at I lw end of one hour of int <'gr at ion with a Ii nw st<•p of half a 11 hon r. 
Tlw nwsh rcsolut ion is 10 I x %. 



CHAPTER 6 

PARALLEL BLOCK PRECONDITIONING TECHNIQUES AND 

APPLICATIONS 

6.1 Introduction and Motivation 

The nunH'rical solution of elliptic or time dependent PDE's with implicit tim<' 

<foicrC'tization basically involves two stages, namely, I) discretization and 2) rnmwr

ical solution of the resulting systems of algebraic equations. Usually, the execution 

time for the first stage is only a small fraction of that for the second stage [188]. 

These algebraic equations may be linear or nonlinear corresponding to the nature of 

the original PD E's and the accuracy rcquirenwnt. However. if the original problem 

indeed necessitates the solution of nonlinear systems of algebraic equations, many 

solution methods (sec [IOI], [I86] and references therein) may he interpreted as 

successive moclificat ions, through a sequence of linear approximations, of an initial 

solution of the nonlinear system. until a certain convergence criterion is satisfied. 

In other words. linear solvers arc <'sscntial kl'rnds to nonlinear solvers. :\s a. re

s11lt. to recl11cc the major computation al work involved in the s<·rnml st age d<'fin<'d 

ahem'. I lw availability of a cost <'ffect ivr (often prob km d1•1><'t1<h-11t) Ii 11ear soh·<·r is 

ab:-olutt-ly dl'sirabh· for both litll'ar and 11011li11ear sysl<·ms of algebraic equations. 

As a mall<'r of fact. clue to its important rol<' in scit>ntilic a11d engineering com

p11t at ions. t lw s<·arch for t Ill' <'fliri<'nt solution of a litll'ar syst 1•111 of alg<'hraic rq11a

t ions has always he1·11 a centrnl iss111• in 111111wrical analysis. ~l11ltigrid 11wthods 

1·10 



HI 

((21. 27. 127. J:32] and/or domain decomposition techniqu<'s COllstitutc modern ap

proaches for the solution of a linear system of algebraic equations. :\ pproachPs of 

this type rc·ly on and take advantage of an underlying continuous problem. 

As has been int roduccd ill Chapter :J, although domai1: dPcomposit ion ideas an• 

traceable to th<' work of Schwarz [:209] in 1869 alld that of engillecrs bcgillning from 

the l!JGO's [l!n. :W2, !):J]. all efficient way to handle the coupling between artificially 

divided substructures was first proposed by Dryja ill l!)K2 [69]. a work collsidercd to 

be seminal, in the context of the Prcconditiorwd Conjugate Gradient ( PCG) linear 

symmetric i t<~rat in· algorithms. I 11 essence. this is a di vidc-and-fccd back JHOCl'ss 

which continues until a prescribed con\·ergcnce criterion 011 tlw interfaces is satisfied 

(sec Chapter ·I for details). 

Since the feasibility of this process is based on the property that only matrix

vector products are required for the PCG algorithm for solving a symmetric linear 

system, the idea is readily extendible to the non-symmetric case. However, this ap

proach. which proc<'cds via tlw Schur complement matrix, usually requires repeated 

exact subdomain solutions which arc not cheaply implementable for non-separable 

elliptic operators or for other more complicated cases such a.-;, for instance, t lw 

shallow water <'quations. 

To impron• tlw <•flicicncy of tlw parallel solution of partial diffNcntial equations, 

for which 110 fast subdomain solvers are available. at least two other approach<'s hav<' 

bc<'n proposed. One is a domain d<·rnmposed prPconditioner approach (DD PA) (also 

called full matrix domain decomposition in [l:J2]) advocat!'d in [22]. the oth<'r IH'illl!; 

tlw n·n·ntly proposPcl modifi(·d interfan• matrix domain dl'ro111positio11 (:\11:\IDD) 

(s«'<' [li·I] and Chapt«'r !i). Both approaches abandon the idea of Schur domain cl<'

cornposit ion nwt hod I hat d!'rn11pkd subdornain problems aw ind<'p<'nd<'nt ly solved 

011/y ajlfl" th<' interfacial degn·<·s of fn·<'clom ar<' sp<'cifi<·<I. 



l·I~ 

In short, the DOPA consists essentially of the construction of a domain decom

po~wd prcconditioncr designed so that approximate solutions in th<' subdomains and 

on the interfaces can be simultaneously updated at the cost of only inexact subdo

main solves. On the other hand, the :\H~IDD algorithm successively improves the 

snbdomain and interface approximate solutions with iterative improvem<'nts of tlw 

initial guesses in both the sub<lomains and interfaces being made. Thus it mitigates 

the disadvantage clue to the absence of fast subdomain solvers. 

The ~lli\IDD algorithm has been presented and discussed in the last chapt<'f. 

In this chapter, we conccntratP our attention on tlw <kvclopnwnt and application 

of the DDPA to the finite clement shallow water flow simulation. Specifically, \\"<' 

consider three types of domain decomposed (DD) preconditioncrs and their appli

cations. Solutions to the preconditioning linear systems are provided by inexact 

subdomain solves. Hcsults concerning performance sensitivities of these prccondi

tioners to inexact subdomain solvers will also be reported. Parallel implementation 

issues and speed-up results will be presented in Chapter 7. 

Non-symmetric linear iterative solvers arc important kernels to the current do

main decomposition approach. Among many available algorithms, we are especially 

interested in three of them, namely, G:\IRES [206], CGS [216] and Bi-CGSTAB 

[227]. \Ve expect that these three algorithms will be more ext<'nsivcly studi<'d and 

compared by numerical analysts and be widely applied to many important proble1rn; 

in science and engineering. Alt hough a thorough analysis and comparison of t lws<' 

t hn·<· met hods ilr<' lwyond the srop<' oft his dissertation. W<' share lwre our 111111wrical 

<·xpericnn· related to th<'ir application with DD prccondit ion<'rs in th<' conl<•xt of 

11 u mt·rical sol 11 t ion of <'quat ions clrscri bi 11g tlw shallow wat <·r flow. 



6.2 Parallel Domain Decomposed Preconditioners 

6.2.1 An Equivalence Theorem and its Significance 

The domaiil decomposition methods based 011 building DD preconditioners (in

terpreted as block preconditioning techniques) into the iterative linear soh·crs were 

propos<'d with more complicated and rcal-lif<' problems in mind. They may lw 

viewed as b~~ing motivated by the following t hcorem cl uc to Eisenstat [l :31] for th<' 

conjugate gradient solution of a symmetric li1war system (-1.1). 

Theorem 6.1 Algorithm PCG applied to C.r, = g (s<'<' (·1.IG)) with initial g1t<'ss 

.r~0 l and preconditioncr G is eq11i,·alcnt to algorithm PCG applied to A.r = f (sel' 

(-LI)) with initial guess 

(0) _ ( t-1(/ \ (O)) ,\-1(/ t (0)) (O))'f :r - ''11 1-l1,,.r., , ... ,,,rnn n-lln:s.r., ,.r., 

and prcconditioner 

((i. l) 

in the sPnsc that, for all k ~ 0, 

(!:) ~ ( \-I ( j \ ( k)) \ - I ( j \ ( k) ) ( k) )T :r - I 11 1 - 1 1.,.r" ' ... ~I un ri - I n.,,.r_, ""r., 

and there is no ackantage to choosing an initial guess mon· general than .r(O) as 

above, in the sense that 11.r(k) - .rll..1 :::; llw(kl - .rll..i. wlll'rc w(kl is tlw l·-th iterall' 

gPJll'rat <'d by PC'G from t lw initial g11Pss 

The th<'orem imnwdiatcly s11ggPsts t lw alg<·braic form of a possibl<' pr<·condit iorll'r 

for th<· PCG itcrati\'I· solution of t.lw symmt'I ric system :\.r = f. lnsll'ad of k<'cping 



l H 

the :mbdomain stiffness matrices:\;;, for i = l ..... 11, wc use the approximations /J;; 

to r<'plan• A;; in (G.l) such that only inexact s11bdomai11 solves art' twcded for tlw 

solution of the preconditioning linear system (say Bp = q) at each iteration step. 

\\'P reach a preconditioncr of the following form 

( 6.2) 

L<'I us tak<' right preconditioning as an cxamph• to clarify somc basic conn•pts. 

As discussPd in Section ·l.:l.2 of Chapter ·I, instead of solving th<' original litwar 

systPm Ar = J. W<' solve ,.i.r = J. wht•rc :i = :1/J- 1 and .i· = IJ.r. Th" matrix

vcctor product ...iq requin•d in each iteration step is obtained by solving /Jp = q 

and then form Ap. The final solution is giwn by .r = 13- 1 i·. Obviously. an effici<:'nt 

prcconditioncr B must satisfy the following three requirements 

• A/J-1 is better conditioned; 

• The preconditioning matrix /3 is 1·asy to invert; 

• Tlw solution of the preconditioning linear system /Jp = q is paralldizable. 

The preconditioncr given by (6.2) can greatly reduce the condition number of 

the matrix A if mw selects /Ji;. i = 1.2, .... 11. to be good approximations (say. 

incomplete LU or a few multigrid cycles) of :1;; and constructs a good inl<·rfac<· 

preconditioncr G. The fact that /Jp = q can be solved in parallel will lwconw dear 

in St•ction 6.2.2. It may lw n·adily Vl'rifit·d that. tlw sol11tio11 to tlw pn•co11ditio11ing 

linear syskm /Jp = q may lw obt ai1wd at the cost of 211 inexact subdomai11 solvrs. 

wht~n· 11 is t.lw numbrr of subdomains. 



6.2.2 Three Types of Domain Decomposed Preconditioners 

For problems in which th<' fast subdomain soh-crs are not a\·ailable. DOPA may 

turn out to be more efficient. Instead of solving for the i11tcrfacc unknowns first. 

this approach simultaneously updates, at the cost of only inexact subdomain solves. 

the approximate solutions in both the subdomains and on tlw interfan•s. ThP idea 

here is to directly solve th<' linear system .rl.r = f. where thP matrix A ha:-; a block-

bordered structure as shown in (L1). with an appropriate prcconditioncr having tlw 

same block-bordcrPd structuw. Two types of such preconditi01wrs m•n· rt•\·iewcd in 

th<' literature (see [J:H]. for instance). 

To derive thr<'e typ<•s of DD pr<'conditioners which are of inl<'rPst lwre, we not in· 

that the block-bordered matrix 1\ in (-1.5) may be factorized as 

O l [ Add Ar. l 
c- 1 o c 

(6.:J) 

where C is the Schur complement matrix given in (4.19). 

Searching for possible preconditioncrs of A, we consider another matrix R fac-

torized in t•xactly the :-;amc way as that in (6.:J) 

0 l [ /~, ·~;· ] (6.1) 
c;-1 

whPn· Bdi1 and G arc approximations of the matrin·s 1\.u and C. r<'spedivdy. Tlw 

matrix IJ may abo lw written as 

((i.5) 

71 

IJ.., = (; + Ad/J,/,/ Ai.=(,'+ L ;\_,;/J;i 1 
:\ .. , (fi.6) 

i::::I 



It is easy to see that (6.5) is exactly thl• same as (6.2). although we derin· it 111 a 

diff<'rent way. 

The first type of DD preconditioners considered here are of the structurally 

symmetric form given by (6 .. ~), where Ads and :\..,i arc gin~n by (-1.7) and (·1.8). 

The matrix B,u has the same structure as that giv<'n by (.t.6) except that each B,;. 

i = l. :2 .... . 11. is now an approximation of A;;. For example, ll;; might be tlw 

relaxed incomplete LU factorization (HILli) [ll] of A;;. IJ,. is given by (6.6). wlwrc 

G is an appropriate prcconditioner to the Schur compl<'nwnt matrix c·. 
It may bC' n•rilicd that th<' solution of the preconditioning linear system /Jp = q 

is 1·q11ivalent to solving the following li1war systems 

n 

C:p, = 'Is - L A,J3;i 1
'fi ( 6.7) 

i=I 

B;;p; = q; - A.,p,. for i = l, 2 .... , 11 (6.8) 

where the meaning of p; and p, is clear. 

Instead of solving a linear system with a coefficient matrix B;; exactly. we may 

equivalently solve the original linear system with coefficient matrix :\;; approxi-

mately. Therefore, the preconditioning system /Jp = q may be solved in the follow-

ing fashion: 

I. Solv<· approximately in each subdomain 

(G.9) 

for i = l .... ,11 in parallel: 

2. Solve the intPrfacp preconditioning syst1·111 

n 

( • ' \ (I) '/I.• = </.• - L .· ... /I, ((i. I 0) 
•=I 



J.17 

:l. Soh-e approximately in each subdomain 

(G.ll) 

for i = l .... , n in parallel; 

·I. Form 

for i = I ..... 11. ((i.12) 

The second type of DD preconditioners, applicable only to a no::symmetric linear 

systt>m. is obtained by taking the rightmost factor in (G..I ). It assunws the followinp; 

block upper triangular form 

[ 
lh1 Ai. ] lJ = . 
O G 

;\ow the solution of the preconditioning system /Jp = q requires only one inexact 

subdomain solve in each subdomain, compared with two such solves in the previous 

case with B given by (6 .. 5). Obviously, the solution p of Bp = q can I><• obtai1wd by 

first solving the preconditioning system on the interfaces 

(6. l ·I) 

and then approximately soking in each subdomain 

(6.10) 

for i = l .... , 11 i 11 parall<'I. 

Tlw third typ!' of DD pr<'rnnditimwrs is obtai1wd by consid<'ring tlw ldtmost 

factor in (6.·l). This typ<' of pr<'conditiorwrs a:;sunws the following block low<'r 

triangular form 

lJ = [ /hi (o,. ] • 
I\,,/ 

((i. l(i) 



I-IS 

\Ve need to solve approximatt•ly 

:\;;p; = </i (Ci. Ii) 

for i = 1. ... , 11 in parallel and then the preconditioning linear system on tlw inter-

faces 
n 

Gv. = q, - L A,;p,. 
i=I 

(G.18) 

.\ couple of observations arise immediately for this type of preconditioners. First. 

similar to the s<•cond type of preconditioners. it appli<•s only to non-symmetric sys-

tems of algebraic equations due, typically, to the discretization of th<' rnnwction 

terms. Second. the computational work inmlved here for this third type of DD 

pr<'condit inners is only port of that required for the first type - com pan· (6.1 i) 

an<l (6.18) with (6.9) an<l (6.10). However, a greatly improved computational effi-

ciency results. This is to be expected tlworctically and is confirme<I hy numerical 

computations (sec Section 6.4). 

6.2.3 Analysis of Preconditioners 

A q1wstion arises as to what constitutes an appropriate algebraic form for the 

interface prcconditioncr G for each of the three types of DD prernnditio111~rs. Let us 

first considPr right. preconditioning. Hesults corresponding to left preconditioning 

will IH' gi\'ell toward the <'IHI of t lw section. For prcconditiorwrs of the first two 

types, (; may lw constructed as a prcconclitioncr to the Schur rnmpl<'nl<'nl matrix. 

This nmst met ion is. ho\\'t'\'<'r. not appropriate for prcrnnditiorwrs oft lw t hi rel typ<' 

and it. !<•ads to a ddl'rioration in pcrformanc<' (s<'<' Section (i.·I). In onh·r to s1·1· this. 

W<' providP formulas for 1\lr' below in which a matrix ,\/ is wwd to rcplan' (;in 

(G.6). (6.l:J) and (6.IG). Du<' to tlw importanrc of tlws<' formulas. w1· d1•riv1· them 

in t lw form of a lemma. 



l ·I !l 

The following lemma may lw n·adi ly \"<'ri lied following the procedure dt•mon-

st rated in [ 18. pp. i l i2]. 

Lemma 6.1 Let 

(6.Hl) 

If A, :l 11 and An are nonsingular, then 

(G.20) 

when· 

( Ci.21) 

(6.22) 

On applying the Lemma to (6.5), (6.J:J) and (6.16) to obtain the in\"crses and 

by post-multiplying (·l.5) by these inverses, we obtain 

when• P;/s, i,j::::: l,2, are' determined below. 

• For the first type of DD prcconditiorwrs 

P21 = [/,, - (A .•. , - . .\.,.1/J;/} Ai.).\/- 1] .. \,.1/J,/,/ 

Pn = (1\.,. - 1\.,.11J;;}A1,),\r1 

( 6.2·1) 

( (. '). ) l._:, 

(Ci.26) 

( f .• ,- ) 
l.-1 



• For the sPconcl type of DD preco11ditio11er:-

• For the third typt• of DD preconditioncrs 

LiO 

(6.28) 

(6.W) 

(6.:lO) 

( (i.:J I ) 

(6.:tn 

( 6.:J:J) 

( fi.:J I) 

( 6.:J.5) 

By examining (6.27), (6.:31) and (6.:35), one may sec that, for the first two types of 

prcco11ditioncrs, the optimal interface prcconditioncr i\1 (in the sc11sc that Pn = /., .. ) 
should be constrnctcd so that 

Tl 

.lT =A •• -.r\,,,1/J,/}A.i. =A.,, - L:A.i/J;j 1.r\;,,. 
i=I 

(6.:Hi) 

lknc<', tlw matrix .\1 essentially consists of the approximate Schur complenwnt 

matrix of the problem. For preconditioncrs of the third type, howev<'f, .\/ = A •• 

is an optimal choin•. tind<•r these choin•s, P21 = 0 and Pn = /,. for tlw first 

type of pr<'condit.ionrrs. l'n = /..., for th<' second typ<'. P.11 = 0 alJ(I Pn = /.,, for 

pwco11ditio11crs of the third t.yp<'. 

:\t every tinw st.<·p. a certain amount of work is necessary for the construction of 

tlw matrix M for <'ach of the first two typ<·s of DD pr<'rnnditioncrs. llm\'<'\·cr. this 

comp11tatio11al work is not rcquirccl for Ill<' third typ<' of DD pwconditiorwrs. :\ftcr 



l.11 

on<' has constructed the prcconditimwr 11. tlw major computational work required 

for solving the pr<'conditioni11g linear systems of tlw form /Jp = q at each itt•rat io11 

step. corresponding to each of the three types of DD preconditioncrs is summarized 

in Table 6.1. It is dear that. if the number of itcrat ions required fort he residual norm 

to decrease by a predetermined order of magnit ud<' is roughly the sanw for all thrc<' 

types of DD prcconditioners. the itPratin· method an:clerated by preconditio1wrs 

of the third type will consume the l<'ast amount of C'Pl; time. while application of 

preconditioners of the first type turns out to be the most computationally t'Xpensin·. 

Table G. l: A comparison of the amount of work required for solvi11g preconditioning 
linear system llp = q corresponding to the th re<· types of DD prccondit ioners 

First type 211 inexact subdomain solves 

Second type 11 inexact subdomain solves 

Third type n inexact subdomain solves 

Although the matrix M is explicitly available for prcconditioners of the third 

type, for the first two types of DD prcconditioncrs, 1111, inexact subdomain solves 

must be carried out for the construction of M so that P22 = !,.. II ere 11 is the 

number of subdornains and 11, is t.lw numlwr of d<•gr<'es of frerdom on the intcrfacps. 

The exact construction of the matrix i\/ according to (G.:JG) is compntationally too 

<'Xpcnsin•. To reduce tlw numlwr of subdomain solves a11d to impro\'<' computational 

efficiency, we must be satisfi<'d with an approximate construct ion of.\/. Fort 11nat<'ly, 

similar to what we ha\·e ohs<>rwd in Chapter .1, t lw act ion or I he matrix opPrator 

M is. in fact. predominantly local and the matrix .\/. alt hough dt·nsc, allows itsdf 

to hr approximated by a very low-bandwidth spars1· matrix(;. 



The paflicular structure of tlw matrix .\/ ca11 be Pxamined in a thn•e dinH·n-

sional space by plotting a surface formed of the entries of,\/ \"iewC'd as a functio11 of 

its two indices. If we apj>rnximatc each subdomain stiffnPss matrix .tl;; by its ILl' 

factorization 13;; = L;F;. the surface.\/ constructed based on (6.:J6) can not be dis-

tinguished from that in Figure ·1.7 or ·l.l l for the same mesh wsolution. This clearly 

indicates a strong coupling bet ween ncighbori11g nodes and very weak dependence 

between nodes which an· a mcsh-siz<' distance apart on tlw interfaces. This suggests 

that the idea of interface probing techniques [·15]. which was developed mainly for 

elliptic PDE's, may be extended to the current problem. SPe [·1·1] a11d Section -1.5.·I 

in Chapter ·l for a disc11ssio11 on interfan• probing ideas. 

Similar to the idea int roduccd in Chapter ·I. W<' const met an approximat io11 (; 

to the matrix ,\/ by usi11g a modified version of the rowsum preserving interface 

probing preconditioncr (sec Section -1..1..t, Chapter ·I). Following [:35], we denote 

this particular construction by MIP(O). For convenience, we set M = G = A •• for 

tlw third type of prcconditioners. Thus, for these three types of DD prcconditio1wrs, 

the matrix G preserves the block diagonal structure of A •• (sec ( ·1.1:3) and ( ·l.:16) ). 

The linear system (6.10), (6.H) or (6.18) can be split up into 11 - I smaller systems 

and tlH' solution may he obtained in parallel. 

With this particular intPrfac-c probing construction ;\IIP(O) of tlw matrix M. W<' 

can readily obsen·c that the numlwr of subdomain solves involn·d in using each 

of thPse prcrnnditiorwrs, for tlH' solution of a linear system at each tim<• step. is 

of il<'rations r<'quircd to achi<·vt• 1·011vergcnn· for an itt·rativr met hod (wh<'r<' only 

one matrix-vrrtor multiplication is m·<·clcd in each iteration, likt· G~IHES) using the 

first. second and third typt•s of DD 1m·co11ditiorwrs, rcsp<'div1-l_y. Ph-as<' noft' that. 



m tlw abm·e counts of s11hdo111ain solutions. the work required for n·cm·t•ring tlw 

final solution .r = n- 1 .r is also included. 

As to inexact subdomain soh·ers, we employ the so-called relaxed incomplete LC 

factorization (HILU) [S, 11] to approximate tlw suhdomain stiffiwss matrices :lii· 

i = I. 2 .... . 11. namely, lh = LJi; = ;\ii+ ll;,. where ll;; is an error matrix. In 

short. gi\'cn a matrix :lnxn, thC' HILU factorization of A can be obtained in the 

following 11 - I steps of transformation. 

where. for k = I. 2 ..... 11 - I. the following calc11latio11s arc carried out 

(k) (k) 
/;i. =ail.: /al.:k 

l 
a~~l -1,ka~~>, if (k + l S j Sn) n ((i,j) E J) n i # j; 

<!~~+I)= Q, if (k + l S j S 11) n ((i,j) f/_ ./); 

(kl I (kl "'" ( I (kl) 'f . . a,; - ,ka1.:, + w L..(p=k+I and (•.p)~J) a,P - ,1;akp • 1 J = 1 

here J is given in ( .1,:u) an<l 0 S w S I. 

To conclude this section, we privide some results corresponding to three types 

of domain decomposed prccon<lilioners applied from the left. We may \'crify that if 

(6.:n) 

t.hen entries lJii 's, i,j = I,:!, of the matrix n- 1
,\ arc gi\'<'n hy 

• For th<' first t.yp<' of DD prernnditionrrs 

(6.:JS) 

(/ii = IJ,J,/ A13[f. •.• + .ll- 1(A .• r1ll;/) Ar1 .• - ;\.,)] 

<221 ,\1-1 ,'1_,,t( lr1.1 - IJ,J,1
1 A11) (fi.10) 

(/i-2 .ll-1
(,-\.,, -t\.,.1/Ji,/Ai.) ( 6. 11 ) 



• For the second type of DD prcconditioners 

Q11 /J,j,/(:l.1.1 - A1.u-• A,.t) 

Q12 Hi) AJ.(l., - .\1- 1 A •.• ) 

Qi1 = .u- 1 :\_,J 

Qn = M- 1 A., 

• For the third type of DD preconditionNs 

Q11 = B,/} Add 

Q12 13,J,/Ad, 

Q21 Jr' 1\,.1(h1 - BJ,/ Au) 

Q22 M-1(A •• - A.<1B;f} Au.) 

l :JI 

(6.·l'l) 

(6.-l:J) 

( 6..11) 

( 6.·10) 

( 6.·Hi) 

( 6.17) 

(6..18) 

(Ci..19) 

\Ve notice that, for left preconditioning, the approximate construction of an in

terface preconditioner is required for the first and third types of DD precondit ioners. 

hut not for the second type'. 

6.3 Iterative Methods For the Solution of Non-Symmetric Linear 

Systems of Algebraic Equations 

\Vhilc thr PCG algorithm acccl<'rated by suitable preconditionrrs srems to he t lw 

most comp<'! it in• for t.lw sol11tio11 of a posit in· d<'finitc, symmetric syst <'Ill of li1w;ir 

algd>raic <'quat ions, competitive 11011-symmclric li11ear solwrs abound. According to 

[:WO], CG:\ (th<' rn11jugate gradirnt algorithm appli<'d to the normal <'quation of tll<' 

origi11al non·s_y11111wtric syst<'m). CGS (Conjugal<• Cradicnt Squared) and (;~!HES 

(G<'IH'raliz1·d ~linimal Hcsidual) S<'<'lll to hr tlw most often lls('d algorithms. :\ fast 



I ;J.i 

squared Lanczos method for non-symmetric linPar systems was recently propos<'d 

in [.l!J]. This new algorithm was claimed to be \'cry fast and robust compared to 

G:\IRES. :\lore recently, Bi-CGST:\B, a fast and smoothly con\'ergent \'ariant of the 

bi-conjugate gradient method, was dP\·eloped [2:.H]. 

There is only limited mmwrical experience at prc•scnt with most of these non

symmetric iterati\'e sol\'crs, espcciaJly when applied to real life applications. In 

their efforts to gc1wrate part of production code for the modPlling of w<'ak plasma 

turbulence. Radicati. Hobert and Succi [200] studied CGf\, BCG (Biconjugat<• Gra

dient). CGS and G :\I HES algorithms as appli<'d to non-symmetric time-dependent 

linear systt>ms arising from discretization of their problem. According to their re

port, the CGS and G:\IHES algorithms yield tlw best performances and are highly 

competitive to each other. 

Both the theory and application of iterative solutions of symmetric positive def

inite linear systems may be considered to be in a quite satisfactory state. Howc\·er, 

both the state of theory and numerical experience with itcrati\'c solvers for non

symrnctric linear systems arc far from being satisfactory. Quite a number of meth

ods have been proposed in the literatun· (sec [205] for a good survey) for solving 

non-symmetric linear systems. Apparently, a clear winner n·mains to be identified. 

In our work, we choose, among many others. three relatively new and compditi\'<' 

iterative algorithms, namely, C:~IHES [206], CGS [216] and Bi-CC:STAB [:t27] for 

solving the geopot.cntial and wlocit.y non-symmetric linear algebraic sp;lt'ms. arising 

from t lw finit<' denwnt discrd ization of t lw shallow wall•r <'quat ions. with t Im·<· 

types of DD pr<'nmditio1wrs disrnss<•d abov<'. \\'<' choose to usP prPconditioni11g 

from tlw right. only. since it d(ws not yield n·sults \'<'ry diff1~n·nt from I hos<' obi ai1wd 

hy prerondi t ion i ng from I lw l<'fl for our block prcrond it ion i ng com p11 I at ions and 



moreover a linear syst<•m preconditioned from the right prcscr\'es the r<'siduals of 

tlw original linear system. 

Various extensions have been made to generalize it<·ratin· algorithms for sym-

metric linear systems to tlw non-symmetric casl'. G~IRES algorithm is such an 

extension of tlw conjugate residual met hod for symmetric indefinite linear systems 

[·17]. ~lathcmatically, G~IRES method is equivalent to OHTllODIH [126] and the 

generalized conjugate residual method [80] and is closely related to Amoldi's method 

[:W:J]. G:\lRES is a rather robust algorithm and never breaks down the way Arnoldi\ 

algorithm docs [28]. 

On the other hand. the CGS and Bi-CG STAB algorithms arc extensions of t lw 

BCG (bi-conjugate gradient) method [88] for non-syrnnwtric linear systems, which is 

an extension of the CG (conjugate gradi~nt) method for solving symmetric, positive 

definite linear systems. Although Bi-CGSTAB is a relatively new method, the CGS 

algorithm has been studied for quite a while. The broad consensus reached is that the 

CGS method is very competitive with G~Il{ES (see, among others. [:WO, l!)!), 29]). 

In some cases, the CGS algorithm outperforms G~IRES [17]. The comparison of 

performance of the G:\IHES, CGS and Bi-CGSTAB algorithms is currently of great 

interest in the area of numerical linear algebra. 

The G}.IHES algorithm starts with an initial guess ;r0 for the linear system 

:1.r = band computes the initial residual r 0 = b - A.r0 • At the k-th itPration, a 

rnrrcdion \"ector :;k is cl10s('II such that 

( 6.:JO) 

wlwre /\"k(r0 ) is tlw l\rylov subspace 

(ti.:) I ) 



The approximate solutio11 at k-th iteratio11 is thl'n .l'k = .r0 + ::k. It is ch·ar from 

(G.!lO) that the residual norm will lll'\'er increase from one iteration to lht' ll<'Xl, which 

explains the smooth convergence behavior of the G:\lHES method (st~e St•ct ion 6.1 ). 

In contrast, Arnoldi's algorithm gc·ncratcs residual norms which exhibit a saw-tooth 

pattern. 

The implcnwntation of the G:\IRES algorithm inrnlws solution of a least squaws 

problem (G.50) on th<' l\rylo\' subspace (G.!ll) at Pach iteration. This is done by 

generating a particular orthonormal basis { 1' 1, t'2, •••• I'd of /\k(r0 ) and an up1wr 

IlesscnlH'rg matrix lh using a modified Gram-Schmidt process in the :\rnoldi's 

method [206]. This is the approach we take in our 111mwrical experiment. although 

another implement at ion approach is also possible• using t 111• Hons<'holcl<'r t ransfor-

mation [2:J2]. To reduce computer storage requirements, we may use restarted G:\1-

RES( rn ), which is, nevertheless, usually accompanied by more iterations before con

\·crgcnce. In our experiment, however, GM RES is used without restarting. 

The CGS algorithm was derived from the BCG algorithm by squaring the rcsid-

ual and direction matrix polynomials. The BCG algorithm generates two scqucnc<'s 

of residuals r; and r; by relations similar to the CG algorithm in which (r;Jj} = 0, 

for ii= j. It wa.-; shown in [216] that r; = Pi(A)r0 and 1\ = Pi(t\T)r0 when· Pi(;\) is 

a polynomial of degree i in the coefficient matrix :\. The motivation for formulating 

CGS is thP obserrntion that p, = (1\, r;) in BCG can IH' t>Xprcss<'d as 

and a similar r<'lation pn·vails for tlw dir<'ction V<'ctors /Ii and 1)1 • A dl"laikcl algo-

rit.hm rrady for compukr imph•mentation was gi\'!·n in [171]. 

Similar to B('(;, for an 11 x 11 syst1·m matrix. C:C:S con\'<'rgrs to tl11· t>xact so-

lution in 111 (111 ".S 11 ) it<'rations in tht' ahst•nn· of round-off l'rrors if it dot's not 



l.'i~ 

break down. However. the CGS algorithm is gcnnally more eflicicnt than the BCC: 

method since the transpose of the coefficient matrix explicitly ap1waring in BCG is 

no longer required in CGS. ~loreover. CGS is known to amplify the <'lfocts of the 

Lanczos method and as a result it converges faster (roughly twice as fast thcordi

cally, although often it fails to do so in practical applications). 

The Bi-CGSTAB algorithm as proposed by van der Vorst [22i] is <'Xpcctcd to 

render the converg1•nn• behavior smoother by rcmo\·ing local peaks often app<'aring 

in the convergence curve for CGS. lli-CGSTAU replaces the r<'lations r, = Pi(:\)r0 

and /lit-1 = 'fi(A)r0 in BCC: with the recurrenrc r<'latio11s r; = Q;(A)P;(:\)r0 for 

the residual vector and Pi+t = Q;(A)T;(A)r0 for the direction vector. in which 

Q;(.r) = 01,= 1(1 -"'-'k.r). The constants "''k are' computed so that tlw residual r; is 

minimized in 2-norm. The new algorithm was found to converge faster an<l yield a 

smoother residual history than CGS for certain classes of problems. 

It should be noted that other versions of Bi-CGSTAB have appeared m the 

literature since the publication of van der Vorst's paper - see [21:3] and refcn•nn·s 

therein. However, we do not test other versions of the lli-CGSTAll algorithm in this 

dissertation. To avoid confusion, we present below the unprcconditioncd version of 

the Bi-CGSTAB algorithm, which is based on [227] cast in an algebraic form ready 

for computer implementation 

r = b. .r = .r0 , r = 1· - 1\;r 

Choose 1~ such that <'ii= (r,r) :/= 0, p = r 

p I = ;\p (fi.:->:J) 

Ml= (F, pl), o = M/1~0. .~ = r - opl 

l=A~. 110=(1,I), 111=(1 .. ~) • ..,,·=111/110 



.r = .r + op+ u.:s 

If the conw•rgcnce criterion is met then stop. otherwise cont inuc 

r=.~- ... .:t. i'll=(1\r), ;:1=c51/("•-"-50), p=r+/::1(11-'-•:pl) 

Goto (6.5:J) 

159 

where the right hand side b and the initial guess J'o an' input vectors and ( . ) 

denotes the usual Euclidean iuncr product. This algorithm will be accelerat<'d with 

right preconditioning in our m1mcriral experiments. 

6.4 Numerical Results and Discussions 

In this section, we provide som<' carefully selected 1111111<·rical examples along 

with discussions on the use of three types of DD prcconditioners introduced in Sec

tion 6.2.2 and analyzed in Section 6.2.:J. All mmwrical experiments arc carried out 

on the CHAY Y-MP/432 vector parallel computer for the shallow water equations 

discussed in Section ·l.6 of Chapter -l. A :J-D view of the initial gcopotential is dis

played in Figure ·1.6. We scale our problem again by choosing yo = l02 m 2 /s2
• The 

corresponding dimensionless constants may be found in Section ·l.i of Chapter ,l. 

In the first set of 11\llIH'rical experiments, we test the n•lativc cffici('nrics of the 

three aforementioned types of DD prcconditioncrs. \\'e use HILU (r<'laxed incom

plete LU) factorization along with forward and hack substitutions as inexact solvers 

in the subdomains. 

The rnodifi<'d rowsum pmwrving interface probing prcconditioner :\llP(O) is used 

for the first two typ<·s of DD prcconditiorwrs 011 t lw intcrfarrs. We als" JH<'~<·nt 

computational results rnrr<·sponding to prcrnnditioncrs of the third typ<' with (; 

nmstrurted, hm\'l'\'<•r. by ~llP(O) inslea,J of bring equal to Ill<' prcfem·d '1_,.. Till' 

pr<'M'lll at.ion of tllt'sl' 111mierical results is followed by a disn1ssio11. 



160 

Tlw HILU [ 11] factorization consists of a rnmbinat ion or av<'rag<' of t lw IL U [ 151] 

and the :\II LU [ l 09], in which the discarded !i!l-it:s in the IL C fartorizat ion t inws a 

parameter u:. 0 S:..,.;:; l. arc added back to the diagonal entries (sec Section (U.:J). 

Obviously, u.: = 0 and l correspond to. respectin~ly. ILU and ;\IILl:. 

We compute and compare diffncnt values of w and find that the optimal v .. : in 

terms of the number of iterations is in the interval (0, 0.5). depending on which type 

of DD preconditioncrs and which iterative method (G:\IHES. CC:S, or Bi-CGST:\B) 

is used. This result is in contrast to 0.95 found in a recent work [2:H] for some 

other computations in the original whole domain. On the other hand, in terms of 

CPU time, we find that the HILU with w = 0 yields the overall best perfomrnnn·. 

Henn·. unless otherwise st atcd, tlw results presented below correspond to applying 

the RILU with w = 0, i.e., the ILU factorization to our problem. 

6.4.1 The Convergence Behavior 

The convergence behavior is visualized only for a mesh resolution of 80 x 75. 

which corresponds to 6000 nodes and 11692 triangular clements in the whole domain. 

Tlw stopping criterion is that the final Euclidean residual norm of (-1..t ), namely. 

II Ari kl - /11 2 be smaller than 0.1 x I 0-10 . ,\ t imc-step size !:if = 1800 s is us<'d 

throughout unl"ss otherwise stated. 

First. in Figure 6.1, we display the rnnv"rgencc history for <'ach of tlH' iterative 

methods. namely, G:\lliES, CC:S and Bi-CGSTAfl without preconditioning. Fig

ures 6.2 to 6.fi pn·s1·11t computational n·sults of C::\IHES, CC:S and Bi-CC:STAB 

with pn·co1Hlitio11ers of all three types. Hesults in Figure• (i • .i arl' special. as we pur

pos1.f111ly construrt the matrix G by the modified rowsum preserving idea :\llP(O) in 

order to show some deterioration, as mentioned lwforc. in both co111p11tatio11al tinw 

and 11111nh1•r of iterations. Th11s Wl' cmphasiz<• t lw importann· of I lw analysis carried 



161 

out in Section 6.2.:l. where it was pointed out that G = :1,, should be cl1os(•t1. The 

rnmputational work measured in term~ of CPli sernnds is rq>0rted for each pre-

conditimwd case in Table 6.2. Also included in the table are computational re~mlts 

corresponding to a coanwr grid of ·IO x :J;J and a finer grid 120 x 11.'). respectively. 

on the whole domain. 

Table 6.2: :\ comparison of CPli time (number of iterations) required for solving 
the gcopotcntial linear system at the end of one hour with a half an hour time step 
using G;\IHES. CGS and Bi-CGSTAB algorithms accelerated by three types of DD 
precondi t ioncrs 

Prccondi t ion er First Second Third Third type 

types type type type with :\llP(O) 

·IO x :J5 G:\IHES 0.178 (12) 0.102 (12) 0.088 ( 11) 0.101 (12) 

mesh CGS 0.199 (7) 0.099 (6) 0.106 (7) 0.111 (7) 

resolution Bi-CG STAB 0.219 (7) 0.099 (6) 0.092 (6) 0.111(7) 

80 x 75 GM RES 0.89 ( l<l) 0.5:J ( J.5) 0.47 (14) 0.52 ( J.5) 

mesh CGS 1.08 (9) 0.5·1 (8) 0.50 (8) O.f>9 (9) 

resolution Ri-CGSTAB 0.97 (8) 0.5·1 (8) 0.50 (8) 0.58 (9) 

120 x 115 GM HES 2.:J6 (18) 1..19(1!)) 1..11 (19) l.18 (l!J) 

mesh CGS :J.2·1 ( 12) 1.6·1 ( 11) 1.56 ( 11) 1.62 ( 11) 

rewlution Bi-CG STAB 2.H ( 10) I.G:J ( 11) l.55 ( 11) l.60 ( 11) 

From t lwse wsult s. we conrludc that the t.hre1· 11011-sy11111wt rir itcrat ive nwt h-

ods G;\llU:S, CC:S and Bi-CGSTAB an· V<'ry rnmpditive with each other. C::\1-

HES rcquir<'s the larg1·st. number of iterations to attain ronvl'rg<'nre. 1Iowe\·1·r. I his 

do1·s not mean that G:\IHES is the most exp1·11sive algorithm lo us<' sinn· only 0111· 

matrix-\·ector 11111ltiplicatio11 is required for each (;:\!HES iteration. while two s11d1 



0 
N-t-~...___._~_,_~..___._~_.___..____._~_._~...___._~_.___....___._~+ 

Ul 

=~ r.. I 
0 = -as 
::s 
:E 
Ul 
Q,)O 
r..~ 

=' = CL) 

'C .... 
Cl 
~o 
tiec:i 
o

...:i I 

0 ... 

a GMRES 

o CGS 

~ Bi-CGSTAB 

j-t-~.--......... ~-.-~.--~~-.-~..---.-~-.-~.--......... ~-.-~----.-~+ 
0 9 18 ~ 36 

No. of iterations 

16~ 

Figure 6.1: Tlw evolution of log 10 Euclidean residual norms as a function of t lw 
numlH'r of iterations for the iterative solution of the 11011-dinwnsionalized g<'opol<'n
tial lin<'ar system at tlw end of one hour of model int<'gration using G~IHES. CGS 
and Bi-CG STA 13 non-symmctrir it<'rative lirwar solv<'rs without pr<'rnnditionin~. 



0 

~ 

GM HES 

CGS 

Bi-CG~IAB 

I - -,-~-t-r--~r---.-r~..---r--1-r-,-- -
0 :1 0 IJ 12 15 

No. of ilcraliuns 

Figure 6.2: The crnlution of log 10 Euclidean rcsid11al norms as a function of the 
number of iterations for the iterative solution of the 11on-d!mcnsionalizcd gcopo
tc11tial linear system at the end of one hour using G:\lHES, CGS and Bi-CGSTAB 
non-symmetric iterative linear solvers with a precon<litioner of the first type. 

~ - _, __ ._1____.____ ,1. __ 1_.__ ·-l~t - ·~1-_ ... __ .. - -

" GMHES 

" CGS -----------
Bi-CG~i'AB 

c:> 
..;. 
7 -~-,-,-,-,-,-,-,-1-·-•-1-r-•-

() :l 0 D I:.! Ir, 

No. of ilcralionH 

Figur<' 6.:J: The <'Volution of logw E11clidcan residual norms as a fund ion of I h<' 
numl><'r of it <'rat ions for the it crat i vc solution of t lw non-d i11wnsionalizcd geopoft·n
t ial linear syst('IJl at tlw end of Oil<' hour of mod<'] inl<'gration using C:\IHES. CC:S 
and Bi-CGSTA B non-symnwt rir it<'ralivc linear solvers with a pn•rnndit ior1er of I lw 
second typ<'. 



Hi I 

~ _ -.L--'---l--'--- ._ _L __ • - -1--l .---1.--.L-l ___ ,1..._ .,._ 

GMH.ES 

CGS 
---~---

Ili-CGSTAB 

~' 
c 

=F - ~- ...--- r---,.--r- l -,. --y-- l -----r--~--.,-- f"-

0 a 0 0 12 If> 

Nu. of ilcrnlions 

Figure 6..1: The c\'olution of log 10 Euclidean residual norms as a function of the 
number of iterations for the itcrati\'e solution of the non-climensionalizcd gcopotcn
tial lincar system at the end of one hour of model integration using G:\IHES. CGS 
and Bi-CGSTAB non-symmetric iterative linear solvers with a prcconclitioner of the 
third type. 

c 
..;. 

GM RES 

o CGS 
-·---·- ----

" Di-CG~l'AD 

I - '-~ .,- -- l - r - ' - I - ' - -,. --I - ' - ' - l - ' - •-~ 
0 a II 0 12 tr> 

Nn. of ilcralions 

Fig1tr<' G . .'i: The <·volution of log 10 Euclidean n•sidual norms as a fund ion of I he 
1111mlwr of i le rat ions for I lw iterative sol 11 t ion of the non-di nwnsionalized gcopot en
t ia I Ii nca r sysl<·m at t II<' <'nd of one hour of model int Pgra t ion using G ~ IH ES. C( ;s 
and Bi-CCST,\B non-symmdric it<'rativc linear solv<'rs with a preco11ditio1l<'r of the 
third typ" and with interface probing rnnstrnction of(;. 



l(j.j 

opera! ions arc required for each CGS or Bi-CGST:\ B iteration. llowC'ver. G ~IH ES 

imposes a higher demand for storag<', which may be alll'viated by restarting the 

procedure. often at the cost of requiring more iterations for conn·rg<'nce. 

As has been observed for many othN applications. the non-smooth convergence 

behavior of the CGS algorithm is also dearly seen in tlw current set of experiments. 

Designed to cure this disadvantage. Bi-CC:STAB converges m11d1 more smoothly. 

llowcvcr, the G~IRES method generates the smoothest residual conn·rgenC<' history. 

In fact. due to its minimization property at each iteration step. the n•sidual norms 

produced by C:~IHES arc always decreasing, or at least non-increasing. 

\Ve ohsern• I hat no sizable difference exists in terms of tlw numlwr of ikrat ions 

required to attain c·onvergence between these three types of preconditioncrs. Precon

ditioncrs of the first type, first proposed for a symmetric linear system arising from 

the discretization of some self-adjoint elliptic PDE's, can not reduce the number 

of iterations to such extent as to offset the disadvantage of two inexact suhdomain 

solves in each subdomain for solving the preconditioning linear system /Jp = q. As 

a result, they turn out to be the most expensive for the current application. Precon

ditioners of the second and third types behave much better in terms of CPU time 

due to only one inexact subdomain solves being required in each subdomain for tlw 

solution of /3p::::: </· ~loreover, an approximate construction of G is not required 011 

the interfaces for the third t.Ylh' of DD preconditioners. 

6.4.2 Sensitivities of the Three Types of DD Preconditioners to Inexact 

Subdomain Solvers 

In the above set of llltmcriral cx1wrinwnts. we obtain tlw result that tlw 1111111lwr 

of iterations required for com·crgenn· is almost t lw same for t lw t hn·<· typ<'s of 

pwro11diti01wrs with ILli s11hdo111ai11 solvl'rs and thus pn·rnnditimwrs of th<' third 



I ()Ci 

type arc the compulationally least expensive. :\ question whcih naturally arises is 

whether similar conclusions will hold for the sanH' typps of preco11ditio11crs but with 

more or less accurate snbdomain soh-ers compared to ILU. This essentially requires 

us to test sensitivities of these precondi tioncrs to inexact su bdomai 11 sol vcrs. 

To tPst the sensitivities of the preco11ditio11ers given in (6.0), (Ci.t:J) and (G. !Ci) 

lo inexact subdomain solvers. we use the idea of 111-step prccondit io11i11g [I]. For 

this prPconditioning approach. W<' consider <t splitting of the matrix :\;; = P, - Q; 

and define G; = P;-
1Q;. As an approximation of the subdomain matrix :1;;. we take 

/3;; = P;(I:;;~-01 G7)- 1
• for i = l.2 .... ,11. The solution of /l;;p; = l/i may lw easily 

verified to be equivalent to 111 iterations of the following litwar stationary iterative 

scheme P;p;·+t = Q;p7 +<Ji with initial solution PY = 0. 

The Pi may be taken to be any c~ily invertible simple matrix as long as the spec

tral radius p(Gi) < 1. For example, Pi may be chosen to be the ILU factorization, 

P; = L;U;, of A;;, or simply the diagonal part P; = Di of the matrix tlii· Onci~ Pi has 

bePn chosen, /];, often becomes a better inexact subdomai11 solver as m increases, in 

the sense that the number of iterations to reach a prescribed convergence criterion 

for solution of the original linear system 11.r = f decreases. By gradually incrca..-.ing 

the number m, we were able to observe the relative performance behavior of these 

DD preconditioncrs corresponding to increasingly accurate suhdomain solvers. 

For the current <·xperimcnt, we decided to take P, as the lower triangular part 

(including the diagonal part) of the matrix Aii· This rorr<'sponds to 111 Gauss-Seidel 

lin<'ar stationary iterations in each suhdomain (see Section ·1.0.2 of Chapt<'r -1). 

llow<'n'r, this d1oin· of P; does not guarant<'c prop<'r subdomain solv<•rs for all mesh 

wsolutions in our cas<'. For <'Xa111pl<'. we found that 1111derwlaxed SOH iterations 

with ..,_. = 0.0 is appropriate for an 80 x 70 m!'sh resolution. In Tabh• fi.:J. (i.-1 and 

(i .. 'i, W<' present n·s1ilts, ohtairwd for th<' ·10 x :Vi nwsh n·solution. of (;~11n:s. C<:S 



167 

and Bi-CG STAB itcrat ions corresponding to thn·<' typPs of DD prernndit ioners, 

resp<'ct i n•ly. 

Table 6.:l: ~umbers of G'.\IHES iterations as a function of 111 using three types of 
DD prcconditioncrs 

111=1 111 = 2 111 = :J 111 = ., 111 = 5 m = 6 111 = 10 111 = :w 
26 15 12 11 IO 10 9 8 

·)-_, 15 12 11 IO 10 9 s 

28 15 12 11 10 10 10 10 

Table 6.1: !\umbers of CGS Iterations as a fun ct ion of 111 11si11g tlm·c typ<'s of DD 
prcconditioncrs 

111=1 111 =2 m = :J m =·I m =5 111 = 6 m =i 

15 8 7 6 6 5 5 

1-1 8 7 6 6 5 5 

16 9 6 7 6 7 6 

Table fi.:}: Numbers of Bi-CC:STAB ltPratio11s as a fu11ctio11of111 11si11g thr<'c typ<'s 
of DD preco11ditioncrs 

111 = I T1I = 2 Tl/ = :1 m =·I 111 = 5 111 = 6 

11 s I 6 {) :) 

H 8 7 6 (j :) 

"' 8 6 6 (j 6 



168 

From thesP three tables, we se<· that preconditioners of the third type can ac-

celeratc the convergence of three iterative methods at about t lw same rate as the 

other two types of preconditioners, except for cases when subdomain solvers may 

lw considered to be exact or nearly exact. Similar observations are obtained for 

the case of mesh resolutions higher than ·10 x :35. Since, in practice. the inexact 

subdomain solvers arc far from being exact, WP consider preconditioncrs of the third 

type to be the best. \\'hen the subdomain solvers arc based 011 the complete Ll! 

factorizations. the sol\'ers may be considered to be exact. Table 6.6 summarizes 

results corresponding to using exact :mbdomain soh'ers. 

Table 6.6: i\umlwrs of iterations when using exact suhdomain solvers 

Preconditioner types First type Second type Third type 

·10 x :J!) G~IRES 8 8 10 

mesh CGS ,5 .5 6 

resolution Bi-CG STAB 5 .) 6 
~ 

80 x 75 GM RES 10 10 H 

mesh CGS 6 6 8 

resolution Bi-CGSTAU .) 6 8 

Clearly, for <·xact or almost exact subdomain solvers. f<'\\"er iterations arc rrquirccl 

if tlw first two types of preconditio1wrs are used. llm\'<'Ver. tlw gain in the n11111lwr 

of il<'rations is far from offsetting tlw additional computational cost rcquir<•d for 

C"onst meting exact or almost exact s11hdo111ai11 solvers. 



16!) 

6.4.3 Extensions to the Cases of More Than Four Subdomains 

For implementation on a large 1111mlH'r of processors or. ambitiously, for massi\'('ly 

parallel processing implementation, it is very desirable for domain decomposition 

algorithms to possess convergcnc<' rates that do not deteriorate as the number of 

subdomains increases. U nfort 1111ately. it is often the Ca!-i<\ rat her than the excPpt ion. 

that the numlH'r of iterations will increase as the number of suhdomains incn·as1·s. 

ev1•n though the discrete problem size is kept fixed and th<' stopping criterion rt•mains 

the same. for both overlapping and non-overlapping domain decomposition cast's (sec 

numerical results in, among otlll'rs. [J.I. 129. J:Jl, 157. 158, 15!), !!) lj). 

111 few cases, the optimal prccondit ioners, in the sense that the com·crgencc 

rate is independent of both the mesh size h and th<' typical subdomain size II, arc 

known (sec, for example, [21·1]). In other cases, nearly optimal preconditioners have 

been constructed with the property that the condition number of the preconditioned 

matrix is proportional to (l + log(l//h))m, m = 2 or 3 (sec [73, 7·1] and references 

cited therein). One of the most important reasons for the sucn•ss of most of these 

prccon<litioncrs is the introduction, aimed at enhancing communications amongst 

subdomains, of a much smaller global problem corresponding lo the discretization 

on a coarse grid. However, we notice that these optimal or nearly optimal domain 

d<'composition algorithms may not be computationally the clwapPst ways to obtain 

solutions to spt•cific prohl<•ms. The convergence rate alone d0<~s not t<·ll th<' whole 

story of computational complexity. 

I 11 the following. we provid<• so mt• 1111 mr-rica I results corresponding to t lw con

V<'rgenc<' ra ks of t hC' G ~ IH ES algorithm with each of t lw t hrec t yp<'s of DD (H<'

cond it ionPrs for 11=2,1,8 and Hi subdomains and for various nwsh r<'solutions (see 

Tablt· 6.7). 



170 

Table 6.7: Iteration counts of the G:\IHES algorithm accelerated by three types of 
DD prccon<litioncrs for various mesh resolutions and numlwrs of subdomains 

:\lcsh Type:s of 11 = 2 11 =·I 11 = 8 11 = 16 

Hcsolutions Prccon<litioners 

First 12 12 12 13 

:rn x :H Second 12 12 12 I ·I 

Third 11 L l 11 11 

Fir:st 15 LG Ii"> I :J I 

85 x 79 S<'cond 15 15 16 17 

Third I!) 15 lfi 18 

First IS IS 1~ <- I !J 

120 x Ill Second 19 19 20 22 

Third 19 19 20 2:3 

First 21 21 21 23 

l.')Q x i.t:3 Second 2:J 2:3 :H ·)-
~I 

Third 2·1 24 25 •)-
~I 

\Ve observe that the number of iteration:; inneases only V<'ry mildly for each 

fix<'d-size problem as the numl)('r of suhdomains increases from two to sixt<'<'ll. Sim-

ilar mmwrical results were reported in [1!)7, IG8, I!}!)]. Tims, it is a worthwhil<' 

<'ffort to implem!'nt thes<' domain decomposition algorithms on such parall<'I com-

putcrs as CHAY C!JO which has a total maximu11111111nl)('r of sixlt·1•11 pron·ss1irs abl<' 

to 1wrform in parallel. 

Ilo\\'('\W, as poi11tPd out in [IOfi] {s<'<' also S!'ct ion 2.6.2 of Chapl1·r 2 on pag1· :16). 

la rg<'r prohl!'ms shou Id lw solved as mor<• pron·ssors lwconll' a \'il i la bl1·. 1 n other 



171 

words. the problem size should not be fixed. but should scale with the number of 

processors invol\'ed in tlw actual computation. \Ye belie\·e that mur<' meaningful 

numerical experiments consist of tl'sts of the convergence rate as a function of th<' 

number of subdomains while keeping tlw problem size fixed in each subdomain (not 

the entire domain). 

In the following two st'ts oft he numerical experiments. wt• only focus on pre

conditioners of the third type. since similar n•s1ilts were obsPnnl with the other 

l wo types of preconditioners. Tlw time-step size used for producing t lwsP results 

(Table fi.8 and 6.9) is ~t = 1000 s. 

\VP start with a two-subdomain computation with a mesh size of 70 x fi!) in the 

original domain. Then we refine thr mesh by a factor of two in both horizontal and 

vertical directions. Thus, the discrete problem size after mesh refinement is four 

times large. To keep the problem size in each subdomain unchanged. we need to 

further divide each of the previous two suhdomains into four pieces, or equivalently, 

to decompos1• thr original domain into eight subdomains. Nunwrical results arc 

reported in Table 6.8. We comment that, in the table, the mesh is not exactly 

refined by a factor of two in the vertical direction. however close. This is due to the 

fact that we want each subdomain to have exactly the same number of nodes for 

the eight-suhdomain domain dcrnmposit.ion. 

Similarly. the mesh rcfincnh!lll by a factor of two along each grid line for a four

subdomain domain decomposition will requir<' sixteen suhdomains in order to keep 

tlw disrrek size of l'ad1 subdomain probkm fixt•d. Tlw rn11111wnt given abon· ior 

Tabh• fi.~ applies also to Tahl<' fi.!l. 



1-., , _ 

Table 6.8: Iteration counts: two subdomains vs. eight subdomains with a scaled 
discretr problem size 

'.\lesh i\ umber of It erat i \"e i\umber of 

resolutions subdomains algorithm iterations I 

G'.\IHES 11 

70 x G:> :! CGS 6 

Bi-CG STAB 6 

G'.\IHES I!) 

1·10 x l:!i 8 CGS n 
Bi-CG STAB 10 

Table 6.9: Iteration counts: four suhdomains vs. sixteen subdomains with a sca!Pd 
discrete problem size 

l\IPsh !\umber of Iterative Number of 

resolutions subdomains algorithm iter.1tions 

G'.\IHES 11 

70 x G:J ·I cc:s 6 

Bi-CGSTAB 6 

C:'.\IHES :w 
1·10 x l~i Hi CGS I :J 

Bi-('.GSTAB 11 



17:3 

6.5 Conclusions 

• '.\!any hybrid methods of non-o\'<~rlapping domain decomposition result from 

various combinations of linear iterative met hods and l) [) precondit ioners (con

:-;ist ing of subclomain solvers and interface preconditioners). When 11/h is rcl

at ivcly large, where II characterizes the subdomain length scale and h is the 

mesh size. inexact subdomain solvers arc to be preferred to exact 01ws for 

saving CPU time. 

• Three types of DD preconditioncrs were found to work reasonably well with 

G~IHES. CGS and Bi-CGSTAB nonsymmetric iterative methods in th1• nrn

tcxt of solving the shallow water equations. with the 1wwly proposl'd third 

type turning out to be computationally the least expensive and the first tnw 

most expensive. 

• For all cases, G~IRES requires roughly twice as many iterations as required 

by CGS or Bi-CG STAB. However, these three algorithms were found to he 

approximately equally efficient in terms of CPU time. Nole that only one 

matrix-vector multiplication per iteration will drive the G~IHES algorithm 

to conw•rgcncc, while two such multiplications have to be performed at <'ach 

iteration for CGS and Bi-CGSTAB. 

• Bi-CGSTAB algorithm was not found to com·Prge nrnch faslPr that CC:S in thi" 

partirnlar application. However. Bi-CGSTAB rnnverges mtl<'h mon• smoothly 

than CGS. G'.\IHES generated the smootlwst residual conn·rg1·ncc history. due 

to its minimization requirement of tlw n•sidual norm at each ill-ration step. 

• :\s :rnbdomain solvers lwrornc more accurate. prerondit ioncrs of tlw I hi rd typ1· 

can accch·rak the conv1·rg1·11n• of G'.\IHES. CC:S and Bi-C'C:ST,\B at about 



I ti 

the sanw rate as the otlwr two types of preconditioners. PXrept for cases when 

subdomain solvers may be considen•d to lw exact or nearly exact. However. 

the use of exact or nearly exact subdomain solvers is not recommended sincc• 

the gain in the number of iterations far from offsets the additional computa

tional cost for constructing them. Thus, we consider the third type of DD 

preconditioners to be the best. 

• Increasing the number of subdomains will result in a deterioration in con\'cr

gence rate for most iterative domain decomposition algorithms. PV<·n though 

thP original problem .size is fixed. When these three types of DD precondi

tioners are extended for use with more than four subdomains. tlw m1mbers of 

iterations will only slightly increase for the fixed-size problems related to tlw 

current application. 



CHAPTER 7 

PARALLEL IMPLEMENTATION ISSUES AND RESULTS 

7.1 Introduction 

The finite rlemcnt solution of PDE's. inrnlvrs the following typical rnmputa

tional stages 

• input or preparation of the data r<'quired by the code. such as tlw global 

numbering of the nodes, the calculation of coordinates of these nodes, etc.; 

• construction and representation of the triangulation if triangular elements ar<' 

used; 

• specification of the initial conditions; 

• calculation of the clement matricrs and the corresponding force vectors for 

each time step; 

• assembly of the element matrices and the force vectors to obtain t lw global 

(stiffness) matrin•s and thl' force vectors for <'ach tinw stc-p; 

• tlw solution of the global matrix systems at each time st<'p. 

Among tlw aforl'nwntiorwd stag<'s, t lw last stag<'. i.e .. tlw sol11t ion of wsult ing 

algebraic <'q11atio11s, is 11sually t lw most com put at ional PX pensive part of I he calrn

lations and. as a r<'s11lt, a sizable amo1111t of n·s<·arch hils been foc1tsl'd on d<·n·loping 

I Ti 



176 

efficient and cost cffcctiv<' soln·rs for large non-linear and linear sysll•ms of alg1·

braic equations for over the last thirty years (sec [188, 2:W. 2:18] and refPwnrt'S cited 

therein). 

Since the solution of finite clement global matrix systems constitutes the major 

workload, the parallelization of the solution process is critical. Domain <kcomposi

tion techniques including Schur domain decomposition method. the morlificd inter

face matrix domain decomposition algorithm and the parallel block prPronditioning 

techniques, as developed in previous chapters, cssPntially reduce the solution of a 

large li1war system into that of solving several disjoint smaller subsystt'ms ddinPd 

in the subdomains that arc amenable to efficient parallelization with rdat i\·ply lit t IP 

difficulty. 

However, to achieve a high parallel efficiency, the parallelization of other stages, 

<'specially the assembly of clement matrices into a global stiffness matrix. turns out 

to be equally important. The reason for this is provided by Amdahl's law on the 

theoretical speed-up for parallel computing (sec Chapter 2 and [il6]). Amdahl's law 

points out that even a small percentage of the total work (measured in CPU time) 

not being processed in parallel will drastically degrade the parallel performann· 

result, namely. the sought-after speed-up, and the situation gets worse when more 

physical processors arc involved. For example, suppose that 201/c. of the computation 

is not multitaskcd, then Amdahl's law predicts that the hesl speed-up obtainable 

is as low as '.U) for four procPssors, :t:l:l for eight processors and only il even if an 

infinit1• numlwr of processors could lw invokPd fort lw calrnlation. This implies that 

a good speed-up d1w to parallt·lism may not lw achie\·ed unless rnmptttations related 

to the finite <'lrnwnt discretization an• also <>fficiPntly parallelized. 

Th<' ddails of impknwnting tlw :\11:\IDD algorithm discussed in Chapter !ion 

tlw CHAY Y-:\IP/l:J'.~ vector parallel computn and spePd-up r<'s11lts wew pub-



177 

lislwd in [17·1]. where macrotasking tecl111iq11es WPr<' employed for larg<'-granularity 

domain by domain computations and microtasking techniques were exploit<·d for 

small-granularity element by clement calculations. 

For tlw rest oft his cha pt Pr. WP will briefly comment on the rf'latin• advantages 

and disadvantages of three parallel procf'ssing software' packages currently a\·ailablc 

011 the CHAY Y-~IP. Then we describf' a multicoloring technique for removing con

tention delays in thl' parallel assembly process of the finite ekm~nts and provide 

details concerning the parallel implementation of block prccondit ioning techniques 

with the third type of domain decomposed prPconditioners (see Chapter Ci). Spe(•d

up results for several mesh resolutions are then reported. 

7.2 Macrotasking, Microtasking and Autotasking on the CRAY Y-MP 

Due to the fact that three possible approaches to parallelization, namely, macro

tasking, microtasking and autota->king [56, 57], coexist on the CRAY Y-~IP for paral

lel computations, the first issue to be resolved is to decide, among these possibilities, 

which parallel soft ware to ('mploy. Below, we provide :;ome general comments ba'icd 

both on our own as well as other researchers' working experience related to multi

tasking on tlw CHAY Y-~IP, which we hop<' may scn·e as a g11ida11cc or reference 

to other CHAY multitasking users. 

The earliest implementation of multitasking ideas on CHAY comp11ters was car

riPd 0111 hy macrotasking teclrniqtws. ~lanotasking was cksigtwd to dfici<'ntly PX

ploit. in a dl'dicat<'d computing mode. the paralklism at subro11ti1w lc·vds for pro

grams which rcq11ire largP nwmory and long rnn11i11g time. ~larroti\sking is imple

mented hy explicitly insPrting library calls to 11111ltita.-;ki11gs11bro11ti1ws into thl' rndl'. 

llowc·vPr. I lwrc· arc· sc•\·c·ral disadvantag<'s for manotasking which arl' listed below 



li8 

l. Extensive data scope analysis is required. The coding or morlificat ion from 

an existing code into a macrotaskcd code Gill lw <'Xpensi\·c in both I ime and 

human effort. 

2. ~lacrotaskcd programs arc hard to l<'st and debug compared with microtask

ing. The extra effort of applying conditional multitasking techniques is often 

cssPnt ial for isolating macrotasking 1•rrors. 

:J. The multitasking overhead associated with macrotasking is high. In the rn~w 

of relatively small task size, parallelism may not lw exploited c!lkient ly by 

macrotasking. 

~lirrotasking is a much more flexible technique and may he viewed as an im

provement over macrotasking. The implementation of microtasking is simply the 

insertion of preprocessor directives (Fortran comments) into the code for paral

lelism. The preprocessor will interpret these directives to the compiler and generate 

the appropriate library subroutine calls. Some ad\·antages of using microtasking an~ 

summarized here: 

l. ~luch less data scope analysis is involwd for mirrotasking. The ro11wrs1011 

of an existing code to a rnicrofaskcd code is quite straightforward and takes 

much less time compared to I he case of macrotasking. Tlw con\"t'rtcd code is 

still standard Fortran. 

'' The 11111ltit asking overlwad for mirrotasking is very small. As a rt's1ilt. small 

task-size (or granularity) prohl<'ms, say, a set of nestcd loops. can lw mull i

t asked quilt' effiri1•nt ly. 



17~ 

:i. ~Iicrot asking is able to perform automatic dynamic load balancing for small 

granularity parallelism (do-loop level p<Halklism) and hence reduces possibk 

synchronization delays. 

-L If the data scope permits, large task-size problems may be rnultitaskcd by 

either microtasking or macrotasking. Hom•vcr, in most cases. microtasking is 

found to perform as well as or <'\'<'II lwttrr than macrotasking (s<'<' also tlw 

experinwntal results in [16l]). 

Ilowcn~r, then• arc also a couple of r<'strict ions for microtasking. which may tum 

out to be disackantageous for some applications: 

I. ~Iicrotasking is not allowed in the main program. 

2. ~licrotasking must extend tu the subroutine boundaries. 

Fortunately, these disadvantages may be overcome by the combined use of micro

tasking and autotasking techniques. 

Building on the experience gathered from rnacrotasking and microtasking, auto

tasking should be preferred to microtasking since (amongst other issues): 

I. As its cl<•sig1wrs pointed out. autotasking comhi111•s the lwst asprcls of micro

ta.-;king. 

2. A considerable amount of do-loop lc•\·cl parallelism in tlw code is automatically 

detected and exploitrd by autotasking. 

:i. Autotasking is allowed in tlw main program (not for mirrotasking). 

I. Autotasking ran exploit parall<·lism at tlw do-loop lc\'cl without c·xl<'nding to 

s11brout in<' houndari«'s ( microt asking can't). 



180 

:>. Large-granularity parallelism can also be efficiently <'Xploited by au tot ask

ing hy manually buildi11g in the case/ end case st ruct uw ( cqui \·a lent to 

process/also process/end process structure for microtasking) within a 

parallel region. 

6. The :\TEXPEHT post-processing tool [i'J5] has been developed for accurately 

predicting and graphically displaying autotasking performance in a dedicated 

system, based 011 the execution results of a single run on an arbitrarily loaded. 

non-dedicated CHI (CHAY Res<'arch Inc.) system. 

Ilowcvcr. it should be cautioned at this point that we do not exclude the possi

bility of better exploitation of multitasking capabilities on CHAY by appropriatl'ly 

applying autotasking, microtasking and macrotasking on the same code to adapt to 

some particular applications. However, extensive data scoping, coding, debugging 

and numerical experiments in a dedicated computing environment may be required 

for this purpose. 

7.3 A Multicolor Numbering Scheme for Removing Contention Delays 

in the Parallel Assembly of Finite Elements 

In general, the quality of parallelization on C BAY )" -~IP and other shared mt·m

ory paralld computers is usually dct!'rmi1wd by the following: 

• Len•! (granularity) of parall<'lism <·xploitcd. 

• Fn·cpwncy of calls to tlw multitasking library. 

• The memory rnnl<'nl ion dPlays. 

• Load balancing. 



181 

Tlw noteworthy memory content ion d<•lays for the finite e!Pmeut com put at ion 

are due to the assembly process. Hmn•n·r. the possibility of memory conteution 

dc•lays may be remm·ed by assembliug the elcnwnt properties in a particular on!Pr 

according to a multicolor numbering scheme to be discussed below. Henn·. a largr 

number of calls to the multitasking subrouti1w that p<•rforms locking operations is 

avoided and. a.-> a result. a consickrable amount of overh<'ad is re1Hovcd. 

As is well known. for tllP finite clement discretization. the setup of local st iffncss 

mat rices and t hrir assembly into a sing!<' global stiffness matrix is the only part 

of the calculations that requires being repeatedly carrit•d out as the computation 

proceeds in tinw. The efficient parallelization of this part is thus highly critical to 

the on·rall parallel performance. For tllP serial rnmputation. tlw Plement stiffness 

matrices arc first calculated and then immediately distributed into appropriate lo

cations in the global stiffness matrix. The process continues clement by dem<'nt. 

Since each clement makes its own independent contribution, this clement by clement 

computation can he carried out rnncurrently as long as the sirnultam·ous alteration 

to any entry in the global matrix is guarded against. 

In the jargon of parallel computing, there exists a critical region m the rock 

s<'glllent for the aforcmcnt ioncd element by clC'mcnt calculations. :\ critical region 

is tl<•fined as a :·wgment of code that access~s a shared resource. e.g .. tlw mr1110ry. 

:\n interpron·ss mechanism, namely. the lock. is required and provickd by shared 

nwmory rnultiproccsrnrs for the sake of synchronization. llowrn~r, thr locking op

eration introclun·s three acln·rsccffPds, lisl!'cl hPlow. which tend to clt·gracle parallel 

performann• results: 

• Tlw computation in tlw critical region is sNial: 



• Other processors have to wait a11d stay id!<• while Oil<' pron·ssor ts working 

within the critical region: 

• Invoking the lock multitasking subroutine consm1ws a certain amount of CPt: 

time, i.e., the overhead. 

\Vithin the critical region, an entry Ill a local stiffness matrix is added to a 

corresponding entry in the global stiff111'ss matrix and then the newly ohtai11cd 

c•ntry is inserted back into the memory spac<' previously occupied by t lw Pnt ry in 

the global matrix prior to modification. The• operations involved here constitute a 

tiny part of the calculation and seem to lw negligible. The waiting time for ot lwr 

procPssors to enter the critical n•gion is also n~ry small, as argued in [Hi.'J]. when the 

cost of generating the clement matrices is greater than that of the assembly into tlw 

global matrix. However, the overhead introduced hy 11<. (total number of elements) 

calls (if assembled by clements) or 11 (total number of nodes) calls (if assembled 

by nodes) to the multitasking subroutine gen<'rating tlw locking mechanism is not 

so small, especially for fine meshes, and the combined effect of these three possible 

sourc<'s causing parallel performance degradation can not IH' neglected. 

As was pointed out in [85] (see also som<' references tlwrcin ), the nit ical n•gion in 

tlw assPmhly procPss is not inherent in the f'lf'nwnt-by-element calrnlatior1~ and may 

he bypass1•d by ass<•mbling the element mat rices in a particular order. Tlw basic 

ohserval ion is that t.lw 1wcessity of introducing a critical region into t lw ass<'mhly 

process is dur to th1• possihl<' sim11lta1wo11s contributions to a co111111011 110<!1- by 

mor<' t hall one of its surrounding clements. Th<' critical n·gio11 may il<' rcmm·cd if 

th<' ass1•mbly procl'ss can he carri<'d out i11 groups so that. within each group, no 

two or mow cle111<•1tl s co1111crl1'll to a common 11od1· arc able to 111ak1• cont ribut io11s 



Figure 7.l: ~l11lticolor numbering of t•lenwnts for a triangular finite clement mesh. 
Each integer stands for a unique chosen color. :\ node in the mesh is surrounded by 
drments of different colors. 



181 

to that node. This idea may be realized by using a multicolor numlwring of the 

clements to be as~emblC'd. 

For the triangular linear element mesh ust>d in the current problem [ 169]. six 

colors are required to guarantee that any node in the physical domain is surrounded 

by elements of different colors. The ideas arc well expressed by Figure 7.1. wh<'rc 

each integer represents a uniqtH' color. The elements in the mesh may now he divided 

into six groups. Elements of the same color comprise one group and different groups 

have difft>rent colors. The assembly is carried out one group af!Pr the other. Within 

each group. the <'lcments arc internally disjoint and so the parallel assembly process 

is carried out asynchronously. i\otice that the multicoloring schcnw achie\·cs not 

only the removal of critical regions. but also a sharp reduction in the nmnlH'r of 

synchronization points from 11c or 11 to 6 for the entire assembly process. 

7.4 Implementation Details and Results 

7.4.1 Parallelization of Subdomain by Subdomain and Element by Ele

ment Calculations 

The domain decomposition code corresponding to the use of the third type of 

domain decompos<'d preconditioners was carefully t uncd and tested 011 the four

proressor CH A Y Y- ~IP ;.1:t! for a nmnbcr of mesh resolutions. A utotasking parallel 

software capahilitit•s on t lw CHAY were employed exclusively for the reasons listed 

in Section 7.:!, although macrotasking and microtasking were· exploited in out earlier 

work [17·1]. 

The main com put at ional work for t hos<· thn•<' 11011-symnwtric it1•rat ivc algo

rithms. nanH'ly. C:7'.IHES. CGS and Bi-CGSTAB, is associal<'d with matrix-vector 

products. which arc obtairH'd through approximal<'ly soh·ing the probl<'m d<'firH'd 



180 

on each subdomain. The parallelization of these tasks is carried out at subroutine 

levels. Sine<' we do not find sizable differences between the speed-up results obtained 

by the aforementioned three iterati\·c solvers. tlw parallel performance results to lw 

reported in what follows correspond to the Bi-CGSTAB itc>rative ml'lhod. 

As pointed out in Chapter 2. the load balancing is one of the most important 

factors determining parallel efficiency. To ensure a good load balancing. tlw original 

domain for our problem is di\·ided into regular subdomains with the same numllt'rs 

of nodes. Domain decomposition offers the opportunity lo carry out sul1do111ain 

by subdomain cak11latio11s, which may be parallelized at the subroutine kwl 11~i11g 

case/end case autotasking directives. This pair of directi\'<'S scr\'c as a sPparator 

hetwc<·n adjacent code blocks that an· concurrently executable and may only app<'ar 

in a parallel region. To this end, we need to mark the start and end of a parallel 

region (including redundant and partitioned code segments) by using another set of 

autotasking directives parallel/end parallel. At th<• beginning of this parallel 

region. we ha\'e to specify two types of variables, namely, shared and private. Tlw 

former data items arc known to all processors, while the latter data items arc only 

visible to each processor, which makes it possible for the same subroutine to op<•rate 

on different sets of data simultaneously. A typical segment of code involving tlw use 

of case/ end case dirccli\'es appears as follows 

cmic$ parallel shared(p,t1,t2,t3,t4,11,l2,l3,l4,l5, 

cmic$+ 

cmic$+ 

cmic$+ 

cmic$+ 

cmic$+ 

ic1,ic2,ic3,q1,q2,q3,q4, 

decom1,decom2,decom3,decom4, 

loca1,loca2,loca3,loca4,loca5) 

private(p1,i,in,,w1,w2) 

maxcpus(4) 



* 
* A segment of code illustrating the use of 

* case/end case directives. 

* 
cmic$ 

10 

cmic$ 

20 

case 

w1=timef() 

do 10 i=1,l1 

p1(i)=p(i) 

continue 

call prec(l1,decom1,loca1,p1) 

call prod51(15,11,p1,t1) 

call prod11(11,11,p1,q1) 

w2=timef() 

print*,'Wall-clock_1 ', .001•(w2-w1) 

case 

wl=timef() 

do 20 i=1,12 

in=i+icl 

pl( i) =p (in) 

continue 

call prec(l2,decom2,loca2,p1) 

call prod52(15,12,p1,t2) 

call prod22(12,12,p1,q2) 

w2=timef0 

print•,'Wall-clock_2 ',.001•(w2-w1) 

cmic$ case 

18() 



wl=timef() 

do 30 i=l,13 

in=i+ic2 

pl (i)=p(in) 

30 continue 

call prec(l3,decom3,loca3,p1) 

call prod53(15,13,p1,t3) 

call prod33(13,13,p1,q3) 

w2=timef0 

print*,'Wall-clock_3 ',.001*(w2-w1) 

cmic$ case 

wl=timef() 

do 40 i=l ,14 

in=i+ic3 

pl(i)=p(in) 

40 continue 

call prec(l4,decom4,loca4,p1) 

call prod54(15,14,p1,t4) 

call prod44(14,14,p1,q4) 

w2=timef0 

print*,'Wall-clock_4 ',.001*(w2-w1) 

cmic$ end case 

cmic$ end parallel 

187 

Within th<' parallel r<'gion, tlH' case/end case directives cn·al<• fom processes 

(including an original master or parent process and thn·e slave or child pron·ss1·s). 



188 

each of which is making three consccuti\'e subroutirw calls independent of other thret• 

coexist<:'nt processes. :\ate that these processes can call the same subroutine prec 

simultaneously. With gin·n shared data items. the subroutine prec will perform 

the required 01wrations and return with an array pl, the pri\·ate data items. which 

arc stored on a separate stack for each processor that executes the subroutine. 

llowe\'er. if some shared \'ariabh•s 1wed to be modified within a parallel region. tilt' 

dircctin• pair guard/end guard. an interprocess synchronization mechanism (tlw 

lock) provided by all shared memory parallel computers with differcnt forms. must 

be invoked in order to pn·v<'nt the same memory location to be accessed by more 

than one process at a time. 

Corresponding to the finite element discrt'l ization is the element by cl<•ment cal

culation, which may be parallelized at the do-loop level. This is done by building tlw 

do parallel directives into a parallel region confined by a parallel/end parallel 

directive pair or simply using the do all directive. The work distribution policy for 

a parallel loop is either to specify the number of chunks or to employ the stripmin

ing technique, depending on the situation. However, the general rule is to vectorize 

the innermost loop and to multitask the outer loop in a nested set of loops or to 

split a single loop into inner and outer loops. and then vectorize the inner loop and 

multitask the outer one. It should he emphasized that the multicoloring scheme 

described in Section 7.:J avoids th!' possibility of entries in the global matrix be

ing sinrnltaneously updated by sewral processes. as a result, no guard/end guard 

clirccti\"(•s arc required in t lw assembly procPss. 

111 adclition, many n•cnrrcncc relations which ap1warPd in Ill<' original single 

domain finite <•h•mt·nt rod!' (sec [ 170]) are not intrinsic and haw hec11 rcmm·ed. For 

exam pl(', t Ill' global nodal mrrnl)('rs are fully ddermined by t lw local element 11odal 

1111111lwrs, crnn· a particular clc11w11t has h!'en selected. lien re t Ill' relations lwl\\'1'1'11 



18!) 

tht• global numbering of ti!!• nodes, local 1111mbering of th<' <•l<·nwnt n·rt ices and 

<'lemcnt numbering can he calculat<'d indep<•rni<'nt of the calculations made for th<' 

previous elements. 

7.4.2 Comments on the Speed-Up and Results 

Before presenting the speed-up results, a word about sp<'cd-up seems m·ccssary. 

The term speed-up is sometimes misleading. Sp<'<'d-up may be defined to he t lw 

ratio of the wall clock tinw elapsPd in a dedicated modt• of rnmputation, for rnm

puting the sanw problem, using the best srrial algorithm and the paralld algorithm. 

However, the optimal sPrial algorithm is usually unknown. especially for modeling 

a nwaningful physical process. In our problem, the use of G~IH ES, CGS or Bi

CGSTA B preconditioned by IUJ in the original domain consumes mon· CPli time 

than the use of the same iterative method and prcconditioner treat<'d in a domain 

decomposed way. In other words, apart from the parallelization issues, considera

tion of computational complexity alone justifies the m;c of domain decomposition 

for some problems. 

Since the best serial treatment of the pn•scnt prohl<'m can not he determined. 

the speed-up results n•ported here refer to measurements of t lw wall clock ti nw in 

a dedicated computing environment rclatin• to tlw uni- and multi-processor imph·

mcntation of the same domain cit-composition algorithm (see also, among otlwrs. 

[lO:J, l:l2. Hif>]). This definition properly incorporat<'s communication overlwad and 

synchronization delays and shows how \\"<'11 the domain-to-processor mappings ar<' 

don<'. However. it should he horn<· in mind that this d<'finition has a serious draw

back. Following I his definition. a parallel algorithm achieving a perf<'ct s1wcd-11p 

may actually t ak<' longer I inw to <·xernl<' than a serial algorithm for solving I lw 

same problem. 



1 !lO 

We integrated the finite ckmcnt model of t111~ shallow water equal ions for four 

different mesh rcsol11t ions. namely. I!) x I:>. :J.I x 27. ·19 x .1:3 and 61 x 0.1 for a period of 

fin• hours with corresponding t imc step sizes of J.t = 1800 s. 1000 s, 600 s and 100 s. 

respectively. The experimental rcs111ts are summarized in Table 7.1. To appreciate 

the speed-up result of :3.6 corresponding to the llH'sh :-<'solution 61 x .1.1. we point 

out that. hy Amdahl's law. this speed-up means that !J6% - 97'/r of the total 

comp11tatio11al work (measured in CPL; time) is parallelized on a four-processor 

machine. 

Table 7. I: Parallel performance results for four different mesh rcsol11tio11s using 
th<' Bi-CGSTAU algorithm preconditioned by the third type of domain decomposed 
prcconditioners on the four-processor CHAY Y-~IPj.l:t~ 

-
~lesh resolutions 19 x 15 :1.1 x 27 ·19 x ·13 6·1 x 5G 

Serial seconds 1.0:1 6.26 :35. l !) 108.07 

Parallel seconds 0.38 2.0:1 10.29 29.77 

Speed-up ratios ') --·' 3.1 3..1 :J.6 

It should also be pointed 011t that the automatic do-loop level parallelization 

a.'> detected and exploited by the autotasking preprocessor ( FPP) docs not yield a 

speed-up larger than two. The rea.'>ons arc the following 

• a11tomatic autotaski11g works best wlwn most of the work i11 a code is i11 twstcd 

do-loops which do 11ot contai11 call statements: 

• autota...,king is u11a.ble to detect parallelism across s11brouti1w boundaries. 

It is tints clear that. to 1·xploit subroutine lc•vcl parallelism as offen•d by domain 

dccompositio11 algorithms. 0111· has to m;mually insnt appropriate autotasking di-

rcctiws into tl,c code. In grrwral. to achic·vc• a high clfiri<'ncy of paralli·lization with 



)!) I 

autotasking utilities, a fair amount of uscr assistanrc is still absolutdy n·quin·d. 

while an analysis g<'nerat<·d automatically by FPP ran serve as a rden·nn• for t lw 

design of a parallf'I code. 

To conclude this section, we mention that the FEUDX finite clement code [!Ci9. 

170] was port<>d to :\lasPar. another paralld machine architecture (see [180]). 

7.5 Conclusions 

• Among three parallel processing software packages coexistent on the CHAY Y

:\IP (l:l'2, autotasking techniques sc!'m to he the best for implementing domain 

dcrnmposit ion algorithms, whcrc the number of child processes to lw crcat<>d 

is known in advance. Antotasking is able to efficiently exploit both small and 

large granularity parallelism. Microtasking offers another good choic<', but is 

not as flexible as autotasking in programming. 

• Autotasking, as its name suggests, can be fully automatic. Ilm\'<'Vcr, a fair 

amount of user assistance is required to achieve better performance. It is 

mandatory to tell autotasking that several pieces of work (defined on different 

subdomains, say) to be performed in s11hrout.i1ws can he carried out. in parall<'l 

hy using the case/end case directivt• pairs. By appropriately distinguishing 

ancl defining shared and private variables at the beginning of the paralkl 

region, t.hc same subroutine may lw reused and acn•ssed simult.aneously by 

diffcrent. processcs (a property known as rc<'nlrancy or mult ithrcading). In 

foci, this should be th<' case for a parallel algorithm in which each pron·ssi11~ 

<·h·nwnt 1wrfor111s all tlw opc·rations on t hP part it ion<'d data rat lwr than I he 

part it ion<'d op<'r;it ions 011 I lw whole· set of data. 



l !):! 

• For the finite ele111ent 1111111erical solution of PD E's. it is important to paral

lelize efficiently the as~embly process i 11 or<!Pr to ach icve a better speed-11 p 

result. Thl• critical regions in tiw assembly process may be remmwl and tlw 

1111111lwr of synchronization points drastically reduced by assembling the ele

mental co11trib11tio11s in a specific order as specified hy a multicolor numbering 

srhcmP. 



CHAPTER 8 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

\VP hav<' introduced the following six domain decomposition met hods 111 t lw 

pr<•\'ious chapt1·rs 

• the multiplicative Schwarz overlapping domain decomposition method: 

• the additive Schwarz overlapping domain decomposition method; 

• the itcration-by-subdomain nonoverlapping domain decomposition method; 

• the Schur nonoverlapping domain decomposition method: 

• the modified interface matrix nonovcrlapping dom •• i11 dnu111pusitiu11 method; 

• the parallel block prernnditioning techniques. 

Of course, there ar<' st ill other domain decomposition met hods. By modifying 

our or mor<' ingredients of these gerwral methods, there exist almost infinitely many 

\'ariant s of tlw so-called iterat i\'r domain drcom posit.ion algorithms. The rnnsidrra

t ion of tlw impl1·nwntation d<'lails of thcsr domain 1kcomposition algorithms would 

add a not ill'r di mens ion to t lw \'aridy. 

In this dissprtation, W<' have first closely 1·xa111irll'd tlw Schur domain d1·compo

sitio11 llH'lhod and its application to tlH' finite 1·km1·11t n11m1·rical si11111latio11 of t)H' 



I !)·I 

shallow water flow. Our motivation for studying domain d<'composit ion algorithms 

is purely due to their potential for parallelism. 

To introduce parallelism into tlw linear systems of algebraic equations at each 

time step corresponding to a spatial finite clement an<l an implicit temporal dis

cretizations, we partitioned th<' whole computational domain (an approximation to 

the original physical domain) into subdomains with the artificially introduced inter

faces. After identifying two types of nodal variables. namely, internal and intcrfacial 

variables. and numbering the global nodes in a sub~t ruct urcd way, we arc able to 

arrive at a much smal11•r Schur complement linear system of equations involving 

the interfacial variables only. Obviously, the discrete' subdomain problems arc tri\·

ially decoupled and the internal nodal values can he determined indPpendcntly of 

each other once the intcrfacial degrees of freedom arc specified by solving the Schur 

complement linear system at each time step. 

Thus, the efficient solution of the Schur complement linear system is a key issue 

for the Schur domain decomposition method. A preconditioned I\rylov or conjugal<• 

gradient-like iterative method is almost always employed for the iterative solution 

of this linear system. The multiplications of the Schur complement matrix by a 

vector at each iteration step arc obtained by concurrently solving all the discrete 

suhdomain problems. If the convergence criterion is not satisfied on the interfan·s. 

the domain is decomposed again and subdomain problems aw solved. This may 

be descrilwd as a divide and feedback process. This process imnwdiatdy indicatcs 

that tlw ddcrmining factors for the (•fficif'ncy of the Schur domain dccomposition 

rnd hod arc (I) t lw 1111mlwr of iterations required for ad1iPving ron\'(·rg<·11n• on t lw 

intcrfaccs and (:n t lw cost of suhdomain solwrs. As is w1•ll known. t lw 11111nlwr of 

itcrations rcquired 011 the int1•rfaccs can lw rcducPd by using an appropriate inkrfacc 

prPnmd i I ionN. 



l !J.1 

To construct a good interface precondit ioner. we first note that. corr<'sponding 

to many elliptic PDE's, the action of the Sch11r complement matrix 01wrator is 

predominantly local an<l. fortunately. this remains to be the case in the context 

of the finite element shallow water flow moclPling. This cl<'arly suggests tlw us<' 

of an intnfacc· probing preconditioncr. which. !wing purely algebraic. possPss a 

wide applicability. Ilow1·vcr. we have shown that a modified version of this popular 

rows um prcscrvi ng int erfacp probing precondition er behaves bd tPr for th<' ct11T<'nt 

application. 

For many specific application problems. tlw unavailability of fast diwct solvt'rs 

in the subdomains is common. To mitigate this potential disadvantage of the Schur 

domain clccomposition method. we proposP a new algorithm. nanwly. t lw modi

fied interface matrix domain decomposition (~ll~IDD) algorithm. In contrast with 

the Schur domain decomposition approach, in which the nun1<·rical solution 011 th<' 

interfaces is first determined by solving the Schur complement linear system, the 

:\11:\IDD algorithm starts with an initial guess 011 the interfaces and then iterates 

back and forth between the subdomains and the interfaces until a convergence cri

terion is satisfied on the interface's. Beginning from the second outer iteration step, 

it becomes increasingly less expensive to obtain solutions on the suhdomains and 

the interfaces dut• to the availability of surccssivPly impron•cl initial solutions from 

the pre\·ious outer iteration. The n•s1tlts obtained by applying this algorithm to om 

application improve upon thos<• obtained by employing tlw traditional Schm domain 

dee om posit ion algori I 11111. 

The efficiency of the ~ll~IDD algorit h111 is dderrnitwd hy (I) how small t lw 

spt•ctral radius p[l.1., -( • .\.u+ K,,)- 1(.'] is and (2) tl11• amount of rn111putational work 

required for obtaining the multiplication of tlw matrix{\·,,,, by a n'ctor. i\'unwrical 

results confirm that. by using i\l IU;. p[ !,,,, - (:\,.+I\ .. r I CJ ran ')(' made ilS small ilS 



I !J6 

0( 10-:3) without much extra computational work. ~lorcO\w. the ~II ~ID D algorithm 

with A,.+l\,. constrncti>d this way has gl)ocl self-adaptivity to mesh refinenH'ut. On 

the otlwr hand. the availability of good initial snbdomain solutions from the previcrns 

outer iteration will also makP the coarse grid correction multigrid subdomain solvers 

more efficient. 

The block preconditioning method. an altf'matiw domain decomposition ap

proach, consists of thl• construction of a domain decomposed preconditiorwr such 

that approximate solutions in the subdomains and on the intcrfacps can bP simulta

neously updakd at thP rnst of only inexact subdomain solves. It should lw pointt>d 

out that both the block preconditioning and ~IE\IDD nH'thods abandon the idea of 

obtaining t lw intcrfacial solutions first for decoupling the subdomain problems, as 

in the Schur domain decomposition method. 

The discrete nonsymmctric linear systems ( A.r = b) at each time step of the 

model integration for the geopotential and velocity fields arc solved by a Krylov 

or conjugate-gradient like iterative method. Herc, we h•ivc employed three popular 

and competitive iterative methods, namely, GMRES, CCS and Ui-CGSTAB. We 

expect that these three algorithms will be more extensively studied and compared 

by numerical analysts and be widely applied to many other related rnmputational 

problems in sric•ncc and engineering. Although a thorough analysis and compari:-.on 

of these three important solvers are beyond the scope of this dissertation, we hav<• 

essentially paid much attention to tlwir relative dficicnci<•s as applied to the finit<• 

<'lenwnt shallow watPr flow problem. Exll'nsive conclusions hav<' ll<'cll providPcl at 

tll<' l'lld of (~haptc-r fl. 

The 11ltimall· <•fficiency for any l\rylov iterative method is largely det1·rmi11ecl 

hy a prcronditiorwr /J. \\"ith this pr<'ronditiorwr. instead of solving :\.r = 11. \\\' 

solve Xr = b. wlwn· :\ = :\ FJ- 1 and .r = IJ.r. for right prerondit ioning. This 



l !}7 

preconditioner should be such that (I) the condition number of ..in-1 is much smalkr 

than that of A: (2) th(• preconditioning matrix is computationally cheaper to invert 

and (:l) the solution of the preconditioning linear system /3p = q is paralldizable. 

In Chapt<'r 6. tlm•e types of domain dPcomposed preconditioners han· \wen de

scribed in detail and applied to the parall<'l finite clenwnt solution of the shallow 

water equations. Since domain decomposed pr<'conditioncrs ha\"<' good paralldiza

t ion proper! ies, most of the further research <'ffort for this type of algorithms is 

aimed at reducing computational complexity instead of achiPving parallelism. The 

third type of domain decomposed preconditioncrs proposed here turns out to be 

computationally chPaper than the other two types. \Ve also point out that. for a 

linear system in which the coefftrient matrix is symmetric, corn•sponding to, for ex

ample, the discretization of the self-adjoint elliptic problems, on<' has to use t.Jw first 

type of domain decomposed precon<litioners to preserve symmetry. For tlw non

symmetric case, even though all three types of domain decomposed prcconditioners 

may lw applied. it turns out that the first type of domain decomposed precondition

ers is computationally much more expensive to use than the other two types in our 

applications. 

As a rule. the convergence rate of many iterative domain decomposition al

gorithms will decrease, en·n though the problem size is fixed, as the number of 

s11bdomai11s is increased. Consequently, it is important to devise alg1>rithms who:-;1• 

convergence rat<' ha:-; lit tie or 110 dcpendem·y on the number of Sil bdomains. Ot lwr

wise. the inrn•ascd rnmputational complexity will partially undo tlw gains obtained 

by parallel processing. Our 111mwrical results have shown that. when t lw 11111nlwr 

of subrlomains itH-r1·as1·s from two to sixkcn, t ht• numlwrs of it1·ratio11s for using 

thcs<• thn·c· typ<'s of domain <krompost•d prern11ditiorwrs. as applied to tlw linil<' 

dcnwnt shallow water flow problem, just mildly increase. ,\s a result. we 1·xpect a 



l!l~ 

good parallclizat ion efficie11cy when tlw codPs ar<' ported to tlw CH:\ Y ('!JO. which 

has a total number of sixteen powerful processors able to work simulta11cously 011 

solving the same problem. Of course. as more processors become availabk. the goal 

is not to solve the problem with a fixed mesh resolution. but rather to deal with 

discrete problems corresponding to much higher mesh resolutions. To minimize thP 

loss of gains due to parallel processing. the algorithm must be designed to lw IPss 

dependent not only on the subdomai11 siz<' //.but also 011 tlw mesh size h. 

Domain decomposition offers an opportunity for carrying out subdomai11 by sub

domain calculations, which can he parallelized quite efficiently al tlw subroutine 

len•l on the shan·d memory parallel computers or <·an be accommodated in sl'paratt· 

parallel processing clements (local processor and memory) on a distribntPd 11wm

ory parallel computer. However, the efficient parallelization of the finite clement 

discretization process is also very important for ensuring a high overall effici<·ncy 

of parallelism. The multicolor numbering scheme described in Chapter 7 for the 

parallel assembly of elemental contributions remm·es not only the critical regions 

inside the assembly process, but also minimizes the number of the synchronization 

points. 

A possible future research dirPction consists in applying domain decomposition 

and parallel computing t cchniqucs to the ·1-D variational data assimilation problem 

in mctPorology. This requires us to properly defim· a cost functional .I rnn:-;ist ing 

of a weighted lack of fit bet \\'1'<'11 tlw mod Pl and observations. The adjoint model 

techniqw·s an· usPd to obtain the gradit•nt of this cost iunctional with rcs1wrt lo 

the initial conditions and/or boundary conditions (s1·e [ 171'1. 212, 21:1] and n>f1•n·11n·s 

thm·in). 

For parall1·I data assimilatio11. a parall1·I numerical optimization (<ksrcnt) algo

rithm is t lw overall franH'work. Domain dccomposit ion. adjoint algorithms (par-



I !J!l 

allelized) and others are built into this fra11H·work to efficiently prO\·ide, at each 

minimizing step. the solution of the model and its gradient (so as to form a de

scent direction) allowing the approximation to the minimizer to be updated. This 

process is carried out iteratively until convergence (i.e .. until we find an accurat<' 

enough approximation to the minimizer). \Ve will devise and test different domain 

decomposition algorithms which can be efficiently built into this framework. 

We know that. in typical domain decomposition algorithms, tlw amount of infor

mation in one subdomain (processor) which is required for computation in a not her 

subdomain (proc<'ssor) is \·cry small compar<'d with tlw amount of data residing 

locally in <'ach subdomain (processor). This small amount of information is asso

ciated with grid points on or near the interfaces. ~loreover. in the ca.-;e of a larg<' 

number of subdomains, the number of subdornains (processors) with direct data 

dependencies is small compared with the total number of subdomains (processors). 

Thus, domain-based decomposition algorithms potentially lead to a high ratio of 

timP spent on computation versus that spent on communication & synchronization 

and, as a result, a high parallelization efficiency is expected for implementation on 

a large number of processors or for a massively parallel processing archit<·dure. 

llowc\'cr, as we pointed out <'arlier, one of the probll'ms left is that domain 

decomposition algorithms suffer from a possible deterioration in convergence rate 

a.s the number of subdomains increases, sinn· the <'xchange of information hcf\H'<'ll 

remotely located subdomains is slow. If this problem is not fix<•d. t lw increased 

serial complexity oft he algorithm will probably 1111do tlw gaiu of parallel proc<·ssiug. 

:\ possihh· way to improv<· scalability of domain d<'composition algorithms to a 

larg<' 1111mlwr of processors is by introducing a global coarse grid, which s1•n'<'s 

as a mechanism to acn•lerat<- t rausfer of in format iou among s11bdomaius. 111 t lw 



:WO 

fut urc. we shall closely im·<·st igate this type of algorithms and carry out practical 

applications. 

Finally, we will also try to extend and develop domain deromposition algorithms 

for application to problems involving three dimensional spac<' domains. This is a 

much more challenging problem than its two dimensional count<'rpart. 



APPENDIX A 

THE FINITE ELEMENT SOLUTION OF THE SHALLO\V \YATER 

EQUATIONS 

Similar to substrurturing domain decomposition methods. the finite el<'nwnt 

method originated from matrix structural analysis. Although the terminology "finite 

clcnwnt nwthod" was coined in 1960 by Clough [!'>OJ, tlw basic idea behind th<' 

nwthod is not new and can he traced back to the work of C'ourant [0·1] in l!)l:J who 

used the approximation of a function in /l2 by continuous piecewise linear functions 

on a triangulation and the principle of minimum potential <·nergy to study the Saint 

Venant torsion problem, which was explained earlier in chapter 3. 

Then• was an explosion of rescard1 activities in the area of the finite clem<'nt 

method beginning approximately from the 1960s. The method was first widely 

studied and systematically applied to the solution of solid mechanics problems in 

the 1960s. ~lainly due to tlw efforts of three groups of rcscardwrs, namely. math

e111at icians, physicists and engineers, tlwre haw b!'cn rapid. although sporadic, dl'

vclopmcnts and breakthroughs in the field of finite <•lcment nwthods. An <'xccllent 

pap<'r which n·vi<'\\"s the dev<'lopnwnt of the finite <'l<'nwnt mdhod up to 1!!80 is 

available [SI]. \Ve also refer int crested readPrs to [2·1·1] for motivations. gerwra I 

principl<·s and a good 1•xposition of sl'v<·ral different approaches as well as [22·1] for 

a more ren•nt comprelwnsive n·vicw in tlw context of solving PD Es by t IH• finit1· 

element method. 

201 



Today the finite clement method is a dominant numerical tPdrniquc in solid me-

chanics, structural engineering. aeronautical engineering and many others. llowcn·r. 

a sizable amount of research still continues in this ar<'a for designing and analyzing 

accurate and cost effective algorithms for CFD prohh•ms. especially for comprcssibl<· 

flows (see [16:J] for the most ren·nt state of the art) and in the are;i of adaptive h-p 

mesh refinement. 

In this appendix we describe the finite element modeling of the 2-D shallow water 

flow in a limited-area domain defined by (·U:?) - (-1..l(i) in Chapter I. The ess1·11tial 

components of a two stage i\umerov-C:alcrkin finite element method (see [li·I] and 

rcforcnces therein) will also be sumnrnrized. 

A.I The Finite Element Approximation 

For the finite clement method, instead of working directly on the originally given 

PD Es (the strong statement of the problem), one derives a weak or variational form. 

equivalent to the original PDEs, involving two Sobolev function spaces, namely, the 

trial solution space of functions \! and the weight or test function space W. The 

former is usually a function space whose member satisfi1·s the essential boundary 

conditions (in contrast with the so-called natural boundary conditions) of the giwn 

probl<"m. The latter is usually a function space whose memlwr satisfies the homo

geneous essential boundary conditions. see [I:?:Jj and references tlwn·in. 

As a first step in developing any finite 1•lenwnt algorithm. one constructs fi11ik 

dimcnsio11al function spaces Vh and wh which approximate F and w. r<'SJH'Ctin·ly. 

Specifically. in the finitl' elenwnt nwt hod, an 11-di1111•11sional approximall· trial f1111c-

lion span• is 

\'" h+ {\' \"} "=.<J span: 1, •••• i" (,\.I ) 



:w:i 

where the function !Jh is incorporated into \ ~h span• to account for non-homogeneous 

cssent ial boundary rnndit ions (see [ 12:l]). :\n n-dim<'nsional test function space may 

be defined as 

ll ·h {\' \-' \-r} n = span i I• i 2· •••• 1 n • ( :\.2) 

For the Bubnov-Galerkin or simply the Galerkin finite element met hod <'mploycd 

in this application. S; = :\';. i = 1. 2 ..... 11. while for Pctrov-Gall•rkin finite e!Pnwnt 

method (see [86] and r<'ferenccs therein), N; f .\';. N; ancl i\';. i = I. 2 ..... n. 

are usually piecewise smooth functions with only local supports. Systems of linear 

or nonlinear algebraic equations will be obtained upon applying rither Galerkin or 

Petrov-Galerkin formulation. The solution lo tlu~ weak form of the original PD Es is 

approximated by functions. which are locally smooth but globally .. rough ... in tlw 

finite dimensional finite clement space Vnh. 

The shallow water equations model (.1A2) is approximated in this application by 

the Galerkin finite clement method with a piecewise linear triangular finite clement 

space. Since the higlH•st derivative in each of the shallow water equations is of order 

one, the linear function space approximation will guarantee the necessary continuity 

and completeness requirements (sec [2·16]). 

Suppose the problem domain n has been partitioned into E small clements n,. 

c = I. ... , E. and total number of grid nodes is ,\Ind· Each of thP thrrc dependent 

variabks r.p, ll and p is approximated over the domain n by a lin<'ar rnmhinat ion 

of tlw basis functions N,.1(.r,y). 111 = 1.2 ..... M11 d, in the finite element span·\'"· 

nanwly 
.\I nit 

r.p:::::: cp = L 'Pm(l)1\"111 (.r,y) ( :\.:J) 
m=l 

.\fn,f 

11 :::::: 1i = L II,,. (t ) i\'111 ( .r. !J ) (:\.I) 
m=I 



201 

.\l.,d 

V ~ i· = L l'm(/):\'m(.r.y) ( :\ ..'i) 
m=l 

where ym(l). 11,,.(t), Pm(/) are the unknown nodal rnhws of cp. 11 and v rcspecti\'!·ly. 

Nm( J', y). m = I, ...• Jl,.,i, arc the global shape functions defined in such a way that 

the following proper! ies arc satisfied: 

• linear in x and y: 

where b;; is tlw I..:rnnccker delta. i.e., 8;; = I if i = j. whereas IJ;; = 0 if i =f j. In 

words. N;(.r.y) takes on the value l at node (.r;.y;) and 0 at all otlwr nodes (s<'<' 

Figure :\. l) 

From the clement point of view, the global shape functions can also he cqui va

lcntly defined in terms of the local sha pc functions Ni( x, y), namely. 

, { Ni(x,y) 
1\;(.r, y) = 

0 

on n~s 

on n - n~s 
(A.6) 

where n,'s arc those triangular clements which share a common node i. Ni(.r. y) is 

the local clPmcnt shape function defined on the element n, only. It is linrar in .r 

and y and has the value unity at nodP i and zeros at nod rs j and l·. wlww i. j. l· 

arc three vertices of the triangle and arc m;ually numbered countcr-clockwi~c. 

The Galerkin finite element approximation over the whole domain n requires 

that: 

J 1 (iJ1i • iH1 • iJi'1 iJ,P -) . - +It-;--+ I'-. - + -. - - f11 i\1d.rdy = 0 
n DI <J.r iJy rJ.r 

( :\ .7) 

J 1 (iJi· . iH• • iJi• Up ) -;-) + 11-;--) + ''~ + -;----) + f1i 1\'1d.rdy = 0 
n < I < .r oy < !I 

( :\.S) 

11 (a.p iJ(<Pi1) iJ(:Pi•)) r ' -;--) + -.)- + -.)- i\ ,tl.ra !I = 0 
n <I r.r <!J 

(:\.!I) 



. ..., 
z 

.... 
z Q,) 

"Cl 
0 s:: 



where I = l ..... J/,l'f. By usmg Green "s Tlworem and taking into account t lw 

periodic boundary conditions in the .r direction and the boundary conditions on I'. 

the equation (A.9) can be shmrn to be equivalent to: 

J 1 (D,P \" •• DN1 . JJN1) I I 
-.-1 ·1 - -.pu-. - - tpt'-. - < J"< u = 0 

u Dt DJ" Du 
(A.IO) 

By substituting equations (A.:3). (:\..!)and (A.5) into (A.10), (A.7) and (A.S). 

the continuity and momentum equations in x and~· directions become respectively: 

M9- /\1:.p = 0 (A. I I) 

.\l 1i + /\211 + /\:1ip - 1\.11· = 0 (A. I 2) 

Mii + Ki1· + /\5<p + 1\.111 = O (:\.I :J) 

where 

c.p ::::: ( Yh lf2, • • • • y,\fnd f (A.H) 

ll = ( lli, ll2 •• •., ll,\fn.i} 
T ( :\.10) 

I'= ( l'1, U2, ••• 'V,\fnd)T (A.16) 

Mand /\i, .... I\:·, arc i\lnd x Mnr1 matrin•s and tlwir typical <•lcnwnts are gin~n by 

the following formulas: 

( :\.17\ 

(A.18) 

( :\.19) 

( :\.20) 

( :\.21) 



207 

. 11 . iJNm ( hs)im = ;\1-.---d.rdy 
n iJy 

(:\.22) 

Tlw definite integral f Jn ( ... ) d.rdy abo\·t• can be <'\"aluated by s11n11ni11g t lw 

contributions from the indi\"idual clements. For instance. 

where 

1-: 

.\//rn = L M[,,. 
•=I 

.l t;"' = j { St s;,, d.rdy ln, 

The <'Xpression for a typical entry in tlw c-th t•lcmcnt matrix is gin•n by (A.21). 

In the finite clement method. once the clement matrix Jr is dctermitwd for a typical 

Plemcnt. the global system matrix M rnn be obtained by systematically assembling 

(adding) non-zero entries of M' into appropriate entries of the matrix M. This 

is known as the assembly process or, in structural engineering, the direct stiffnrss 

method [226]. It is much more economical to deal with a local clement matrix 

Mi',mil• whose size is only :J x :J in this case, which contains only non-zero entries in 

the matrix M". The assembly of M1~cal into the matrix M is accomplished through 

a well defined correspondrnce among three sets of numbering for the global nodes, 

local nodes and clements, rcspecti\"cly (see [2·15], for example). 

A.2 Time Integration 

Tht• 0 schPme (sec, for example. [122]) will he ust•d to integral<' th<' cquat.ions 

(A.I I). (A.12) and (A.l:J) in tim<'. To this end. lt·t us introclun· a paranwl<'r 0 such 

that lo= I,,+ OD.t, wht·n· 0::; ()::;I ancl 11 = 0.1 ..... we can writ<· rquation (:\.11) 

as 

\I . 0 1 ·0 0 () • ;.p - \1-,:' = ( :\.2!)) 



wlwrc the s11perscript 0 indicatt's the time-dependent nodal vectors;:. 11. v c\·aluatcd 

at lo and the .;0 and -;;(I arc, respectively, 

(A.2i) 

Here we take 0 = l/2 which is usually called the Crank-~icolson schenw and 11se 

the following second-order approximation in time to q11asi-linearize the ach-ectin· 

terms in the shallow water eq11ations 

(A.28) 

(:\.2!)) 

The contin11ity eq11atio11 becomes, upon s11bstit11ting equations (A.26). (A.2i), 

(A.28) and (A.29) into (A.25), 

when· 

M(<pn+I _ <pn) _ ~l /{ i(<pn+I + 'Pn) = Q 
2 

(A.:30) 

(A.:H) 

By a similar twatment, the momentum cq11ation in the x direction heconws: 

where 

M(un+I - lln) + ~l /\2(11"+1+11"} + ~/ /\":1(',?"+I + <pn) 

- !:'::..tl\.,11 = 0 

,\/(un+I - 1~") +~I K:1(1'"+1+1•") +~I /\';,('/'+I+ :p") 

!).,/ 
+ 2/\1(1111+1 + 11") = 0 

(A.:J2) 

(A.:J:J) 

(:\.:H) 



where 

\I ( n+l n ;l\' ')\') -..,. , · • Ilk +Ilk r u: m • • • < 1 rn 
(/\3)1rn == Lf f A1--.->-'\k~ + 1\11'k1\'1;-.-,1 - d.rdy 

k=t ln - u.r uy 

Now if we define the following matrices 

ln 2.\/ -, . : = ~ - \1 nt 

IJ" - 2M T - nt + \ 2 

( '" 2M -1. 
= n1 + \:i 

Jn - ')/\' ~" ..: - - l'T' 

then equations (A.:30), (A.:12) and (A.3·1) become 

1rnu" = f" u 

(:\.:15) 

(A .:Hi) 

(:\.:J7) 

(A.:J~) 

( :\ .:J!)) 

(A.·10) 

(A..ll) 

(A .. t:J) 

tions (A..12). (:\..l:J) and (A.·H). after proper boundary conditions are incorporated. 

can be solv<'d one by on1• at each time step. 

To conclud1· this section, w1· mention that tlw ()scheme ( (} = I /2) was also fo1111d 

to he appropriat<' in a slightly differ<'nl application. 

To simulat<' t lw tidal and surge flows d111· to sPa-hcd erupt ions. Taylor and Davis 

[22:J]. 11si ng ( :akrki 11 fi 11 i If• <'lenwnt nwt hod. soh'cd t lw dl'pl h-an·raged shallow wat l'r 

l'<(llations. Tlwy inVl'stigat1·d I hrcc t irn<' marching algorithms. n<llll<'ly 



210 

I. :\n :\dams-:\loulton multi-step pre<lictor-corrector pron·duw: 

2. The finite difference trapezoidal integration (resulting in Crank-~icolson 

scheme); 

:3. The finite element in time. 

It was found that small time steps were necessary to achien~ a satisfactory accu

racy if method ( l) was employed for time marching. The met hod (:J) was found to 

be unable to handle tlw wave amplitude correctly and introducr spurious damping 

<!..;, phase retardation. The authors concluded that scheme (2) was satisfactory. 

A.3 Properties of Global Stiffness Matrices and the Data Structure 

\Ve point out a couple of important properties of the global stiffness matrices in 

this section. 

Although the matrix M (whose typical entries arc giwn by ( A.17) is symmetric. 

I\ i, I\ 2 and /\ 3 arc not symmetric, as may be confirmed from their definitions 

(A.:31), (A.:J:J) and (A.:J5). As a result, the three global stiffness matrices,\", Fr 

and C" defined in (A.:rn), (A.:J7) and (A.:J8) arc nonsymmctric. This means that 

one of the most favorable iterative algorithms. namely, the preconditioned conjugate 

gradient method (PCGS) [52] may not he applied for solving the linear systems 

(A..12), (A.-t:J) and (A.H) at each time step. The nonsymnwtric naturr of th<' 

global st iffi1<·ss mat rin•s in this application may. in fact. I)(' asc:ril)('d to thr presr11<'<' 

of advectivc tnms ui)/iJ.r and 1•iJ/iJy in tlw original shallow water equations. 

Typica 1 of the finite <·l<·ment met hod, most of t lw entries in the global stiffness 

matrices are z<·ro. d1w to the fact that tlw global shap1· functio11s N,(.r,y). i 

I. 2 .... , ,\/""' ha\·1· only local supports, namely, :\"; = 0 011tsicli· a n<'ighhorhood or 



211 

the node i. Tims, although the size of the linear system will be of order 0(/1-.!). the 

number of indices j such that a;J :fi 0 is 0( 1) for each index i, when• h is the mesh 

SIZe. 

For example. the non-zero regions of two global shape functions X; and X, 

depicted in Figure A. I are spatially disjoint. it follows that entries ( · · · )ij or ( · · · )ji 

in the global matrices must vanish. For a given global node/. the non-zero portion of 

th<' shape function Ni overlaps the 11on-z<'ro portions of at most six shape functio11s 

associated with its neighboring nod<'s (see Figure ·1.2). it is thus clear that there arc 

at most seven non-zero entries in any row of the stiffness matrix. 

To save the computer storage and. at the sa11w time. to keep the data st rue! ure 

as simple as possible. we store the global stiffness matrix, say '1 11 in (A.:H>). into a 

,\Ind xi two dimensional array coef, so that a maximum of seven non-zero entries 

in each row of the matrix may be accommodated. Except for diagonal entries of the 

original matrix which arc always stored in coef(i. i), i = 1, 2, ... , M 11d, the original 

C"olumn number for any non-z<'ro entry in coef is determined by another ,\[,,d x 6 

two dimensional integer array locat. Specifically, for any given non-zero entry 

coef(i,/), i = 1,2 .... , i\111 d and I= 1,2, ... ,6, we can always find its corresponding 

entry (A")ij in the matrix;\", where j = locat(i, /).Conversely, for any given non

zero entry (A 11 );J, i.j = L'2, .. . ,M11d, we may find a corresponding/, I= 1,2 .... ,(), 

such that j = locat(i,/). In g,.ncral, there exists a one-to-one C"orrespondence. via 

an integer array locat. between 11011-zcro entries of the original square matrix i\" 

and a rectangular matrix coef with only s1•w11 rnl11m11s. This constitutes a great 

saving or storage or up to .\/wl X (,\Ind - 7) floati11g-poi11t 1111111lwrs at the <'Xpcns1• 

of introd11,i11g an integer array or size M,,r1 x fi. 

Table A. I lists t lw contc11ts of this two dinwnsional intq~1·r array lo cat whid1 

is obtained by running the cock for a mesh resolution or I() x 1:) with ii row-wis<' 



212 

1111mbering of the global nodes shown in Figure :\.2. The typical sparse matrix 

strnctun' corresponding to the finite elc111c11t discretization on this seven point !>lencil 

shown in Figure :\.2 is illustrated in Figure :\.:J, where each x represents a non-zt•ro 

entry of the matrix. llowc\'er, without loss of generality. we consider a much smaller 

computational domain which consists of only the first thwc grid lines in Figure A.2. 

Hence. the size of the matrix is mud1 smaller (only ·l!l x ·15 ). so that the matrix 

structure in Figur<' :\.:J is clearly discernible. 

Since there is an extreme unbalance, especially for high resolutions. betwct·n 

numbrrs of rows and columns in tlw array coef and only the innermost loop is ablt· 

to be vectorized within a group of nested loops, it is important. for the manipulation 

of the array coef within a nested loops. to iterate the first index i of coef(i, /). 

i = l, 2, ... , j\/,.d, in the innermost loop. As an example, we consider a matrix

\'ector multiplication problem y = A" .r. There arc two ways to do this and both 

will, of course, give the correct results. 

Version I: 

Version 2: 

do 10 i = 1, n 

do 20 1 = 1, 6 

j = locat(i,l) 

if (j .eq. 0 ) goto 20 

y(i) = y(i) + coef(i,l) * x(j) 

20 continue 

10 

y(i) = y(i) + coef(i,7) * x(i) 

continue 

do 10 1 ::: 1, 6 

do 20 i = 1, n 

J = locat(i,l) 



Table A. l: locat(i. l), i = 1, 2 ..... ,\/,.,i and I = 1. 2 ..... 6. for t iw global n11m!Jeri11g 
shown in Figure A.2 

I= 1 I= 2 I= :3 I= ·I 1=5 1=6 

i = 1 2 16 15 :m 0 0 

i - •) I 16 17 :J 0 0 

i = :3 2 17 18 ·I 0 0 

i = I :3 18 l !) 5 0 0 

i = ;) ·I l !) 20 6 0 0 

... . . . . . . . . . . . . . .. . .. 

i = 14 13 28 29 15 0 0 

i = 15 l ·I 29 :30 l 0 0 

i = 16 1 2 17 30 31 45 

i = 17 16 2 :3 18 :H :12 

i = 18 17 :3 ·I 19 32 :n 

. . . . . . ... . . . . .. . .. . .. 

i = 220 21 !) 205 206 221 0 0 

i = 221 220 206 207 222 0 0 

i = 222 221 207 :W8 2n 0 0 

i = 2:.n 222 208 20!) 2:.n 0 0 

i = 22-1 22:3 20!) 210 22:, 0 0 

i = 22.'") 22-1 210 l!l6 211 0 0 



Figure A.2: A row-wise global numbering of nodes 

1..:. 



1 xx xx 
xxx xx 

5 
xxx xx 

xxx xx 
xxx xx 

xxx xx 
9 

xxx xx 
xxx xx 

xxx xx 
xxx xx 

13 
xxx xx 

xxx xx 
xxx xx 

xx xx 
17 

x xx xx 
xx xxx xx 

xx xxx xx 
xx xxx xx 

xx xxx xx 
21 xx xxx xx 

xx xxx xx ..... xx xxx xx 
25 

xx xxx xx 
xx xxx xx 

xx xxx xx 
xx xxx xx 

29 
xx xxx xx 

xx xxx xx 
xx xx x 

xx xx 
33 

xx xxx 
xx xxx 

xx xxx 
xx xxx 

37 
xx xxx 

xx xxx 
xx xxx 

xx xxx 
41 

xx xxx 
xx xxx 

xx xxx 
xx xxx 

45 
xx xx 

I I Jl(Ji( I I I I I I I I I 

1 5 9 13 17 21 25 29 33 37 41 45 

J 

Figure A.:J: Tlw spars<' 111at rix st rnctun• corresponding Io the discrdizat.ion on 
a s<·ven point. stenril li1war t.ria11g11lar finite• dt'nwnt lll<'sh shown in Fignn· A.2. 
a-;s11111ing that tlw ro111p11tational domain consists of only tlw first three grid lirws. 
Herc, t'arh x represents a 11011-zPro entry in the global st iffncss matrix. 



if (j .eq. 0 ) goto 20 

y(i) = y(i) + coef(i,l) * x(j) 

20 continue 

10 continue 

do 30 i = 1, n 

y(i) = y(i) + coef(i,7) * x(i) 

30 continue 

whl'f<' n is the total number of nodes .\ln,l· 

Tlw dependence analysis may he carried out by invoking FPP1 on t ii<' CHAY 

Y:\IP. It turns out that the loop :W in version I can alrn be vectorized, although 

the vector length is very short. It is apparent that tll<' loop :W in \·crsion 2 can he• 

vectorized with a much longer \'cctor length (equal to the number of rows in the 

global stiffness matrix) and hc11cc is much more efficient. A comparison of CP ( T 

time between these two versions run for different mesh resolutions is provided in 

Table A.2. 

To conclude this section, we notice that there arc many other storage schemes 

for sparse matrices. For instance, thn·<· orw dinwnsional arrays may be set up to 

store a spars" matrix ( [i7, 111 ]). If the nonzero demcnt s of a matrix arP 1war car Ii 

other in every row, the so-called profile stotage is n•commcmkd ([11·1]). 

1 which looks for possihilit it's of wrtorizat ion and parall,.foat ion and g,.1wral•'s a t ran~fomwd 

FOHTH ,\ ;>\ sourr,. rndP with a11totaski11g and rn111pikr dir••rt ivrs i11 it. 



217 

Table :\.2: :\comparison of CPt; time (seconds) on CR:\ y Y-~IP rn2 lwtwPcn two 
cocks which compute the multiplication of a global stiffness matrix by a vector for 
several m1c•sh resolutions 

:\lesh resolutions 16 x 15 :n .,-x _, ·16 x :rn 61 x 51 

Version l 6..1 x 10-.t 2.3 x 10-3 5.o x 10-3 8.7 x 10-3 

Version 2 9.:3 x 10-.5 :J.2 x 10-.t 6.s x 10- 1 l.2 x 10-3 

~lcsh resolutions 81 x 75 115 x 99 161 x 1-17 220 x 20:3 I 

Version l 1.7 x 10-2 :J.2 x 10-2 6.8 x 10-·2 t.:3 x 10- 1 

Version 2 2.:3 x 10-3 .1.:3 x 10-3 8.9 x 10-3 1.7 x 10-:.! 

A.4 Element Matrices 

Consider a typical element n, with nodes i, j and k numbered counter-clockwise. 

Assume the shape function defined on this clement associated with the node i is 

where 

J" I !Ii 

N[(.r,y) = ·> 
1
1 

(ai + b;.r + c;y) 
-1 r 

.r] y j = area of the c-t h triangular clcnwnt n, 

(A..t.1) 

(A.·IG) 

wlwrc> the constants a;, bi and c, arc clctc>rmined by the following rcquiwnwnt that 

N[(.r;,y;) =I, N[(J°1 ,y1 ) = .\"[(.r1;.Jlk) = 0. Tims, 

b, = !11 - !/I; (:\.·I~) 

( :\ .·l!l) 



Similarly. the other two local shape functions s; and NJ. associated with nodt>s 

j and k can be assumed to be 

Xj(.r, y) = 
2

.\,. (a 1 + bi.r + CjY) 

Nk(.r. y) = ·J '.
1 

(a1,; + b1,;.r + qy) -· ( 

(:\.50) 

(:\ . .11) 

where the constants a1 • bj. c1 • <11,;. b1,; and q are dl'lermined hy equations (A.·17). 

(:\..18) and (:\..l!l) through cyclic permutation. The element matric<'s can be <'Val11-

ated by Sylvester's formula 

( \ "'') 1 • .)_ 

The following clement matrices may he obtained 

I 2 I J , Ac 
M=- l '> n -

l 

(A.5:J) 

I b 

b· bk I ) 

•r l 
b) bk A3 = 6 b; 

b, b, bk 

(A.51) 

To obtain an explicit expression for the dt•nwnt. matrix/\~, notice that f is a linear 

function in .r and !J, as a result it can he rcprescnt<'d exactly by 

owr each ei<'nll'nt. ( :011s<'q11c11t ly. W(' han· 

'2f, + '2f1 + fk 

'2f; + Gf1 + '2fi. 

J, + :!.fl + '2/k 

'2f; + f1 + '2fi. I 
f, + '2f1 + '2fi. 

'2f; + '2f1 + G/k 

(A.ii.')) 

(A.%) 



bjdj 

hi 
l 

= - bjdi 21 
bk di 

b;d; 

r l 
\2 = - b,d) 

2·1 
b;<h 

where 

, .. f'; ck 

·c l 
I\"= Ci c (") ck I 

c· I c ) ck 

bid; b,<h 

b1d1 b;<h 
l 

+ 2·1 

b1.:dj b1.:<h 

bjdi bk cl; 
I 

b)d) l1kdj + 21 

b;<h hk<h 

l . - • + •) • + • () - ll; -llj Ilk 

·>·+ ·+. f; = -11; v
1 

irk 

Cjl'; 

Cjl i 

Cj;(j 

C;f; 

C;< j 

Cj( k 

The clement matrix I\; is the same as /\'~ <·xcept that 

2 l !J 

(:\.!Ji) 

c,1·1 CjCk 

Cjlj C;lk (:\.58) 

f'k<j f'kf k 
J 

(")( i Ckli 

C;<i Ck<_j ( :\ .59) 

Cjfk Ck<k 

( A.60) 

(A.61) 

(A.62) 

(A.61) 

( A.G5) 

u;,, <l = i .. j .. ~· 111 «'qtta-

tions (A.60), (A.61) and (J\.62) will lw replaced by (u~+t + u~)/2. 

A.5 Truncation Error for the Single Stage Galerkin Finite Element 

Method 

In this ~wction and tilt' n·st of this app<'ndix. wt• try lo s11111mariz<· th<' css<'ntial 

compon<'nls of a two stage :'\1111wrov-(:a1<·rkin finite t'l<'lll<'lll llH'lhod (sc•p [16!J] for 



220 

a full docu mcnt at ion of the met hod and [ l iO] for com pu tc>r im plenwnt at ion issues. 

Key feat urcs of this approach are also presented in [ 17·1 ]). 

The single-stage Galer kin met hod [.18] was applied to tlw nonlinear adwct ivc 

terms of form l'V t'. If we consider the adwctive operator 

(Ji· 
L( 11, I') = II-;-) 

( .r 
(:\.Gfi) 

then, as was shown in [.18]. W<' may consider a direct Galcrkin approximation using 

two functions 

(:\.67) 

and with 

~ = H1 and I/= lh (A.68) 

where h is a positive mesh length. One can show the asymptotic truncation error 

('LE.) of uiJ1,/D.r is (by assuming Fourier modes) 

(A.69) 

For ( = 17, we obtain 

IT.FI,..., J.2..,., 
;. 720 l (A.70) 

A.6 Truncation Error for the Two Stage Numerov-Galerkin Finite 

Element Method 

1 n this approach one calrnlatcs t h1· C:ah·rkin approximation to (),, / iJ.r which we 

1,,, 2,,, 1,,, 1,_.(\' \' ) 
-
6

"'1-I + -:J"'1 + -{·"'1-I =:;I '1+1 - '1-I 
I •J ) -

then w1· calculate tlw product 
(),, 

lF = 11-a.r. 

( :\. 71) 

(:\.72) 



The following formula can lw obtained 

111· 2 11· 111· 1 (l' .,, c· ,,, 6 ;+i + :i l + 6 l-l = 12 1
j-t"•1-t + 1

j-11'•1 

+ l rz. + (T. '" + [T 1Z· + (T. '"· ) + ~{T· '"· l ·1-l lL.l+l l+ 'l 1+1.t•1+1 2 -1"·1 (:\.t:J) 

It can be shown that this two stage :\umcro\·-Galerkin algorithm has an asymptotic 

truncation rrror ( d<'notcd by N .G.T .E.) of 

(:\.7·1) 

and if f. = 11 

IT.E.I :J I 
,...., -11 

IX.G.T.E.I 720 
(:\.7:)) 

namely. an error at least six tinws smaller than (:\.70) (sc<· [lG!J]). 

A.7 Numerical Implementation of the Numerov-Galerkin Method 

In om approach we cornhinr the two-star,e Galcrkin method with a high-order 

compact implicit difference approximation to the first d1•rivative. 

This approximation has a truncatimH~rror of o(h11 ) and uses a finite-differcnc<' 

stencil of 21 + I grid points -- at the price of solving a 2/ + I handed matrix ( Src 

[Iii, 208]). The compact N11111<'rov O(h 11
) approximation to iJu/iJ.r is given by 

- - + 16 - + :J() - -1- l(i -I [(j)v) (()p) (i)1i) (i)") 
70 i).r i+:.? a.r i+ I D.r i I iJ.r i-1 

(i)I') ] I + T = -, -
1 

[-:}1·;-2 - :121·;-1 + :121·;+1 + :i1·i+'ll 
< .r 

1
_

2 
X·I 1 

(:\.7()) 

wh<•n• h = ~.r = 2.y. 



The est irnat ion of iJv / D.r necessitates solving a p<•nt adiagonal sys! Pill oft lw form: 

iO 

84h 

for j = 1,2, ... ,Nl). 

:rn 16 

16 :rn rn 
Hi :rn 16 

16 :rn rn 

() 

16 :w 16 

16 :l6 

-.'}1·1 - :121·2 + :J21'1 + .')1·.) 

[~:] 

-!Jl'Ny-1 - :12v.vy-:Z + :121,,,.~ + .')v.vy+ 1 

-5vsy-3 - :J21wlf-2 + :J211,vy + 5v.vy+1 

Herc we interpolate for the boundary \'alucs of 1·0 and l'sy+I usmg 

while for tlw internwdial<' <'Xpr<'ssion /,we han· 

(iJ1•) 
lJy I 

= 
-2.'i1· 1 + 181·, - :161··1 + I fi1· 1 - :Ji·. 

• 12/i . . • + o( /, I) 

(A.ii) 

(A.iS) 

(A.i!l) 

(A.80) 



( iJ1•) 
i)y ,\·~ 

:k.v,,-1 - Hi1·.v.-a + :IGP.v.-2 - ·18v.v.- 1 + 2.1v.v0 

12h 

(A.81) 

For t lw second stage of the i\ umerov-Galerkin finite e!Pment. we sol\'<' a tridiag-

onal system of th<' form 

l 

·I 

·l 

·l 

1 
[wJ] = ~ 

l'j-1 zj-1 + 1·1 z1 _1 + 1'1 -1 z1+ 

l'1+1Zi + ,,jzj+1 + ''i+1Zi+1 + 01·jz1 

In the second stage we interpolate the values of Z0 and Z.vy+1 in a way similar 

to equations (A.80) and (A.81 ). A pentadiagonal and a cyclic pentadiagonal ma

trix soh·cr (induced by the periodic boundary conditions) were developed in [ 171] 

following [2:JO] and generalizi11g [5], respectively. 

A.8 Some Numerical Results 

In this section. we present som<' finite dPnwnt solutions of the shallow watPr 

equations introduced in Chapter ·I. The pre-selected reference geopo!Pnt ial -;0 is 

chosen to be 104 so that the non-dimensionalizcd geopotcntial has an order of mag-

nitu,I<· of 0( I). Granmwltvedt's initial condition (scP Figur<• A..!) has lwcn 11sPd 

thro11gho11L The contour lines of t lw gcopotenl ial at thP <·nd of i"th day ;m· pre

sented, i = 1, 2 .... , 10, in FigurP A . .1- :\.l·I. All sol11tio11s arc obtai1wd with a nll'sh 

n·sol11t ion of :i.'i x 27 and with a tinw step ~I = 1800 sc·nmds or half an hour. Tl111s. 

to g!'I the solution corresponding to tlw end of ten days. ·180 iterations arc required. 



C? 
' 

... 
' ' '- ... , .....; 

' Cl .... 
I ...., 

, ,•' c: 
' ~ I 

' =:i I ...., 
I ' 0 0 
' ' p,, ' 0 ' I 0 
I .... I 

:.i ' l:lJ ' I 

' I -' ' Cl ' ' ' ... . .. ...., .. c ... 
• 0 d __ ..... . .. , 

tll I 

0 
I 

I 0 ;..i I 

~ 
I I N >< 'C I I 

~ I I Cli "'1 I I :>-
' 

I ...., -~ ~ 
0 a 

' 8 I 
I 

Cl I 

' '"' t-' 

~ 

' "! < I 0 
I I ~ 
I 

'"' I ::l I 
l:lJ .... 
"' ' 0 

' 0 

CCCCL'O oooc;irn l999C'O cccero 00000·0 
h 



~ 
~ 

\ 
\ 
\ 

~ 
\ \ 

oc\. \ \ 

' I 

' ' I c\ 'tl .... __ 
I 
I ~ 
I C:l .... I 
I 

I 
0 0 

I 'tl , . I 
c= ' I 

' I CJ \ 
\ 
I CJ 

..c: 
I ~ 
I co I I ~ 

I \ I 0 d I 
I I 
I .... 

\ 
I d \ 
I ... 
I 

>< 
~ 

I c= c I {j) I I , ..., ~ 
I a; 0 

~ i::i.. , , 0 0 , , , C!l , , 
bl) 0 

, , , 
~ I I C!l I \ ..c: ..-4 I \ , 

\ E-o \ 
I 
I 

"! ~ 
0 < 

C!l 
s.. 
:::3 
!:II 

i:i: 
I 
I 0 
\ 

0 

&&&&L"O OOO!l!:-0 L999&'0 cccero 00000·0 
A. 



c: 

r1l 

I ~ 
I "'O 
I 

' I C\I 
' I c:: ..... ' ' '• ....... ' 0 0 

' ' "'O ' <:::> I ~ 
' , CJ , , 

CJ 
' .c: I 

, I ,.J 
, , I "! ,.J , 

' , , 0 al , , 
' 

, -' 
, 

al , I .... , 
' ,.J , 
' ~ ~ 

, 
' , 
' CJ , 

I I ,.J 
N I 0 0 I 

I 

a:> ' ""! 0. 
I 0 0 

.-4 ' CJ I 
l:I) I , 

I CJ 
.c: 
E--

I 

ti! IO 
I 

< I 0 
I 

, I CJ , 
I 

"' 
, 
I ' ::l ' I 

' l:ll ' ' I ' .... 
' I µ. 
' . I ............ ___ 

I 0 -. . I 
0 

cccc1:0 oom;irn l.999&"0 cccero 00000·0 
h 



'? 

Cll 

I ~ 
' c "'d ' "" 

I 
~ I I Clj I~ I I co _,,' C?i ,' ' c,.., 

0 0 ----- ....,.,,, , . ' "'d I ' I I 
I c:: ' 

, 
I I ' CJ 

0 
I I 

' I CJ I 
I ..c: 0 ' I 

' ~ ~ ' I 
I I G) 

~ .-1 
' 

I I c:i al . I I . . I I . 
' I .... 
I I 

I al 
I I I .... I ' ~ o ... ~. •O I 

~ c:: I 
'O ' 0 'l-~ 

(I) ' . I 
,' CIJ I ~ ~ 

I 
C\i 

I 'l-· 0 
' I ..,. p.. 

I I I ' 0 0 I ..,, I 
I 

' CJ I I I ' I I I ' bl) 
I I ' , ...... I I I 

CJ I ·-· I ' ..c: ' I 
I I 

f-4 I I 

' I 

' I I cc ' I I 
Cll 

I I I 

< I I 0 I I , 
' I 

' 
I CJ I I 

"" 
I 

' . ... ;:l ·-·"" ' bl) ' I 

0 ' I 

' ~ ' ' '-- ..... 
I ' 0 I I 

0 

ccccL·o OOO!i<rD Lgsgc·o cccero ooaoa·o 
I. 



228 

0 
I I 

...; 
I I . I , I tr. I 0 I 0 >. I 

0 I ...... d I 

' t\1 N 'O I 
\ 

!& ~ ' ::l ..... \ rv· ' 0 0 . . 
0 ' 0 'O ' c: co \ ... 

..; I .. ...; I Q 
I 

Q 
.r:: ... 

\ 10 ... 
I 0 d -d .... 

>< 
... 

\ c: I 

CJ •' .-· , ... 
I 
. 

0 . . 
I ~ i::. I 

0 0 
Q 
~ 

CJ ... -I E-
I 

I"; I 

C"! I . 
0 < .......... . . Q 

' 1-o 
;:l 
bl; .... 

t:.. 
0 
ci 

i:m:co ooo~~.-o L999C"O i:i:cero 00000·0 
£ 



229 

~ 

(' )" ' 
. 

I ,.> U'i . I >. . ::: . o· o,.._ , -. "' . o .. cl l.~ . ' ~ ', . 
::l 

0 
. '" . I .... . 

0 0 I I 

I 0 -' ~ "" O• .. 
N .. c;: I ::i 

' 
•I 

' . ..... I:) 
I .. 

~n 
, . -,,.j 

, Q 
,,.j 

, , ci ::: -: ..., , , 

-\ : ' , -.............. I ::: . 
,,.j 

\) ' :< .. ... 
• . .: . c ,:,~ 

I \:) "' ,· q,· .... .. -.... 
~ ~ , :v· -o, 0 ~ 

o~. 
' "" ' ~- .. -. 

~ ::£ / . 

~ 
~ .. -

' -' \ . ·-. . -\ N -: I < . 0 
\ 

~ 0 
I -... ' ::L 

' 
. 

' ' 
. I 

I t;. , I 

, ... ' 
I 

, I 0 
0 

CCCCl"O ooosn L999C"O cccero 00000·0 
I. 



CCCCl:o 

' 
' 

.............. 

,' 
,' 

', 

c 
C';: . ' .... , 

' 
' 

- ' 

' , 

._ ' .... 
0' ..... 

• .......... ~;:._OJ\. \ N 

" /' ' 0 I I 
I 1 I I 

, ~ ......... 
' 

ooosn l999C"O 
I. 

I 

' ' 

' , 

cccero 00000·0 

c 
..... 
c -.,, :: .. 
"" 

::: 

.. .... 

., 
;:: 
: 

~30 



~31 

:o :r. 'N ;;.... I • 

•,N t: 

~ -I I ... 
'c: ' 

"" iv· , , 

0 '/r~·: 
' 
, .... 

' ,.. 
::: 

..., -c , ' -' ' .. 
~ ' ' (;) 

0&·, : II I .. , .... ' ..., 
' ' ' c ... 

' ' N. ...; 

' 
I 

~ ...; . I c ,. 
:::: .. 

' . 0 ,. 
' . ' ... 

I . ' ...; 
I ... .. 

3 
' 

.- ..... 0 ....., - ,.. 
I - ' '<! -..... 

0 , , 
~: N - i:; 

............ ... t:! .. 
'"' ... ..... 

' '"" .. . -.... 
' N . . 
' ' N ... I ..... 

~J 
, , - < I ' 

' ::J -.. 
' ' .. 

' ' ' t:£ 
' ' 
' . :.:... ' 

' 0 
0 

CCCC!."O OOOt;t;"O .l999C"O CCClll"O 00000·0 
I. 



232 

..... !) tr. 

;· 
',.... ' -' 

...,,, ' "" ..... 0 ' 
' N ' c '-

' 0 , - -"" 
= ... :;.i 

"" 
' -' 
' c -' 

0 :: 
... 
" 
-' 

x 
, . :;.i 

' -' 
' ' 0 

,/ .... ~ ..,, :. 
' ' .. ' - I ()/ -, , - I:; 

' t:.C ' 

r? 
I .. .. 

' ... 
' -' 

' 
I -' N 

' . 0 0 < . .. . 
' ;:: ' ' ' ' :::; 

t:.C ... 
t:. 

' 0 
' 0 

CCCCL"O ooo;;·o l999C'O cccero 00000·0 
£ 



'.!33 

0 . . ' . 
/ 

,.., . ...... tr, ' .... 
I 2 N ' c: I -\ c:. 

:...\ 
0 

.., 
C'J N 0 Oe . . . .............. N = '-I ' " . 0 .... ... . -....... -..., 

::; 
c.; . -' I ....i . I . 

' c _, 
' ::: -o -. -' .. . ....i 

0 
.. 0 ' x .. .... ' . , 

I .... 
I _, . Oo. I ~ a 0 

' 0 2' C\I ~ ,... '<!' -.... 
/ N 0 - ., . ... . 

t:t 

... 
I ... -I 

I :-I 

I 

I N 
N -. 

' 0 < . . ., , .... .. ... . ... 
' t:t ' 0 ' ;.:., 

. ' ' 
, c: 

0 

CCCC!'C ooor;r;·o l999C'O cccero 00000·0 
!. 



-
c{~ /) ' tr. 

' .. ' 2 '"\ . 
,0 I -0 "' .o 

0 ~~ -c 
c ..... 

0 

-. .. . 
i:; 

c i:; 
c: ... 

-' 
0 
0 --. c: . . 

I -.... -· :: . 
~. 

-' ' I x 
'• ' 0" .. ' 0. I c! i:; 

~. . 
N 

. ' o, 
c . .. I . ~- ... 

,/' ~ ~ - .... 
... ... ---...... ... , :J . ~ 

' . . ' 
. . -I ... 

,-. 'I ' .. ' 
I N :? 

.. -.. -.. . c 
< 

' 
' i:; 

0 -... .... 
~ .... 
~ 

' c 
I' ' c 

CCCC.!.'O ooosn l.999C'O cccero 00000"0 
£ 



REFERENCES 

[I] L. :\dams. m-Stq> pwrnnditioned conjugatt• gradimt lll<'lhods. Sl..t.\/ ./ . . 'fri. 

'-'/ I (' I ("("')·I'"'' 1c·1 }<) ,,.. ,J a . ompu .. > _ • ·>--· o.,, . ~->. 

[:!] L. :\dams. Heordering computations for parallc·I <'XP<"t1tio11. Comm . ..lppl. 

;\"11111< r .. \/<th .. :!::!G:J :!71. 1986. 

[:JJ L. :\dams and IL \'oigt. :\ mP!hodology for PXp!oiting parallelism in tlw fi11itc 

el<'tm•nt process. 111 .I. l~owalik. editor. Prnrru/i119."' of llH .YA TO lrork ... /wp 011 

//iyh Spf£d Co111p11falion ..... ;\":\TO AS/ Sfl"ic.-.. pag<'s :J/:J -:J!J:!. Spri11g1•r. B<'rlin. 

1981. 

[.!] V.I. :\goshkov. Poincar(·-Steklo\"'s operators and do111ai11 d<'rnmpositio11 nwth

()(ls in finite dinwnsional spaces. In H. Glowinski. C.11. Goluh. G.:\. :\l<'u· 

rant. and .I. Pi•riaux. editors. Fir.~t !Tllfnrnlio11al Sympo .... ium 011 Domain Dr-

rnmpo,;if ion .\/rtlwds for Pa rl ial DiJTr rrnl ial Equal ion . .;. pages /:J · 112. SL\ :\I. 

Philaclt•lphia. 1!188. 

[.'">] II.II. :\hllwrg. E.:'\. :'\ielson. and .J.L. Walsh. T/H Tl1rnry ofSplilH.-. and TIHir 

:lpp/irnlio11, .\/atlu ma firs in Srir 11n "1Hl E11!fi11rr ri119. :J8. :\cad<'mic Prl'ss. 

::\1·w York. 1%7. 

[<i] C.:\I. :\mdahl. Thi' \·alidity of I hi' si11gl<' pron·ssor approach to ad1i1•ving 

large sral<' rnmputi11g capahilities. In Pmnuliny .... of !hr :IFl/ 1S Comp11/i11!/ 

Co11fr rr un. \"olmm<JO. pag<'s ·18:J 18:i. I %7. 



:!:Hi 

[7] G.:\I. .\mdahl. Limits of expectation. Int . ./. Supt rro111p11f1 r :lppl .. :!(I ):88 97. 

[SJ 0. :\xclsson. Incomplete block matrix factorization preconditioning methods. 

Tilt' ultimatt• answer? ./. Comp. :lppl .. \lath .. I:!,\:l:J::J-I8. I98:>. 

[!l] 0 . .-\xelsson. :\ surwy of prern11ditio1wd it<'ratin· methods for linear systt•ms 

of algt·braic 1·q11atio11s. Bit. :!'l:](i(i IS7. I!J8(i. 

[IO] 0. :\xelsson and \".:\. Barker. Fi11ih /:'h 1111 nf Sol11tio11s of /Jount!ary l "aft1t 

l'roblt 111 ..... Thrnry and Co111p11tatio11. :\cadt•mic Pn•ss. :\Pw York. I !JS I. 

[I I] 0. :\xelsson and G. Lindskog. 011 t lw cigPnvalue distribution of a cl<1ss of 

preconditioning methods . .\"11111£1' • • \lath .. ·l~H7!J ·l!J8. 1!)86. 

[I:!] 0. :\xelsson and X. :\lunksgaarcl. :\ class of pr<•conditiorl<'d ro11j11gate gra

diP11t mC'fhocls for the solution of a mixed finite-l'l<'ment discrdization of the 

biharmonic operator. Int . ./. :\'11111t r . .\lath. J-:119 .• I·l:IOOI-IOI!J. 1978. 

[I:J] 0. ,\xelsso11 and;'\. :\lunksgaard. :\11alysis of i11romplde factorizatio11s with 

fix<'d storag(• allocatio11. In ILi. Eva11s. editor. fJ1H·n11tlitio11i11g .\!tthotls: A11al

.'J·"'i·" anti :lpplirafio11s. pagt•s :!I!l-:!·l I. Gordon and Bn·ach. Sci<'nn· Publislwrs. 

Inc .• l!IS:L 

[HJ 0. :\wlsson a11d B. Polman. Block pr<'rn11ditio11i11g a11d domain decomposition 

methods I. T1•rhniral Heport S7:J:>. lkpart11w11t of '.\latlwmatirs. l 711i\·t·rsity of 

~ijnwg<·n. I !JS7. 

[I:>] H.(;. Babb II. l'rnyra111111i11!J l'aralltl !'rnt·t.".~ors. :\ddis<>:1-\\'csh·y P11hlishi11g 

C'0111p;111y. Inc.. I !188. 



2:n 

[Hi] I. Bahuska. 011 t}H' Schwarz algorithm in tht• tlwory of diff<'n·ntial <'q11atio11s 

of matlwmatiral physics. TrlHrnsl .. \lath . ./ .. S::J:,!S-:Jl2. l!J:"iS. 

[17] B.E. Bank. \\".:\!. Coughran. :\L\. Driscoll H.I\. Smith. and \\". Ficht1ll'r. 

It <'rat in• nwt ho els i 11 s<'lll irnnd uctor cit> vice simulation. Co111p111. Ph !J-'. Comm .• 

;,:J:201 -212. l!JS!l. 

[ 18] S. Barnett. .\/al rin .-< • • \/d/wd.-< a 11d :l ppliral io11s. Clan•ndon Press. Oxford. 

l!l!JO. 

[l!J] Ph. BNg<·r. D. Comt<·. ancl Ch. Frahoul. :\11:\ID S11p<•rrnmp11t<'rs for 111111wr

ical applications. In .J.T. Dc\·n·<·st• and P.V. Camp. <'clitors. Supt ffompult r.-< 

i11 Tluorfliral a11d l:'.rp< rimt 11/a/ Sric nrr. pages J J.) 1·12. Pll'1111m Pn·ss. :\1·w 

York. I !JS-1. 

[:W] P. E. Bjorst acl ancl 0. B. Widl1111d. ltnat in· md hocls for t II!' sol11t ion of <'Iii pt ir 

prohiems 011 n·gions partitio1wcl into s11hstrncturcs. S/:1.\1 ./ . .\"11111t r. :Ina/ .. 

2:J(fi):IO!J7 1120. l!JSfi. 

[21] P.E. Bjorstad and O.B. Widlund. To on·rlap or not to o\·erlap: a 1101<' 011 

a domain dccomposit ion met hod for <'Iii pt ic prohl<·ms. S/.-1.\/ ./. Sci. Stal. 

Co111p11I., 10(.1):I0.1:J-l061. I!JS!J. 

[22] .J. II. Bram bl<., .I.E. Pasciak, ancl A. II. Schatz. TIH' rnnst met ion of pr<'COll

clit imwrs for 1•1liptic prohkms by suhstructurrs . . \lath. Co111p .. 17:1():J-l:JI. 

l!JSfi. 

[:!:Jj .I.II. Bramble .. J.E. Pasriak, ancl :\.II. Schatz. :\n itcratin· 11ll'thocl for rlliptic 

probh·ms 011 rq~io11s pa rt it ion rd into s11 list met Hr<'s .. \/ 11/ li. ('0111 p .• Ui::H> I - :l(i!l. 

I qs(i. 



2:l~ 

[21] :\.Brandt. :\lulti-lt·n·I adapt in· solutions to houndary-\·altw prohlt•ms . . \/11th. 

Comp .. :H( l:lS)::l:l:l :l!lO. l!l77. 

[2."i] :\. Brandt. C:uid" to multigrid drv<'lopnwnt. 111 \\". llacklrnsch and r. Trot

tl'nherg. <'di tors . . \111/tigrid .\It !hod.~. Lrclun .\"oft·" in .\lallu 11111/ics .<JfiO. pag<·s 

220 :H :!. Spring<"r- \"<'rlag Berlin lleid<'Ilwrg. I !182. 

[2G] S. Brawn. fnlmd11clio11 lo Para/ltl Progra111111i119. :\cad<'mic Pwss. :\<•\\"York. 

I 98!!. 

[:?i] \\".L. Briggs. :I .\111//igrid Tutorial. Sl:\:\I. Philadelphia. l!lSI. 

[28] P.:\. Brow11. :\ t hcord ical comparison oft lw :\moldi a11d G :\IH ES al!!,orit hms. 

S/:1.\1 ./.Sri. Stal. Compul .. !:?(I ):."iS IS. l!l!ll. 

[:?!!] G. Brussi110 a11d V. So1111ad. :\ rnmpariso11 of dir<'cl and pr<'nmditiont'd itN

at iv<' tcrlrniqw•s for sparse. unsynmwt ric syslt'ms of litwar <'quat ions. Inf . ./. 

;\"1111u r .. \Ir Ihm/...; !'.'119 .• 28:801-8 l:J. I !ll'l!l. 

[:JO] X. Cai. \\".D. Cropp. a11d D.E. h'.«'.Yf'S. :\ comparison of som<' domain dl'

compositio11 algorithms for 11011sy11111wtric elliptic problt•ms. 111 D.E. K<·y<·s. 

T.F. Chan. (;. :\ll'urant. .J.S. Scroggs. a11d ILG. Voigt. <'di tors. Fifth /111< rn11-

lio11al Sy111po.,i11111 011 /)011111i11 Dtro111posilio11 .\/dlHnf., for Partial DiJTt n 11/i11/ 

/'.'q11alio11 .... pag<'s :?21 2:r>. SL\:\1. Phila<lt·lphia. I !l!l:?. 

[:HJ X. Cai. \\".D. Cropp. a11d D.E. l\t"ycs. :\comparison of som<' domai11 d<'rnlll

posit ion a11d If,{' pn-condit imwd ikrat iv<' 11wt hods for 11onsy11111wl ric <'Iii pt ic 

problrms . ./ . .\"11111f r. /,i11. :Ilg. :lpplin• .• to app<·;ir. 

[:l:?] X. Cai. \V.D. (;ropp. D.E. l\<·y<·s. a11d :\l.D. Tidriri. \<·wto11-l\rylm·-Sd1warz 

nwthods in <'FD. In D.E. l\!'Y('S and .I. Xu. <'ditors. Srn11lh /nl1rnalio11al 



('011ffn11n 011 Do111ai11 Drro111po . ..;ifio11 .\f<lhotf . .., in Scir11lijir and l:'t1yi111rri119 

Co111p11li11y. :\:\IS sl'fi<'s of Contemporary '.\latlwmatics. :\111nica11 '.\latlwmat

ical Socicty. to appear. 

[·n] X. Cai and O.B. \\"idlund. Domain d(·rnmposit ion algorithms for irt<h·finit<' 

t·llipt ic prob!Pms. Sl:l.\l ./. Sri. Slat. ( '0111p11I .• I :l( I )::nl 20S. I !1!12. 

[:JI] Y. <'ai and 1.:\1. '.\arnn. lt1·rati\·c domain dc'composition algorithms: tht•ory 

and applications. In F.X. Le Dinwt. <'ditor. l/igh Pf 1for111fllllf Co111p11li11!J i11 

/hr Grn ... cir 11n .... 1-\luw<'r :\cad<'mic Publishers B. \' .. To app(•ar. 

[:Vi] Y. Cai and 1.:\1. '.\arnn. Parall<·l block pn·e<mdit ioning t<'ch11iq11es for the 

1111m<'rical simulat io11 oft lw shallow watrr flow 11si11g fi11it<' rl1·11w11t 11wt hods . 

./. Co111p11I. Phy ..... to appt•ar. 

[:lo] Y. Cai and 1.:\1. '.\arnn. Parallel do111ai11 decornpos(•d pn•conditiorl!'rs for the 

finit<' elemrnt shallow watPr flow modrling. In D.E. Keyes and .I. Xu. (•di

tors. Sr 1·r 11th Inf< nwlio11al Co11fr n 11n 011 Do111ai11 D<ro1111w ... ilio11 .\It Ihm/ . ., i11 

Srirnlifir and F11.qi11(( rill!J Co111p11li11y. :\:\IS s<'ries of Cont<'mporary :\lat ll<'-

111at ics. :\nwrican :\lat lwmat ind Socidy. to app1·ar. 

[:17] C:.F. Can·y. Parallelism in fi11it<' 1·ll'rrwnt mod<'ling. ('0111111. :lppl . .\"11111< r . 

. \lrlh .. 2:2Sl-2S7. l!ISG. 

[:IS] T.F. Char1. :\11alysis of pr<'condit iorwrs for domain dcrnmposit ior1. Sl:I.\/ ./ . 

.Y11111r '" .-I 11a/.. 21(2)::1s2 :mo. I %7. 

[:l!l] T.F. Char1. :\ domain-dcrnmpost•d fast Poisso11 soln-r 011 a n·cta11gh·. S!:l.\I 

./. Sri. Stal. ('ompuf .• S( I ):sl I s:!fi. l!IS7. 



[-10] T.F. Chan. Boundary probe domain decomposition preconditioners for fourth 

order problems. In T.F. Chan. R. Glowinski. J. Periaux. and 0.B. \Vidlund. 

editors. Scco11d lntcnrntional Symposium 011 Domain Dlcompositio11 ,\/ctlwds 

for Par·tial Differential Equations. pages 160-167. SI:\:-.L Philadelphia. 1989. 

[-11] T.F. Chan. Fourier analysis of relaxed iucomplctc factorization precondition

ers. SIAM J. Sci. Stat. Comput .. 12(3):668-680, I 991. 

[.12] T.F. Chan and D. Goovaerts. On the relationship between overlapping and 

nonovcrlapping domain decomposition methods. SIAM J .. \/atri.r A11al. Appl .. 

13(2):663-670. 1992. 

[·l'.l] T.F. Chan and D.E. l\eyes. Interface preconditioner for domain-decomposed 

convection-diffusion operators. In T.F. Chan, R. Glowinski. J. Periaux. and 

O.B. \Vidlund. editors, Third International Symposium on Domain Dffom

position Methods for Partial Differential Equations. pages 2-15-262. SIA?\1. 

Philadelphia. 1990. 

[H] T.F. Chan and T.P. ~lathcw. Th(' interface probing technique in domain 

decomposition. SIAM J .. \/atri.r A11al. Appl .. 13( I ):212-2:18. 1992. 

[-1.5] T.F. Chan and D. Rcsasco. :\survey of preconditioncrs for domain decompo

sition. Technical Report -I I ·I. Computer Science Dept.. 'Yale li ni\· .. 198.5. 

[·16] T.F. Chan and D.C. Rcsasco. :\ framework for the analysis and construc

tion of domain decomposition preconditioners. In R. Glowinski. G.H. Golub. 

G.A. ?\leurant. and J. Periaux. edit.ors. First International Symposium on Do

main Drcompositio11 Methods for Partial Differential Equations, pages 217-

230. SIA~I. Philadelphia. !9SS. 



[4i] R. Chandra. Conjugal< 9radieT1t mt/hods for partial diffcn 11tial cquat1011.,. 

PhD thesis. Computer Science Dept.. Yale Cni\" .. :\cw Haven. CT. 197S. 

[48] S.C. Chen. D.J. h:11ck. and A.H. Sameh. Practical parallel band triangulu 

system solvers. A CM Trnus. ,\lath. Soft1c .. ·1:2i0-2ii. 19iS. 

[49] A.T. Chronopoulos. :\ fast squared Lanczos method for nonsymmctric linear 

systems. Technical Heport l1:\1SI 91/310. lJni\". of :\lin1wsota Supercomputer 

Institute. 1991. 

[,'JO] R.\\'. Clough. The finite clement in plane stress analysis. In Prncculi11gs of 

tin Stco11d A.S.C.E. Confe1vtu 011 Eltctro11ic Co111p11tntio11. pages :J.t5<37S. 

1960. 

[51] R.\V. Clough. The finite clement method after twcnty-fi\"c years: a personal 

view. Computers and Structures, 12:361-3i0. 1980. 

[52j P. Concus. G.!L Golub. and D.P. O'Leary. :\ generalized conjugate gradient 

method for the numerical solution of elliptic partial differential equations. In 

J.R. Bunch and D . .J. Rose. editors. Sparst ,\/atri.r Computations. pages 309-

:332. Academic Pres~. :\ew York. 1976. 

[.53] R. Cottle. :\lanifestations of the Schur complement. Li11rn1· Al!lcbra Appl.. 

8:189-211. 19i·L 

[.1·1] IL Courant. \'ariat.ional methods for the solution of problems of equilibrium 

and vibration. Bull. Am. ,\lath. Soc .. ·19:1-23. 19·13. 

[5.5] CRAY Hcsearch. Inc .. Distribution Center. 2360 Pilot I\nob Road. :\lendota 

Heights. ~f;\' .55120. l!N/COS Pcrforma11c( Utilitits Rcfrmm Manual. SR

!!040 6.0, 1987. 



[5G] CHAY Hcsearch. Inc.. Distribution Center. 2:360 Pilot l\11ob Road. \lendota 

Heights, :\!'.\ 55120. CRA r l"-.\IPT.\/. CRA }" X-MP EA TM, a11d CRA r 

X-MPT.\I multitasking programmer's manual. SR-0:!2:! F-01. 1989. 

[57] CRAY Research. Inc .. Distribution Center, 23GO Pilot I\ nob Road. :\I en dot a 

Heights. :\!:\ 5.')120. CFnTM Compiling Systems. \olumt 4: Paralld Pro

nssi119 Guide SG-3074 4-0. 1990. 

[.j8] :\1..J.P. Cullen and K.W. :\lorton. Analysis of crnlutionary error Ill finite· 

clement and otht·r met hods. J. Compuf. Phys .. 3-1:2-15-267. 1980. 

[5!l] A.H. Curtis. :\1..J. Powell. and .J.I\. Heid. On the estimation of sparse .Jacobian 

matric<>s. J. Inst. Math. Appl .. 1:~:117-120, 1974. 

[60] J. W. Daniel. The conjugate gradient method for linear and nonlinear operator 

equations. SIAM J. Numer. Anal .. 4:10-26. 1967. 

[61] B.W. Davies. Superrnmputing- a forward look. In R.G. Evans and S. Wilson. 

editors. Supercomputational Science. pages 333-343. Plenum Press. New York. 

1990. 

[62] Q.\'. Dinh. R. Glowinski. J. Periaux. and G. Tcrrasson. On the coupling of 

\·iscous and inviscid modeb for incompres::ib?~ fluid flows \·ia domain decom-

position. In IL Glowinski. C.H. Golub. G.:\. :\leurant. and J. Pcriaux. editors. 

First !nttniatio11al Symposiu111 011 Domai11 Dtcompo.~itio11 Methods for Partial 

Diffcrrntial Equations. pages :J50-369. SIA!\1. Philadelphia. 1988. 

[63] D. Dodson and .J. Lewis. Issues relating to extension of thC' Basic Linear 

AlgC'bra Subprograms. ACM SIGNli.H Nc1cslcttcr. 20(1):2-18. 1985. 



'.!·t:J 

[64] J.J. Dongarra. J. DuCroz. I.S. Duff. and S. Ilammarling. :\set of le\'el :3 Basic 

Linear Algebra Subprograms. ACM 1h111s .• \latl1. Softw .. 16:1-li. 1990. 

[65] J.J. Dongarra. J. DuCroz. S. Hammarling. and R. Hanson. An extended set 

of Fortran Basic Linear Algebra Subprograms. ACM Trnns. Math. Softu· .. 

14:1-li. 1988. 

[66] LJ. Dongarra. !.S. Duff. D.C. Sorensen. and IL\. Van <ler \"orst. Solz·i11g Li11-

wr Syslt 1111' 011 \ "rcto,. a11d Sliced Memory Compuhrs. SIA:\1. Philadelphia. 

1991. 

[67] J .J. Dongarra and IJ.C. Sorensen. :\ portable en\'ironmcnt for dc\'eloping 

parallel FORTRA:\ programs. Para/It! Computing. 5:1/.j-186. 19S7. 

[6S] J.J. Dongarra, D.C. Sorensen. K. Connolly. and J. Patterson. Programming 

methodology and performance issues for advanced computer architectures. 

Parallel Compuli11g. 8:-11-58. 1988. 

[69] M. Dryja. A capacitance matrix method for Dirichlet problem on polygon 

regions. Sumer. ,\lath .. :l9:5l-6-l. 198~. 

[70] ~I. Dryja. :\ finitc> clement-capacitancP method for elliptic problems on regions 

partitioned into subregions. Sumer. Math .. ·14:15:J-J68. 198·1. 

[71] '.\!. Dryja. An additi\'<' Schwarz algorithm for two- and three-finite clement 

elliptic problems. In T.F. Chan. R. Glowinski. J. Pcriaux. and 0.B. Widlund. 

<'ditors. SlCond lntcr11atio11al Symposium on Domain Dtcomposilio11 Methods 

for· Partial Diffrrrntial Equations. pages 168-172. SIAM. Philadelphia. J!)S!I. 



[72] :\1. Dryja and O.B. \Vidlun<l. :\n additive variant of the Schwarz alternat

ing method for the case of many subregions. Technical Heport 339. Courant 

Institute. :\YC. 1987. 

[73] l\1. Dryja and O.B. Widlund. Some domain decomposition algorithms for 

elliptic problems. In D.R. h:incaid and L.J. Hayes. <'ditors. ff( ratiuc .\htlwd., 

fo1· Lar'!)c Linrnr Sys/ems. pages 273-291. Academic Press. Inc.. 1990. 

[74] :\1. Dryja and 0.13. \\'idlund. Towards a unified theory of domain decomposi

tion algorithms for elliptic problems. In T.F. Chan. R. Glowinski. J. Periaux. 

and 0.B. \\'idlund. editors. Third /ntcrnalional Symposium on Do111ai11 De

composition ,\lcthod_c .. for Partial Difftnntial Equations. pages :)-21. SIAl\1. 

Philadelphia. 1990. 

[75] 1\1. Dryja and O.B. \Vidlund. Additive Schwarz methods for elliptic finite cl

ement problems in three dimensions. In D.E. Keyes. T.F. Chan. G. l\leurant. 

J.S. Scroggs. and R.G. Voigt. editors. Fifth lntcrnalio11al Sympo.<;i11111 on Do

main Decomposition Methods for Partial Differential Equations. pages 3-18. 

SIAl\1. Philadelphia. 1992. 

[76] P. Dubois and G. Rodrigue. :\n analysis of the recursive doubling algorithm. 

In D. Kuck. D. Lawrie. and A. Sameh. editors. High Spttd Computer a11d 

Algorithm Organi=ation. pages 29~)--305. Academic Press. :\cw York. 1977. 

[77] I.S. Duff. Research directions in sparse matrix computations. In G.11. Golub. 

editor. Studic..; in Numerical Analysis. \'olumt :J4 of Studies in Mathematics. 

pages 83-139. ~lathematical Association of America. 198·1. 

[i8] l.S. Duff. :\.i\l. Erisman. and .J.I\. Reid. Dinct ,\fdhod_, for Sparse Matricr.8. 

Oxford University Press. London. 1986. 



[i9] S.C. Eisenstat. Personal communication. 1985. 

[SO] H.C. Elman. ltcrafit·£ mrtlwds for la1yf spm·sc 11011...;y111111cfric ... ystcms of li11rn1· 

equations. PhD thesis. Computer Science Dept.. Yale l;ni\· .. ?\ew Ha\·en. CT. 

1982. 

[Sl] D.J. Evans. Pnconditio11ing Method:>: Analysis and Applications. Gordon and 

Breach. Science Publishers. Inc.. 1983. 

[82] R. G. Evans. Supercomputing on conventional architectures. In R.G. E\ans 

and S. \Vilson. editors. Supf7"COmputatio11al Scirnct. pages :J-1'.!. PlC'num Press. 

!\cw York. 1990. 

[8:3] R. G. Evans and S. Wilson. Supercomputing with novel architectures. In 

R.G. Evans and S. Wilson, editors. Supcrrompufatio11al Sci(nN. pages 13-23. 

Plenum Press. ?\ew York, 1990. 

[84] C. Farhat. Parallel computational strategics for large space' and aerospace 

flexible structures: algorithms, implementations and performance. In P. Melli 

and C'.:\. Brebbia. editors. Supercomputing in E11gi1ncri11g Structures. pages 

10\J-132. Springer-Verlag. Berlin.1989. 

[85] C. Farhat and L. Crivelli. :\ general approach to nonlirwar FE computations 

on shared-mC'mory multiprocessors. Comput. ,\hthod8. :lppl . .\heh. ll,:, £119 .. 

i2: 1.j:J-17 I. l 9S!l. 

[86] C.A.J. Fletcher. Computational Galcrki11 .\lctlwds. SpringC'r-Vcrlag. !'\e\\' York. 

Berlin. Heidelberg. Tokyo. 198-l. 

[Si] C.:\ . .J. Fletcher. Compulalio11al Tccli11iq:u.:; for Fluid Dynamic:' 1. Springcr

\"erlag Berlin llcidclberg. 1988. 



2·1G 

[SS] IL Fletcher. Conjugate gradit•nt methods for indefinite systems. In G.:\. 

Watson. editor. Procculi11gs of lhf D1111df( Birn11ial Co11f(rt11cr 011 .\"umcrical 

A 11alysis. pages 7J-S9. Springer- Verlag. 197.j. 

[89] ?\1. Flynn. Very high speed computing systems. Proc. IEEE. 54:1901-1909. 

1966. 

[90] :\I. Flynn. Some computer organizations and their effecliwness. IEEE Tm11s. 

Comput.. C-21:948-960. 1972. 

[91] D. Funaro. :\. Quarteroni. and P. Zanolli. An iterati\'e procedure with inter

face rclaxa.t ion for domain decomposition methods. SIA;\/ .J . .\" u mtr. A 1111! •• 

25:1213-1236. 198S. 

[92] Y.C. Fung. Fo1111datio11s of Solid Mechanics. Prentice-Hall. Inc.. 1965. 

[93] T. Furnike. Computerized multiple level substructuring analysis. Computers 

and Str11cturl~. 2:106:J-1073. 1972. 

[94] I\.A. Gallivan. H.J. Plemmons. and A.H. Sameh. Parallel algorithms for dense 

linear algebra computations. In Parallrl Algorithm:; for .\latri:r Computations. 

pages 1-82. SIA.'.\I. Philadelphia. Hl90. 

[95] \\". Gentlema11. Some complexity results for matrix computations on parallel 

processors . ./ . ..I C.\l .. 2.j: 112-11.). 1978. 

[96] R. Glowinski. \\". Kinton. and ?\1.F. \\'lwelcr. Acceleration of domain decom

position algorithms for mixed finite elements by multi-le\'cl methods. In T.F. 

Chan. IL Glowinski . .J. Periaux. and 0.B. Widlund. editors. Third Intcr1111-

tio11al Symposium 011 Domain Decomposition Method-' for Partial Diffcrc11tinl 

Equations. pages 2():3-2~9. Sl:\;\1. Philadclphi;i. Hl90. 



247 

[97] IL Glowinski. J. P1~riaux. and G. Terrasson. On the coupling of visco11~; ;ind 

inviscid models for compressible fluid flows via domain decomposition. In T.F. 

Chan. H. Glowinski. J. Periaux. and O.B. \\"idlund. editors. Third lriterna

tional Symposium or1 Domain Dffo111positio11 Metltods for Partial Diffrr·rntial 

Equations. pages 6·1-97. Sl:\:\1. Philadelphia. 1990. 

[98] H. Glowinski and P.Le Tallec. Augmented Lagrangian interpretation of the 

nonoverlapping Schwarz alternating method. In T.F. Chan. IL Glowinski . 

.J. Pcriaux. and 0.B. \\"idlund. editors. Third lnflnwtiorrnl Symposium 011 

Domain Du:ompositior. .\/ct hods for Partial Diffrruitial Equation.-. pages 224-

231. Sl:\:\L Philadelphia. l!J90. 

[99] G.H. Golub and D. :\layers. The use of preconditioning over irregular regions. 

In R. Glowinski and J.L. Lions, editors. Computing Methods in App/zed Scirnn 

and Engin~ering VI, pages 3-14. :'forth-Holland. 1984. 

[100] G.H. Golub and C'.F. Van Loan. Matri.r Computations . ."ccond tditio11. Th<' 

Johns Hopkins liniversity Press. 1989. 

[101] :\1.:\. Gomes-Ruggiero .. J.:\1 :\1artinez. and :\.C. :\loretti. Comparing algo

rithms for soh·ing sparse nonlinear systems of equations. SIAM J. Sci. Stat. 

Comput .. 13(2):459--183. 1992. 

[102] :\. Grammeltvedt. :\survey of finite difference schenw for the primitive equa

tions for a barotropir fluid. Mo11. Wm. Ru· .. 97(5):38·1-404. 196!J. 

[ 103] \\' .D. Gropp and D.E. Keyes. Complexity of parallel implementation of domain 

decomposition techniques for elliptic partial differential equations. SIA,\! J. 

Sci. Stat. Comput .. 9(2):312-326. 1%S. 



[101] \Y.D. Gropp and D.E. !'eyes. Domain decomposition nwtho<ls i11 computa

tional fluid dynamics. Int. J. :\"um . . \fd. Fluid .. 14:1-17-165. 199:!. 

[105] W.D. Gropp and D.E. Keyes. Domain decomposition with bcal mesh refine

ment. SIA,\/ J. Sci. Stat. Comput.. 1:3(·1):967-993. 199:!. 

[106] .J.L. Gustafson. Ree\·aluating Amdahl's law. Comm. AC.\/. :H:5:3:!-53:3. 1988. 

[107] J.L. Gustafoon. G.H. ~Iontry. and ILE. Benner. Development of parallel meth

ods for a 102·1-processor hypercube. SIA.\/ J. Sci. Stat. Compul.. 9:609-638. 

1988. 

[108] I. Gustafsson. A class of first order factorization methods. Technical Report 

77.0·1 R, Department of Computer Science. Chalmers l"niversityof Technology. 

Goteborg. Sweden. 1977. 

[109] I. Gustafsson. A class of first order factorization methods. BIT. 18:142-UJG. 

1978. 

[110] I. Gustafsson. ;\Iodified incomplete Cholesky (MIC) methods. In D . .J. Evans. 

editor. Prtconditio11in9 :\frtlwd.": .·111alysi . .,, and Applications. pages 2.)G-29-l. 

Gordon and Breach. Science Publishers. Inc .. 198:3. 

[111] F.G. Gustavson. Some basic techniques for solving sparsP systems of equa

tions. 111 D . .I. RosP and H.A. Willoughby. <'ditors. Spa1·sc ,\/atria_.; and Theil· 

Applicatio11~. pages 41-52. Plenum Press. l\ew York. 1972. 

[112] \\'. Hackbusch. ltc:ralil'l Solution of Largf SparM Sy8tcm." of Equations. 

Springer- \'prJag. 19!).!. 



2·19 

[l l:Jj L.A. llage111a11 and D.~I. Young. Appliu! lllrati1·c ,\h.thr"lc'. Academic Press. 

!\ew York. 1981. 

[114] W.W. Hager. Applied l\'umtrica! Li11rnr Algebra. Prentice Hall. 1988. 

[ 115] :\I. T. Heath. E. ~g. and B .\\". Peyto11. Parall('l algorithms for sparse linear sys

tems. In Pam/lei Algorit/1111.- for Matri:r Computation.-. pages 83-12·1. SIA~!. 

Philadelphia. 1990. 

[116] D. Heller. Some aspects of the cyclic reduction algorithm for block tridiagonal 

linear systems. SIAM J. Sumer. Anal .. l:J:.18·1-496. 1978. 

[117] D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM 

Ree .. 20:740-777. 1978. 

[118] J\l.R. Hestencs and E. Stiefel. ~lcthods of conjugate gradients for solving linear 

systems. J. Res. l':at/. Bur. Stand., 49:409-436. 1954. 

[119] R.\\". Hockney. The potential calculation and some applications. Meth. C:om

pul. Phys., 9:13.j-211. 1970. 

[120] R.W. Hockney a11d C.R . .Jesshopc. Pam/It/ Compufu,,. :\dam Hilger Ltd. 

Bristol. 1981. 

[121] D. Houghton. :\. Ka.saharn. and \\". Washington. Long-term integration of 

the harotropic equations by the Lax-\Vendroff method. Mon. H"ta. Rfl' .. 

9·1(3):1·11-150. 1966. 

[122] K.11. Huebner and E.:\. Thornton. The Fi11itc Elrmcnt .\!cthod for Engi1mr:;. 

SfC011d Edilion. John Wiley k Sons. Inc.. 1978. 



250 

[123] T.J.H Hughes. Thr Fin ii< Eh 111c11f .\!rt hod: Linrnr Static alld Dy11a111ic Fini/( 

Efrm mt A 11alysis. Prentice-Hall. I nr.. Englewood Cliff::;. :\e\\" .ler::-<'y. l 9Si. 

[124] I\. Hwang and F. A. Briggs. Computer A 1·c/1iftct un a 11d Parnlld Pronssi11g. 

l\lcGraw-Hill Book Company. ?\cw York. 198·1. 

[125] !;\ISL. Inc. /,\ISL Users Manual. ;\/ath/LibraryT..\/ .. FORTNA:\" S11brouti11cs 

for .\lalhcmatical Applications. 198i. 

[126] l\.C. Jca and D.~1. Young. Generalized conjugate gradient c>.ccelcration of 

nonsymmctric itcrati\'<' methods. Lin. Alg. Appl.. :{-1:159-19·1. l!lSO. 

[l:!i] D.C. Jespersen. '.\lultigrid methods for partial differential equations. In G.H. 

Golub. editor. Studits in .\'umcrical Analysis. Folunn 2~ of Studies i11 ,\lath

ematics. pages 2i0-318. ~lathcmatica) Association of America. 198-1. 

[128] D.S. Kershaw. The incomplete Cholcski-conjugate gradient method for the 

iterati\'c solution of systems of linear equations. J. Comput. Phys .. 26:-13-6.). 

19i8. 

[129] D.E. !\eyes. Domain decomposition methods for the parallel computation of 

reacting flows. Comput. Phys. Cumm .. 53:181-200. 1989. 

[130] D.E. !\eyes. Domain decomposition: a bridge between nature and parallel 

computers. Technical Report 92-·l·I. Institute for Computer Applications in 

Science and Engineering. 7\ :\S:\ Langley Research Center. Hampton. \'irginia. 

1992. 

[1:31] D.E. !\eyes and \\".D. Gropp. A comparison of domain decomposition tech

niques for elliptic partial difff'rential equations and their parallel implen1C'nta

tion. SIA,\/ J. Sci. Stat. Comput .. 8(2):sl66-s:!02. 19Si. 



251 

[132] D.E. l\Pycs and W.D. Gropp. Domai11 dt'composition for nonsyrnmetric sy:-

tems of equations: examples from computational fluid dynamics. 111 T.F. 

Chan, R. Glowinski . .J. Pcriaux. and 0.B. \\'idlund. editors. Srcond /ntcnw

tional Symposium 011 Domain Dum:·position Methods for Partial Differential 

Equations. pages 321-339. SIA.\I. Philadelphia. 1989. 

[133] D.E. Keyes and \\".D. Gropp. Domain decomposition techniques for the par

allel solution of nonsymmetric systems of elliptic boundary value problems. 

Applied .\"umu-. ,\lath .. 6:281-301. 198!1/90. 

[1:3.1] D.H. Kincaid and L..l. Hayes. /fcrati1~f J!rthods for Larg( linrnr Systems. 

Academic Press. Inc.. 1990. 

[135] P. h'.ogge. The Architecture of Pipelined Computers. :\kGraw-Hill Book Com

pany, i\ew 'York. 1981. 

[136] D.A. I\cpriva. Computation of hyperbolic equations on complicated domains 

with patched and overset Chebyshe\· grids. SIAM J. Sci. Stat. Compul., 

10(1 ):120-132, 1989. 

[137] D.A. l\opriva. Domain decomposition with both spectral and finite difference 

methods for the accurate computation of flows with shocks. Applitd :YumU". 

Math .. 6:1-11-151. 1989. 

[ 138] D.A. Kopriva. Spcct ral sol 11t ion of in\"iscid supersonic flows O\"<'r wedges and 

axisymmetric cones. Compultr~ and Fluids. 21(2):2·17-266. 1992. 

[139] W.~1. Lai. D. Hubin. and E. l\rempl. Introduction to Continuum Mcchmzirs. 

Pergamon Press. 1978. 



[1·10] .J. Limbiottc and IL Voigt. The solution of tridiagonal linear systems 011 tlw 

CDC STAR-100 computer. :\C.\l 1hrn:; . .\lat/1. Softll'., I::Ws-:t~!J. !!)Ii'>. 

[1·11] C. Lawson, H. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra sub-

programs for fortran usage. AC.\! Trans. Math. SoftlL' .• !i(:l)::rns-:t2:1, 1979. 

[1-12] C. Lazou. Suprrco111p11frrs a11cl their Use. Clarendon Pn•ss. Oxford, 1!)88. 

[l-l:J] .).~[. Levesque and .J. \V. \Villiamson. A Guid(book to Fort ran 011 Suprrrom-

pul< rs. Academic Press, Inc., 1989. 

[l·l·I] P.L. Lions. On the Schwarz alternating method I. In IL Glowinski, G.11. 

G1Jluh. G.A. l\leurant. and .J. Periaux, editors, Firl't lntcrnatiorrnl Symposium 

011 Domain Dccompositio11 ,\lcthocls for Partial Diffcrc11/ial Equations, pages 

l-·12. SIAM, Philadelphia, 1988. 

[J.15] P.L. Lions. On the Schwarz alternating method II: stochastic interpretation 

and order properties. In T.F. Chan, IL Glowinski, .J. P<~riaux, and 0.B. 

Widlun<l, editors, Second International Symposium on Domain Decomposition 

Methods for Partial DijJfl'rnlial Equatio11s, pages ·17--70. SIAl\f. Philadelphia, 

1989. 

[H6] P.L. Lions. On the Schwarz alternating method III: a variant for nonowrlap

ping suhdomains. In T.F. Chan, R. Glowinski, .J. Pcriaux, and 0.B. Widlund. 

editors. Third lnlrr11atio1wl Sympo:;ium 011 /Jom<1i11 Drro111po.~itio11 Mrtlwds 

for l'arlial /Jiffcrrntial l:'q11alio11s, pages 202-22:l. SIAl\l. Philadelphia. l!J!JO. 

[1-17] .J.\V.11. Liu. Thc rol<· of elimination trces in sparse factorization. S/11.\I ./. 

;\lnlri.r 1\11al. and Applir.~ .. I l:l:H-172. l!l!JO. 



25:J 

[1·18] H.D. Lowry. The parallel processing rt'rnl11tio11. In .J.IL Kirkland and .I.II. 

Poore. editors. Supcrco111p11fcrs, A A"cy lo U.S. Scic11t1jic. 1ic/111ological, 1111d 

Industrial Pnrn1i11rncc. pages 77 -8:3. Praegcr Publislwrs, 1987. 

[l 19] .J. :\landcl. Two-level domain decomposition preconditioning for tlw p-version 

finite clement method in three dimensions. Inf . ./. Numcr .. \le/hods E119 .. 

W: 1095-1108. 1990. 

[150] L.D. :\larini and :\. Quarteroni. :\ relaxation procedure for domain decompo

sition methods using finitP elements. Numrr. Math .• 55:575-598, 1!)89. 

[ 151 J :\.:\I. :\latsokin and S. V. :\'cpomnyashchikh. :\ Schwarz alternating method 

in a subspace. Soviet Matlnmnlirs. 29( 10):78 8·1. l!l85. 

[152] S.F. McCormick. Multilevel Adapli11e Methods for Partial /Jifferc11tial Equa

tions. SIAM, Philadelphia, 1989. 

[15:3] :\l.R. :\lehrabi and ILA. Brown. Finitc-clcmcnt/~ewton method for soiution 

of nonlinear problems in transport processes using domain decomposition and 

nested dissection on :\11:\ID parallel computers. In D.E. Keyes and .I. Xu, 

c•ditors. Scvrnth fotrmatio11al Co11fcrw<:c 011 Domain Decomposition Mcth

mls i11 Scientific a11d Er.9incffir1g Compuli119. A:\IS series of Cont<'mporary 

Mathematics, Anwrican :\lathPmatical Society. to appear. 

[!.'it] .J.A. '.\lcijPrink and 11.:\. van der Vorst. An ikrativcsol11tio1111ll'thod for linear 

syst<•ms of whirh the CO<'ffirient matrix is a sy111111l'lrir '.\I-matrix. ,\/a/h. of 

Comp .. :Jl(l:Ji):l·l8-l02, 1977. 



25 I 

[155] J.A. '.\leijerink and II.A. \·an <kr Vorst. Guidelines for th<' usage of incompl<'te 

d<'compositions in soh·ing sets of linear equations as they occur in practical 

problems. J. Compul. Phys .• ·l·l:l:J.1-155, 1981. 

[156] L.F. ~lenabrea. Notions sur la machine analytique de '.\I. Charles Babbage. 

Bibliothcque Uni\erselle de Genevc. Seri<' :J, Tome ·11. 1842. 

[1.17] G. '.\l('urant. Domain decomposition methods for partial dilfen•ntial <·quations 

on parallel computers. Int. J. S11pcrcompulcr Appl .. 2(·1):5~12. 1988. 

[l.18] G. '.\lenrant. Domain decomposition versus block preconditioning. In 

IL Glowinski. C:.II. Golub. G.A. '.\leurant. and .J. Periaux, editors. First lu

ltrnalio1wl Sympo.-;ium 011 Domain Dccompo.5ilio11 Jlctlwcls for Partial Difff1"

c11tial Equations, pages 231-2·19. SIA~I, Philadelphia, 1988. 

[159] G. ~leurant. Incomplete domain decomposition prcconditioners for nonsym

mctric problems. In T.F. Chan, R. Glowinski, .J. Pcriaux, and O.B. \Vidlund, 

editors, Second lutcrnatio1wl Symposium on Domain Decomposition Methods 

for Partial /Jiffcrc11lial Equations, pages 219-22.5. SIAM, Philadelphia, 1989. 

[160] S.G. ~fiklin. On the Schwar:r. algorithm. DAM USSH, 77(·1):569-071, 1951. 

[161] I\. '.\liller. Numerical analogs to the Schwar:r. alternating procedure. 1\'11111a. 

Math., 7:91-JO:L 196:i. 

[162] \V.L. '.\firanker. A surv<~Y of parall<·lism in mmwri('al analysis. SIAM Uri• .. 

1 :J(.I )::'i2·1 517, l !)7 l. 

[HJ:J] I\. ~!organ, E. Oriatc .. I. Pnia11x .. J. Peraire. and O.C. Zie11ki<'wicz, editors. 

Fi11ilr /~'lnnrnls i11 Fluitf.-;: Nrn• I rm els mu/ appliralio11.o;, Pron n/i11g.-; of \'Ill 



lntt nwtionul Co11ftn11ct 011 Finiff Flt 11u.11ts in Fluid.~. !'art I and fl. Centro 

Internacional de :\lctodos l\umericos en Ingenieria, Barcelona. Spain, J!)!):J. 

[ l 6-l] \V. E. ;\agel and F. Szelcnyi. :\[ ultitasking 011 CR:\ Y and IB:\I rnult iprocessors: 

concepts and experiences. In .J.-L. Dclhayc and E. Gclcnlw, editors. lligh Ptl'

forma11cc Computing, pag<'s l:J:J J.12. Elsevier Science Publishers B. V .. 198!). 

[ 165] IL ~at arajan. Finite clement applications on a sharcd-nwmory rnult iprocc'ssor: 

algorithms and <'Xperirncntal results . .J. Comput. Phy-' .• !H::Vi2 :JSl, l!l!ll. 

[lf>fi] I.:\I. :\arnn. A survey of finite-clement methods in quasi-li111'ar fluid flow 

problems. Technical Hcport WISK Heport 2-10, National Hes<•arch l11stitut1• 

for :\lathcmatical Sciences, Pretoria, South Africa, l!J77. 

[167] L~I. Navon. Finite-clement simulations of the shallow-water equations model 

on a limited area domain. Appl . .\lath. Modelling, 3::J:37-Jl8, 197!). 

[168] 1.:\1. Navon. Numerical methods for the solution of the slwllow-1calcr tq11alio11.-; 

iu meteorology. PhD thesis, University of the Witwatersrand, .Johannesburg, 

South Africa, 1979. 

[ 16!.l] 1.:\1. Navan. A N unwrov-Galerkin technique applied to a finil<•-<•lmtcnt 

shallow-wafrr equations modPI with enforced conservation of intq;ral invari

ants and selective lumping . ./. Comp11t. Phy8., !'j2::H:J-:J:J!J, l!J8:J. 

[170] l.~1. Navon. FEUDX: A two-stage, high-acrnracy finite-<'l<•mcnt FOHTHAi'\ 

program for solving shallow-water equations. Co111p11t1 r.~ a11d (,'rn.-;rirnrr.-;, 

I :J:'2:J:j 28:;, 1987. 

[171] 1.:\1. i\a\·011. PENT: A Periodic Cyrlic l'<'11ladiago11al Sysl<'m Sohw. Co111-

1111111icatio118 i11 Numrrira/ ,\lrllwil.~. :J:6:J 6!), I !l87. 



2;}() 

[ 1 i2] I.'.\I. :\a Yon. :\ rc\"i<'w of finite-<•lemcnt methods for soh-ing the shallow-water 

equations. In B.D. Schrellcr and 0.C. Zicnkiewicz. editors. Co111p11/1 r ,\/oddi119 

i11 O('(t111 E119i11((ri119. pages 2/:J-2i9. :\.:\. Balkema Publishers. l!J88. 

[l i:J] 1.'.\I. NaYon and Y. Cai. Domain decomposition of a finite-clement model of 

the shallow water equations. In Proncdings of thr I Ith Sympo:;ium 011 Fi11ih 

Elcmrnl .\frllwds in South Africa. pages l<l8. FHD/UCT cent<•r for research 

in computational and applied mechanics. Cape Town, South Africa. 1!192. ,\ 

key-note paper. 

[l i·I] 1..:\1. i\arnn and Y. Cai. Domain decomposition and parallel processing of a 

finite clement model of the shallow water equations. Compul .. \/dhotis ..\pp/. 

Mech. & E11g., 106(1-2):li9 -212, 1993. 

[li5] l.M. Navon and U. Muller. FES\V-a finite-clement Fortran IV program for 

solving the shallow-water equations. Advances in Engineering Software, 1 :ii-

86, 19i9. 

[li6] l.M. Navon, P.K.11. Plllla, and :\I. Hamamurthy. Vectorization of conjugat<'

gradicnt methods for large-scale minimization in meteorology . ./011rnal of Op

timi:ation, Theory and Applications. 66( I ):i l -9:J. l!J90. 

[lii] 1.i\I. Navon and IL\. Hiphagen. An implicit compact fourth-order algorithm 

for solving tlw ,;hallow-water equations in conservativ<' law-form. Mon. Wrn. 

Ur,, .. !Oi:l 10i-l l2i. l!>i!l. 

[li8] l.i\I. Kavon. X. L. Zou, .I. Drrher, and .I. SPla. Variational data assimila

tion with an adiabatic version of the N'.\IC spPrtral rnodrl. i\1011. Wm. Ucl' .. 

120:1·1:J:J l·l IG. 1!)!)2. 



[l i9] B. i\Pta. Analysis of finite-elements ,u1d finite differences for shallow water 

Pquations: a review . . \lath. Co111p11l. Simul., :Jl:Hl-lGL EJ!J2. 

[180] B. Neta and IL Thanakij. Finite ch•mcnt approximation of the shallow water 

equations on the l\lasPar. In l\l.i\. DhaubhadeL '.\l. S. Engelman, and \V. C:. 

llabashi, editors. Adrnncc . .;; in Finite Hlrmcnt Analysis in Fluid Dynamic . .;, 

FED-\'ol 171. pages .ii-52. Amer. Soc. '.\lcch. Eng., :'\.Y., HJ!):J. 

[I 8 l] B. Neta and H.T. Williams. St ability and phase speed for various finitP-c!Pmcnt 

formulations of the advection equation. Comp11ffl'.-; and Fluids, l·l::J!):J -·110, 

1986. 

[182] K. Neves and .J. Kowalik. Supercomputing: key issues and challenges. In .J.S. 

Kowalik, editor, Supercomputing, pages 3-:39. Springer-Verlag Berlin Heidel-

berg, 1989. 

[lS:J] A.I\. Noor. New computing systems and their impact on structural analysis 

and design. In P. l\lclli and C.A. Brcbbia, editors, Supercomputing in L~'119i-

11ccrir19 Slruclurcs, pages I -·12. Springer-Verlag, Berlin, 198!}. 

[18·1] T.C. Oppe, W.D . .Joubert, and D.H. Kincaid. NSPCG user's guide,:\ package 

for solving large spars<' linear systems by various itt>rativc methods, version 

1.0. Center for Numerical Analysis. The Univ<'rsity of Texas at Austin, 1988. 

[185] .J.'.\I. Ortega. lnlmduclion lo Pam/Ir/ and \'rel or Solulio11 of l.inrnr Syslr ms. 

Plenum Pn·ss. N<'w York, 1988. 

[18G] .J.l\I. Ortega and \V.C. Hhcinbolclt. ltt:rn/irr Solulio11 of No11/i11rnr Hq11nlio11 . .; 

i11 Scrcrnl \ (ll'iabfr . .,. ,\cadcmic Press, New York, l!)j(). 



[187] .J.:\I. Ortega and C. Romirw. The ijk forms of factorizatio11 II. Parallel systt·ms. 

Pam/lei Co111p11li11g, 7(2): 1·19 162, l!lS8. 

[188] .J.;\I. Ortega and R.G. Voigt. Solution of partial differential equations 011 vector 

and parallel computers. SIA.\/ Rr1• .• 27:1·17 210. 198!). 

[189] .J.:\I. Ortega, ILG. Voigt, and C.11. Romine. A bibliography on paralld and 

vector mmwrical algorithms. In Pam/Id 1ll9orilh111s for .\latri.r Cn111pulalin11s, 

pages 125-197. SIA:\1, Philadelphia, 1990. 

[190] A.T. Patera. A spectral clement method for fluid dynamics: laminar flow i11 

a chan11el expansion . ./. Compul. Phys., 01:·168-·lSS, 198·1. 

[l!H] W. Poole and H. Voigt. Numerical algorithms for parallel and vector comput

ers: an annotated bibliography. Comp. Rel'., 15:379-388, 197·1. 

[192] D.A. Poplawski. Parallel computer architectures. Applied. Math. and Compul., 

20( 1 and 2) :·ll - 51, 1986. 

[ 193] .J.S. Przcmieniccki. ;\latrix structural a11alysis of substructures. A IA A ./., 

1: 1 :JS·· 1-17. 196:J. 

[191] A. Quartcroni. Domain decomposition and parallel process111g for t.Jw 1111-

merical solution of partial diffcrc11tial equations. Sun'. Math. Incl., 1:75 118. 

HJ91. 

[l!}.1] A. Q11art1•ro11i. :\lathcmatical aspects of domain dc·compositio11 methods. In 

Prncudi119.• of Ilic Vir.•I H11roprn11 Congrr.•.~ of Mallu malir.•. Paris. Frann', to 

appear. 



2!)9 

[ 196] :\. Quarteroni. F. Pasquawlli. and :\. Valli. Heterogeneous domain d<'compo

sition: principles, algorithms, applications. Technical Report li~ISI !H/18:J. 

University of i\linnesota Supercomputer Institute, 1991. 

[l!li] :\. Quarteroni and A. Valli. Theory and application of Steklo\·-Poincare oper

ators for boundary value: the heterogeneous operators case. Technical Hcport 

preprint 90-:JG. Army Iligh Performance Computing Hesearch Center. tTni\'er

sity of ~linnesota. 19!)0. 

[ 198] .J..J. Quirk and U .R. llanebutte. A parallel adaptive mesh refinement algo

rithm. Technical Heport !):l.(i:J, ICASE, 19!>:J. 

[199] G. Haclicati, di Brozolo, and Y. Hobert. Parallel conjugate gradient-lik(' algo

rithms for solving sparse nonsymmetric linear systems on a vector multipro

cessor. Parallel Computing, 11:223-239, 1989. 

[200] G. Radicati, Y. Hobert, and S. Succi. Iterative algorithms for the solution 

of nonsymmetric systems in the modelling of weak plasma turbulence. J. 

Compul. Phys., 80:·189-·197, 1989. 

[20 l] i\l.i\l. Hai. A conservative treatment of zonal boundaries for Euler <'quation 

calculations . ./. Compul. Phys., 62:-ti2 50:J. l!>86. 

[202] i\l.F. Rubinstein. Combined analysis by substructures and recursion. ASCI:' 

.f. of !hr Slrurlural Dil'i:;io11. 9:J(ST2)::?:H-2:J.5. 1!)6i. 

[:W:J] Y. Saad. l\rylov subspace m!'!.hods for solving unsymnwtric linear systems. 

Ma/Ii. Comp .. :n:JOTJ-126. l!JSI. 

[20 t] Y. Saad. On the design of parallel numerical methods in llll'ssage passmg 

and shared memory ('llVironnwnts. In A. Lid11wwsky and C. Sagucz, editors. 



Suptrcomp11li119. Stalt-of-1/n-Art. pages 25:l 2/.1. Else\·icr Science Publishers 

B.V .. 1987. 

[205] Y. Saad. l\rylov subspace methods on supercomputers. Sl:t.\I .J. Sci. Stat. 

Comput., 10(6):1200-12:32. 198!J. 

[206] Y. Saad and ~I.II. Schultz. G~IHES: A generalized minimal residual algo

rithm for solving nonsymmetric linear systems. SIA.\/ .f. Sci. Stat. Comput .. 

7( :3):8;J6-86!J. I 986. 

[207] U. Schendel. /ntroductio11 to Num< rical Methods for Parallel Co11!putcrs. Ellis 

Horwood Ltd .. {,!i1itcd Kingdom, Hl8·1. 

[208] B.K. Schwarz and B. Wen<lroff. The rclatiw efficiency of finite-difference and 

finite-clement methods, I. hyperbolic problems and splines. SIAM./. Numa. 

Anal., l l:!J7!HJ93, 197'1. 

[209] II.A. Schwarz. Uber cinigc Abbildungsaufgabcn. Gcs. Math. Abh., 11 :().'}-S:J. 

1869. 

[210] T. Schwedcrski, D.G. ~lcycr. and 11 . .J. Siegel. Parallel pron•ssing. In V.l\l. 

~lilutinovic,cditor, Computer Architrclurc: Concepts arid Sysfnns. pag1·s 178 · 

22·L Elsevier Science Publishing Co., Inc., ~ew York, l!J88. 

[211] C. Seitz and .J. l\latisoo. Engineering limits on computer performance. Phy,..ir.~ 

Today, :n( .') )::JS-·15, 198·1. 

[212] .J.IL Shewchuk. An introduction to the conjugate gradient m<'lhocl without 

th<' agonizing pain. T<'chnical lkporl Cl\llT-CS-!)1-12.'l, School of ('omputcr 

Scienn'. ( 'arnq~i<' ~lellon University. I !)!)·1. 



261 

[2l:J] G.L.G. Sleijpen and D.H. Fokkema. BICGST:\B(L) for li1war equations in

rnl\'ing unsymmetric matrices with complex spectrum. Technical Heport 772. 

Dept. of ~lath., Uni\'. of U trccht. l !)!);J. 

[214] B.F. Smith. An optimal domain decomposition preconditioncr for the finill' 

clement solution of linear elasticity problems. SIAM .J. Sci. Slat. Co111p11I.. 

l:J( l )::l61-:J78. 1992. 

[215] S.L. Sobolc\·. Schwarz algorithm in the theory of elasticity. D:lM USSU. 

·1(6):235 238. l!):J6. 

[216] P. Sonncvcld. CGS, A fast Lanczos-sol\'cr for nonsymmetric linear systems. 

SIAM .J. Sci. Stat. Compul., lO(l)::lG-52. 1989. 

[21 i] .J. Stepplcr, l.~1. Navon, and 11.-1. Lu. Finite-clement schemes for extended 

integrations of atmospheric models. J. Comput. Phys., 89(1):95-12,l, l!J90. 

[218] II.S. Stone. An efficient parallel algorithm for the solution of a tridiagonal 

linear system of equations . ./. ACM, 20:27-38, 1973. 

[219] H.S. Stone. Problems of parallel computation. In .J.F. Traub. editor, Com

plrrily of s,q11c11fia/ and Parallel 1V11mcrical 11/gorilhms, pages 1-16. Academic 

Press, New York and London, 197:J. 

[220] I\. Stiihen and U. Trottenhcrg. ~lultigrid methods: fundamental algorithms. 

model problem analysis and applications. I 11 \V. llackbusrh and {i. Trott en

herg, editors, ,\111/tigrid Mc/hods. /,rcfun Softs 111 .\latlumalic.o; .960, p.-ig1·s 

1-1 i6. Spring1•r-Vcrl.-ig Berlin Ikidclbcrg. 1 %2. 



[221] P.:\. Swarztrauber. Fast Passion SolvNs. 111 G.11. Golub, editor. Studirs i11 

Sumcrical A11alysi.-., \'o/iwn :!4 of St11din• i11 .\/atlnmatir ..... pages :H9-:no. 

~lathematical Association of America. l!J8·1. 

[222] P.i\. Swarztrauher and R.A. Sweet. Efficient FORTHAi\ subroutines for the 

solution of separable elliptic partial differential equations. :lC.\/ Tm11,;; .• \lath. 

(.' .r1 - »-·) 'J(' 1 l 9-,JOji ll'<ll'f', ;>:.J;)_ --.1 l, , , I I. 

[22:3] C. Taylor and .J.~I. Davis. Tidal propagation and dispersion in est naries. In 

.J.T. Od<>n. 0.C. Zienkiewicz, H.11. Gallagher. and C. Taylor. editors. Fi11it1 

Hlunrnts in Fluids, Chapter .J, pages 95-118 . .John Wiley & Sons. Inc.. 1975. 

[221] H. Temam. Survey of the status of finite element methods for partial differ

ential equations. In D.L. Dwoyer, M. Y. Hussaini, and ILG. Voigt, editors. 

Fini Ir Elem mis, Theory and Applical io11, pages J -:1:1. Springer- Verlag. New 

York, 1988. 

[225] C. Tcmperton. Algorithms for the solution of cyclic tridiagonal systems. J. 

Compul. Phys., 19:317-:32:3, 1975. 

[226] ~l..J. Turner, R.\V. Clough. 11.C. ~lartin. and L..J. Topp. Stiffness and deflec-

tion analysis of complex strudures . ./. Arro. Sci., 2:J:80.'}-82:J, 1%6. 

[227] II.A. van der Vorst. Bi-CGSTAU: a more smoothly converging variant of CG-S 

for the solution of nonsymmetric linear systems. SIAM./. Sri. Stal. Compuf .. 

[228] H.S. Varga. Fartorizations and normalized it<·rative methods. In B.E. Langer. 

ed!tor, /Jo1111dary Prob/rm., i11 /Jiffrrrntial /~'qurzfio11s, pag<·s 121-1·12. Tlw Fni

vPrsity of Wisrnnsi11 Press, ~ladison. \Visrn11si11, I !)60. 



2(l:J 

[229] ILS. Varga . .\lalrfr /hmtii·c A11a/y:-;i:-;. Prcntice-Ilall, Englewood Cliffs . .\" . .J .• 

1!)62. 

[2:30] D. U. Von-Hosenbcrg . . \/ctlwds for tlu N1mu rical Solution of Partial Dij]'r n11-

t ial Equation:-;. American Elsevier, 2\ew York. 1969. 

[2:31] C. Vuik. Solution of the discretized incompressible i\avier-Stokes equations 

with the G~IRES method. Int. J. X1mnr .. \lctlwd:-; Fluid:>. l(i:i'i07 i'i2:J. l!)!);J. 

[2:J2] 11.F. Walker. Implementation of the G~IRES method using llousehold<'r trans

formations. S/A,\l .f. Sci. Stat. Comput .• 9(1):1.')2 l(i:J, 1988. 

[2:J:lj II.II. \Vang. :\practical method for tridiagonal <'quations. AC.\/ Tran.-;. Jlath. 

Softw., 7:170-18:3, 1981. 

[2'.Hj \V.11. \Var". The ultimate computer. IEEE Spccllwn, 9(:3):8·1-91, 1972. 

[235] O.U. \Vidlund. Domain decomposition algorithms and the bicentennial of 

the French revolution. In T.F. Chan, IL Glowinski, .J. Pcriaux, and O.B. 

\Vidlund, editors. Thir<l /n/crnafional Symposium on Domain Dccompositio11 

Md hod.'-' for Partial Diffcrrntial f,'quafions, pages xv xx. SIAM. Philadelphia. 

1990. 

[2:Hi] E.L. \Vi Ison. Finite dcnwnt analysis on computers with multiple prorcssors. In 

P. :\lelli and C.A. Brehhia, editors, S11pcrcomp11fi11g in H11gi11rrri119 Sll'llrl11n.". 

page's .i:J i'i·I. Springer-Verlag. Berlin, 1989. 

[2:J7] S. \Vibon. :'\1111wrical n•cipcs for s11pncomp11tcrs. In ILC:. Evans and S. Wil

son. <'di tors. S11pcrco111pula/io11al Sri< 11rr, pag1·s 81 -107. Pl<'1111m Press, ;-.;,.,,. 

York. I !l!)(). 



:WI 

[2:J8] .J. Xu. Iterative methods hy space decomposition and subspace corrcctiou. 

SIA.\! Hu· .. :Jl(·l):.181-6l:l. 1992. 

[2:39] D.:\I. Young. //rm/ire Solutio11 of Large Li11rnr Sy-'le1111>. ,\cademic Press. 

~cw York, 1971. 

[210] V. ZakharO\'. Parallelism and array proccs:m1g. l/~'EE Trn11s. Comput .. C

:J:J:-1.') -78. l!)~H. 

[2·11] P. Zavc and \\'.C. Hheinboldt. Design of an adaptiw. parallel finite-1•kmcnt 

system.,\(,',\/ Tmus. ,\/nt/1. Softu•., .1(1):1-17. l!H9. 

[212] K. Zhu. I.:\I. :'\avon, and X. Zou. Variational data assimilation with a variahh· 

resolution finite-clement shallow-water equations model. J/o11. Wm. Htr .. 

122:9·16 -965, 199·1. 

[2H] K. Zhu, I.~I. Navan, and X. Zou. LADFEUDX-A FOH.TRAK program for vari

ational data assimilation with a finite-element shallow-waler equations model. 

Computers a11d Gcoscienccs, to appear. 

[2·l·l] 0.C Zicnkicwicz. Why finite clements. In .J.T. Odm, 0.C. Zienki«'wicz. H.11. 

Gallagher, and C. Taylor. editors, Viuite /~'/rnzrnt.-; iu Fluid ... , Clwplrr I. pages 

1-:n. John Wiley & Sons, Inc., 1!)7.'J. 

[:H.1] O.C. Zicnkicwicz. TIH Finite Elrmrnl Mcllwd. third fditio11. :\kCraw-Ilill 

Book Company (tTI\) Limited, 1977. 

[2·1fi] 0.(', ZiPnkiewicz and I\. :\lor~ai1. Fi11ilf /~'lrmrnt ... and 1\pprorimatin11 . .John 

\Vih·y <\'. Sons. Inc .. l!l8:J. 



BIOGRAPHICAL SKETCH 

Yihong Cai was born on August 22, 1961 in Shanghai, PeoplP's Republic of 

China. lie graduated from Fudan University, Shanghai, China. with a JlarhPlor's 

degree in !\pplicd ~lathematics and ~lcchanics in U>S:l. Then he worked as an as

sistant professor at department of mechanical engineering in Central South l"ni

\·ersity, Hunan, China. for nine months. lie entered a ~laster's program in solid 

mechanics ai the department of mechanical engineering in Shanghai ~laritime In

stitute. Shanghai. China. in July 198-l and received his !\laster's degree with honor 

in l\lcchanical Engineering in 1987. Thereafter, upon invitation, he served as an 

assistant professor at the same department for nine months. In August 1988, h<' 

came to the United States of America and began his Ph.D. study at the depart

ment of mathematics in the Florida State University. lie started his intensive 

research with Prof. Michael Navan in domain decomposition methods and paral

lel computing techniques in the Spring of 19!)} and obtained his Ph.D. degree in 

Applied and Computational Mathematics in the Summer of 19~).I. He will continue 

his research as a postdoctoral associate at ~lassachusctts Institute of Technology 

(l\lIT) in the areas of domain decomposition and parallel processing software dc\•cl

opmcnt with applicat.ions to engitwPring problems. 




