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ABSTRACT

The parallel numerical solution of partial differential equations (PDE’s) has been
a very active research area of numerical analysis and scientific computing for the
past two decades. However, most of the recently developed parallel algorithms for
the numerical solution of PDE’s are largely based on. or closely related to, domain
decomposition principles.

In this dissertation. we focus on (1) improving the efficiency of some iterative do-
main decomposition methods, (2) proposing and developing a novel domain decom-
position algorithm. (3) applying these aigorithms to the efficient and cost effective
numerical solution of the finite element discretization of the shallow water equations
on a 2-D limited area domain and (4) investigating parallel implementation issues.

We have closely examined the iterative Schur domain decomposition method.
The Schur domain decomposition algorithm, described in detail in the present dis-
sertation. may be heuristically viewed as an iterative “divide and feedback™ process
representing interactions between the subdomains and the interfaces. A modified
version of the rowsum preserving interface probing preconditioner is proposed to
accelerate tnis process. The algorithm has been successfully applied to the solution
of linear systems of algebraic equations. resulting from the finite element discretiza-
tion, which couple the discretized geopotential and velocity field variables at each
time level. A node renumbering scheme is also proposed to facilitate modification
of an existing serial code, especially the one which is based on the finite element

discretization, into a non-overlapping domain decomposition code.

Xxi1



In the Schur domain decomposition method, obtaining the numerical solutions
on the interfaces usually requires repeated exact subdomain solutions. which are not
cheaply available for our problem and many other practical applications. In view of
this, the modified interface matrix domain decomposition algorithm is proposed and
developed to reduce computational complexity. The algorithm starts with an initial
guess on the interfaces and then iterates back and forth between the subdomains and
the interfaces. Starting from the second outer iteration. it becomes increasingly less
expensive to obtain solutions on the subdomains and interfaces due to the availability
of successively improved initial soiutions from the previous outer iteration. The
numerical results obtained by applying this algorithm to our problem improve upon
those obtained by employing the traditional Schur derain decomposition algorithm.

We then investigate parallel block preconditioning techniques in the framework
of three frequently used and competitive non-symmetric linear iterative solvers,
namely, generalized minimal residual (GMRES), conjugate gradient squared (CGS)
and Bi-CGSTAB (a variant of bi-conjugate gradient method) algorithms. Many
hybrid methods of non-overlapping domain decomposition resu't from various com-
binations of linear iterative solvers and domain decomposed (DD) preconditioners
(generally consisting of inexact subdomain solvers and ar interface preconditioner).
Two types of existing DD preconditioners are emploved and 2 novel one is pro-
posed to accelerate the convergence of GMRES. CGS and Bi-CGSTAB. The newly
zroposed third type of DD preconditioners turns out to be computationally the
least expensive and the most efficient for solving the problem addressed in this
dissertation, although the second type of DD preconditioners is quite competitive.

Performance sensitivities of these preconditioners to inexact subdomain solvers are

also investigated.

XX1i



Parallel implementation issues of domain decomposition algorithms are then dis-
cussed. Moreover. a multicolor numbering scheme is described and applied to the
parallel assembly of elemental contributions. aimed at removing critical regions and
minimizing the number of synchronization points in the finite element assembly
process. Typical parallelization results on the CRAY Y-MP are presented and dis-
cussed.

This dissertation also contains a relatively thorough review of two fast growing
arcas in computational sciences. namely. parallel scientific computing in general
and iterative domain decomposition methods in particular. A discussion concerning

possible future research directions is provided at the end of the last chapter.
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CHAPTER 1

INTRODUCTION

... WANTED for Hazardous Journey. Small wages. bitter
cold. long months of complete darkness. constant danger.
safe return doubtful. Honor and recognition in case of suc-

cess.
— Ernest Shackleton!

The commercial availability of high-speed. large-memory computers which began
to emerge over a decade ago has made possible the solution of a rich variety of
increasingly complex large-scale scientific and engineering problems. For efficient
and cost effective utilization of these high performance computing facilities which
offer. as peak performances. several hundred millions of floating point operations per
second (Mflops) or even a few Gfiops (10° Mflops). one has to revisit and adapt many
of the extant serial numerical algorithms and research further into novel parallel
methods, algorithms. data structures and languages which are well suited for the
new generation of supercomputers®.

There 1s an ever increasing demand for high performance computers in the areas

of computational fluid dynamics. acrodvnamics simulations. fusion energy rescarch.

TFrom a newspaper advertisement for an Antarctic Expedition.

?Supercomputers arc loosely defined as the fastest computing machines at any given time.
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military defense, elastodynamics, weather prediction, large-scale structural analy-
sis, petroleum exploration. computer aided design. industrial automation. medical
diagnosis. artificial intelligence. expert systems, remote sensing, genetic engineering
and even socioeconomics.

The past several decades have witnessed a rapid development of various numeri-
cal methods whose algorithmic implementation was designed to fit the architecture
of a single processor serial computer. Although the development of new generation
of computing. namely. parallel computing. has already taken off the ground. the
research in this area is much less mature compared to serial computing. Indeed.
the area of parallel computing is in a state of flux and the marketplace for high
performance parallel computers is volatile.

Although large-scale scientific and engineering computing is the major driving
force for the design and development of multi-processor architectures, the recent ex-
plosion of research activities in the area of parallel computation is largely motivated
by the commercial availability of various powerful high performance computers. It
has been a great challenge for numerical analysts and computational scientists to
design efficient numerical algorithms and develop suitable programming languages
that can fully exploit and utilize the potential power of such advanced computing
architectures.

One of the research focuses in the area of parallel computing has centered on
the issue of how to cost-effectively introduce parallelism into very strongly coupled
problems. such as the parallel solution of very large linear or non-linecar systems of
algebraic equations., which arise from the finite difference or finite element discretiza-
tion of PDE’s in solid mechanics. fluid dvnamics and many other areas of industrial
applications. Numerous approaches (sce. for example, [66]. [94]. [115], [117]. [185].

[188] and [{189]) have already been developed and implemented on different types
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of parallel computers. However. most of the parallel numerical algorithms recently
proposed for this purpose are largely based on. or closely related to. the principles
of domain decomposition.

Many of the so-called iterative domain decomposition methods are just organiz-
ing principles proposed to effectively decouple the system of algebraic equations. cor-
responding to which there is an underlyving continuous physical problem abstracted
in the form of PDE’s. The term “domain decomposition™ stems from the fact that
these smaller decoupled algebraic systems correspond to the discretization of the
original differential operators restricted to the subdomains of the original given do-
main.

Domain decomposition techniques have been receiving great attention in the ar-
cas of numerical analysis and scientific computing mainly due to their potential for
parallelization. However. we note that the usefulness of domain decomposition ex-
tends well bevond the readily apparent issue of parallel computing. In fact. domain
decomposition algorithms are well suited for carrving out locally adaptive mesh
refinement and for taking advantage of the fast direct solvers which may only be lo-
cally exploitable for problems defined on irregular regions. The flexibility of domain
decomposition methods makes it less difficult to incorporate different mesh resolu-
tions or numerical methods on different parts of the original physical domain and to
couple different mathematical models defined on different subdomains whenever the
physics behind the problem has a variable nature therein. We will discuss some of
these issues in detail and provide relevant references in Chapter 3. although the pri-
mary motivation of emploving domain decomposition methods in this dissertation
work 1s related to parallelization concerns.

For the past eight vears. there has been a sizable amount of research on various

domain decomposition techniques for second-order self-adjoint linear scalar ellip-
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tic PDE’s. Great progress has been made in this direction and some optimal or
nearly optimal methods have been developed (see [130] for the most recent review
of this fast-growing area). The most often used mathematical tools for analyses are
the Galerkin finite element formulation. subspaces of functions, projection theories.
multilevel and Krylov methods. However, both the theory and numerical experience
with non-self-adjoint elliptic PDE’s are much less satisfactory. Little work has been
carried out in devising domain decomposition methods for the solution of linear or
nonlinear systems of algebraic equations arising from the finite difference or finite
element approximation of the hyperbolic PDE's.

In this dissertation. we are mostly concerned with the extension of domain de-
composition ideas to the finite element solution of a set of coupled hyperbolic PDE's.
namely, the shallow water equations and to the practical issue of parallelization.
Many successful analysis methods for elliptic problems are not directly applicable
here. Some extensions have yet to be made. The work contained in this dissertation
represents one of the first attem.pts in applying domain decomposition principles to
the hyperbolic equations, especially to the shallow water equations. Direct numeri-
cal experience indicates that some of the domain decomposition algorithms proposed
for elliptic problems may also apply successfully to the hyperbolic PDE’s. Appar-
ently, a vast amount of theoretical studies and numerical experiments still need to
be carried out in this direction.

As part of this dissertation. an overview of two fast growing areas. namely.
parallel computing in general and domain decomposition in particular, is absolutely
necessary. We will review the past research efforts, report what we have done up to
this point and look into future research directions.

No attempt was. however. made to give a comprehensive review due to the huge

amount of work already having been done in these areas and the broad sense of par-
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allel computing, e.g.. parallel image processing. paraliel pattern matching. parallel
matrix computations. parallel structural analysis. parallel numerical optimization.
to mention just a few. Different domain decomposition approaches, many possi-
ble combinations of relevant techniques and various subtle implementation details
on different paralle] environments have alread}; led to a plethora of the so-called
iterative domain decomposition algorithms. In view of this, we will concentrate in-
stead on an overview and discussions of some important terms and concepts. some
novel and challenging issues in the design of parallel numerical algorithms for scien-
tific computation. programming aspects and the performance evaluation for parallel
implementations. as well as on issues closely related to the parallel numerical so-
lution of partial differential equations and some well-known domain decomposition
algorithms.

Specifically, in Chapter 2. we will briefly present some historical aspects and
developments of parallel computers and parallel scientific computing, explain the
motivation behind these developments and analyze architectural features and help-
ful classifications of some currently commercially available multi-processor systems.
Through some examples. we emphasize that parallel computing has brought in many
new and challenging issues one need not consider for serial computing. In particu-
lar. we point out that the quality of a parallel numerical algorithm can no longer be
measured by the classical analvsis of computational complexity alone. Equally im-
portant. we have to take into account such issues as the degree of parallelism in the
algorithm. communication. synchronization and the locality of reference within the
code. Performance analvsis and measurements for parallelization are also briefly

discussed. Many relevant references are furnished for those who want to explore

further for subtle details.
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Starting from Chapter 3. we will focus exclusively on a relatively new and promis-
ing branch of parallel numerical methods — domain decomposition, the main topic
of this dissertation. We introduce domain decomposition ideas, in Chapter 3. by
considering solving a classical elasticity problem. namely, the famous Saint Venant's
torsion of a cylindrical shaft with an irregular cross-sectional shape. We then ar-
gue that domain-based decomposition is the best among three possible decomposi-
tion strategies for the parallel numerical solution of PDE's. Three specific domain
decomposition methods developed for solving elliptic PDE’s. namely, multiplica-
tive Schwarz, additive Schwarz and iteration-byv-subdomain domain decomposition
methods are presented and discussed in some detail. Origins and motivations of
domain decomposition are also given in this chapter.

Chapter 4 consists of a detailed study of the Schur domain decomposition method
and its application to the finite element numerical simulation of the shallow water
flow. Two Schur domain decomposition algorithms are presented. Various precondi-
tioning techniques are described. The efficiency of the Schur domain decomposition
method largely depends on the effectiveness of a preconditioner on the interfaces. To
accelerate the convergence of the Schur complement linear system on the interfaces.
we employ the traditional rowsum preserving interface probing preconditioner and
also propose a modified version. which is shown to be better than the traditional
one. A node renumbering scheme is also proposed in this chapter to facilitate the
modification of an existing serial code. especially the one which uses the finite el-
ement discretization. into a non-overlapping domain decomposition code based on
the substructuring ideas. Various numerical results of the Schur domain decomposi-
tion method as applied to the finite element solution of the shallow water equations

are reported and discussed.
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As will be explained in Chapter 4. the Schur domain decomposition method may
not be cost effective in the absence of fast subdomain solvers and the unavailabiiity
of fast subdomain solvers is usual. rather than an exception, for most application
problems. In view of this potential disadvantage of the Schur domain decomposition.
we propose. in Chapter 3. a novel approach to handle the coupling between the sub-
domains and the interfaces. We name this new algorithm as the modified interface
matrix domain decomposition (MIMDD) method. Different from the Schur domain
decomposition method. in which the numerical solutions on the interfaces are deter-
mined first, the MINDD algorithm starts with an initial guess on the interfaces and
then iterates back and forth between the subdomains and the interfaces. It turns
out that this approach allows successively improved intial solutions to be made both
in the subdomains and on the interfaces. The reduced cost in obtaining subdomain
solutions due to the improved initial guesses mitigates the aforementioned disad-
vantage. Both theoretical and algorithmic aspects of the MIMDD method as well
as numerical results will be presented and discussed in detail.

Chapter 6 1s concerned with the development and application of parallel block
preconditioning techniques. Many hybrid methods of non-overlapping domain de-
composition result from various combinations of lincar iterative solvers and domain
decomposed preconditioners (generally consisting of inexact subdomain solvers and
interface preconditioners). Two types of existing domain decomposed precondition-
ers are emploved and a novel one is proposed to accelerate the convergence of three
currently frequently used and competitive iterative algorithms for the solution of
non-symmetric lincar systems of algebraic equations. namely. the gencralized min-
imal residual (GMRES) method. conjugate gradient squared (CGS) method and a
recently proposed Bi-CGSTAB method. which is a variant of the bi-conjugate gra-

dient method. While all three types of these preconditioners are found to perform
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well with GMRES. CGS and Bi-CGSTAB. the newly proposed third tvpe of domain
decomposed preconditioners turns out to be computationally the least expensive and
the most efficient for solving the problem addressed here. although the second type of
domain decomposed preconditioners is quite competitive. Performance sensitivities
of these preconditioners to inexact subdomain solvers is also investigated.

Parallel implementation issues are discussed in Chapter 7. We argue in this chap-
ter that. while the domain decomposition method offers an opportunity to carry out
subdomain by subdomain calculations, which can be parallelized quite efficiently
at the subroutine level. the parallelization of the element by element calculations
corresponding to the finite element discretization is also important for achieving
a high efficiency of parallelism. A multicolor numbering scheme is described and
applied to the parallel assembly of elements. aimed at removing critical regions
and minimizing the number of synchronization points in the finite element assem-
bly process. Three parallel processing software packages currently available on the
CRAY Y-MP. namely. macrotasking. microtasking and autotasking. are compared.
Autotasking utilities are exploited to implement a parallel block preconditioning
algorithm. Speed-up results for several mesh resolutions are reported.

Major results and conclusions based on the research work of this dissertation
are summarized and a discussion concerning possible future research directions is
provided in Chapter 3.

Finally. Appendix A is provided for the purpose of completenecss, but it can
also serve as a document for those who may not be familiar with the finite element

solution of the shallow water equations.



CHAPTER 2

PARALLELISM: TOOLS AND METHODS

Should we build it if we could? Its potential for solving tne

problems of a complex world may well justify the expense.

— Willis H. Ware!

2.1 Why Parallelism

Computation speed has increased by orders of magnitude over the past four
decades of computing. This speed increase was mainly achieved by increasing the
switching speed of the logic components in computer architectures. In other words.
the time required for a circuit to react to an electronic signal was constantly reduced.

Logic signals travel at the speed of light. or approximately one foot per nanosec-
ond (107® second) in a vacuum®. This signal propagation time could largely be
ignored in the past when logic delays were measured in the tens or hundreds of
nanoscconds. However. the delay caused by this “extremely fast™ signal propaga-
tion has become today’s fundamental hurdle which inhibits the further increase of

the computing speed (see, among others, [66. 188. 211]).

YFrom “The ultimate computer™, IEEE Spectrum. 9(3):84-91. 1972.
2In practice, however. the speed of electronic pulses through the wiring of a computer ranges

from 0.3 to 0.9 foot per nanosecond.

9
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Faced by the limitation of the speed of light. computer designers have explored
other architectural designs to achieve further increase in computation speed. One
of the simplest of these ideas. vet hard to implement effectively and efficiently, i<
parallelism. i.e.. the ability to compute on more than one part of the same problem

by different phvsical processors at the same time.

2.2 A Brief History

The idea of using parallelism is actually not so new and may be traced back to
Babbage's analytical engine in 1840s. A summary of Babbage's early thinking on

parallelism may be found in [156):

D ailleurs. lorsque 1'on devra faire une longue série de calculs identiques.
comme ceux qu'exige la formation de tables numériques, on pourra met-
tre en jeu la machine de maniére & donner plusieurs résultats a la fois.

ce qui abrégera de beaucoup I'ensemble des opérations.

Although many of the fundamental ideas were formed more than a hundred vears
ago. their actual implementation hasn’t been made possible until recently.

Limited technologyv and lack of experience led earlv computer designers to
the simplest computer design model of von Neumann — a single instruction
stream/single data stream (SISD) machine in which an instruction is decoded and
the calculation is carried out to completion before the next instruction and its
operands are handled. As an improvement of this model. parallelism was first
brought into a single processor. The parallelism within a single processor was made

possible by. for example,

¢ using multiple functional units. i.c.. dividing up the functions of arithmetic

and logical unit (ALU) into several independent. but interconnccted func-
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tional units. say. a logic unit. a floating-point addition unit. a floating-point

multiplication unit. etc.. which may work concurrently.

e using pipelining. i.e.. segmenting a functional unit into different pieces and
splitting up a calculation (addition, multiplication. etc.) into correspondingly
several stages®. the sub-calculation within each stage being executed on a piece

of the functional unit in parallel with other stages in the pipeline.

The pipelining technique is often heuristically compared to an assembly line in
an industrial plant. Successive calculations are carried out in an overlapped fashion
and, once the pipeline is filled. a result comes out every clock cyvcle. Of course,
the start-up time, i.e.. the time required for the pipeline to become full. incurs an
unavoidable overhead penalty. The evolution of the vector processor was considered
to be one of the earliest attempts to remove the von Neumann bottleneck [82].

Coupling the pipelining technique with the vector instruction, which results in
the processing of all elements of a vector rather than one data pair at a time. leads
to the well-known vectorization — parallelism in a single processor. The vector
instruction made it possible for the same operation to be performed on many data
items and thus multiple fetches of the same instruction are eliminated.

As a first commercially successful vector computer which has had an important

impact on scientific and engineering computing. the CRAY-1 was put into service*

3For instance. a floating point addition may be split up into the following four stages. namely,
choosing the larger exponent: normalizing the smaller number to the same exponent; adding the
mantissas; renormalizing the mantissa and exponent of the result. A pipelined floating-point adder
with four processing stages. for which a simplified description was given above. was illustrated in
{124, p. 149]. A simplistic five-stage pipeline for the floating-point multiplication may be found in
(66, p. 3).

‘Four vears after Seymour Cray started his company. Cray Research. Inc., in 1972
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at Los Alamos National Laboratory in 1976. Since then, tremendous achievements
have been made in the area of vector processing for scientific computing. Today
various techniques are quite well established to take advantage of this architectural
feature efliciently. For a detailed discussion and account of the history of pipelining
and vector processing. see [82. 120. 124. 133].

In comparison with the already available hardware and software technology for
vectorization. parallel computers and parallel computing techniques are much less
mature. A lack of proper definitions. confusion of terms and concepts and the
plethora of different parallel computing systems remain. The difficulty of program-
ming for parallel operations has even led some researchers to the conclusion that
sequential operations were to be preferred to parallelism (see {188] and references
therein).

The attempt to actually build various parallel computing machines can be. how-
ever, traced back to the 1950s. A sizable amount of research on parallel scientific
and engineering computing was carried out in the 1960s due to the impending ad-
vent of parallel computers. An excellent survev which covers most research activities
in parallel scientific computing before and up to the 1970s was provided in [162].
In particular. the author reviewed studies of parallelism in such numerical analysis
lopics as optimization. root finding. differential equations and solutions of linear sys-
tems. A complete annotated bibliography up to the time of its publication on vector
and parallel numerical methods and applications in meteorology. physics and engi-
neering. etc. can be found in [191]. A review of early results on vector and parallel
solutions of linear systems of equations and eigenvalue problems. along with back-
ground information concerning the computer models and fundamental techniques
was provided in [117]. The early recognition of fundamental differences between

parallel and sequential computing was reviewed in [219]. Factors that limit com-
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puter capacity, the need to build powerful computing systems and the possible cost
ranges were discussed in detail in [234].

During the past twenty vears. the literature on parallel computing has been in-
creasing at a very rapid rate. One of the most frequently referenced works is [120].
which contains detailed information on the history. parallel architecture hardware
as well as parallel languages and algorithms. More about the history and evolution
of architectures may be found in [148. 240]. Detailed discussions on both hardware
and software for quite a number of currently commercially available parallel com-
puters have been provided in [15]. Several supercomputer architectures and some
technologies were reviewed in [142. 143]. [188] contains a thorough review of vector
and parallel scientific computing and a rather complete bibliography up to 1985. A
more recent contribution, [189] collects over two thousand references on vector and

parallel numerical algorithms research up to 1990.

2.3 Taxonomy of Parallel Architectures

2.3.1 Flynn’s Taxonomy

The most frequently referenced taxonomy of parallel architectures was provided
by Flvnn in [89]. He characterized computers to fall into the following four classes.
according to whether thev possess one or multiple instruction streams and one or

multiple data streams®:

1. SISD - single instruction stream/single data stream. This is the conven-
tionally serial scalar von Neurmann computer. mentioned in Section 2.2. This

tvpe of computer performs each instruction of a program to completion before

starting the next instruction.

A stream is defined as a sequence of items (instructions or data) as exccuted or operated on

by a processor.
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. SIMD® — single instruction stream/multiple data stream. This type of com-
puter allows new instructions to be issued before previous instructions have
completed execution or the same instruction to be operated on different data
items at the same time. Thus. the simultaneous processing of different data
sets within a single processor or a collection of many identical processors (re-
ferred to as processing elements) becomes possible. This classification includes

all tvpes of vector computers.

3. MISD — multiple instruction stream/single data stream. Although Flynn [90]
indicated special cases to support this classification of the architecture. there

are, currently. no computers that issue multiple instructions to be operated

on a single data stream.

4. MIMD? — multiple instruction stream/multiple date stream. Computers in
this class usually have arrays of linked physical processors, each processor run-
ning under the control of its own instruction stream. Thus. a great flexibility
is permitted in the tasks that processors are carrying out at any given time.

This classification includes all forms of multi-processor systems.

Typical examples of computing systems which belong to each of the SISD. SIMD
and MIMD types were given in [183] (see also [192]). Block diagrams for SISD.
SIMD. MISD and MIMD machines may be found in [124. p. 33].

The taxonomy discussed above provides a simplistic and broad characterization
of quite different computer architectures. There exist other more complicated clas-

sifications. Notable is the one introduced by Hockney [120]. which was based on

©This type of machines is often referred to as array processors.

‘This type of machines is commonly known as multi-processor systems.



a structural notation for machine syvstems. However. this classification scheme was
considered too fine to be useful [240].

Flynn's taxonomy of computer architectures. although coarse. is certainly helpful
to computational scientists. It should be borne in mind. however, that the current
(super) computers are much more complicated and endowed with a hybrid design.
i.e., an architecture which falls under more than one category. For example. the
CRAY Y-MP is a MIMD machine in general. with each individual processor being
of SIMD type®. In addition, the complication is even furthered by the memory
organization — local. shared or local & shared. and by numerous inter-connection
schemes between memories and processors. These intricate factors have led some
researchers to suspect that there will never be an absolutely satisfactory taxonomy
for parallel computing systems (see, for example, [240]).

A more complete description and discussion of both hardware and software on
MISD and MIMD machines (including multiple SIMD (MSIMD) and partitionable
SIMD/MIMD machine architectures) and other relevant theoretical issues are given

in [19, 124, 210).

2.3.2 More on MIMD Architectures

Most of the current research interest lies in the architectures. programming lan-
guages. data structures and algorithms for the MIMD type of machines. MIMD
architectures may be further divided into two categories. namely, multi-computer

networks and multi-processors. The former category refers to physically dispersed

81t is believed that a hybrid MIMD/SIMD machine is ideal for adaptive mesh refinement (AMR)

numerical algorithms [198].
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and loosely coupled computer networks®. The latter category may be further di-
vided into another two classes: shared (or common) memory or tightly coupled and
distributed {or local) memory or loosely coupled parallel computers.

For a shared memory paraliel machine, for which a schematic model is presented
in Figure 2.1, all processors share a common pool of the main memory and every
processor can access any byte of memory in the same amount of time.

Date items associated with private variables are located in phvsically disjoint
memory spaces and only locally visible to the processors. Different processors have
their own private variables. Communications between different processors are ac-
complished through explicit declarations for the memory space to be shared between
processors. In other words, data items associated with shared variables are made
globally visible or accessible to all the processors involved (see [26] for a good pre-
sentation of relevant concepts).

A major advantage enjoved by this type of architectures is the fast communica-
tion between processors when the number of processors is relatively small.

An obvious disadvantage is. however. that several processors may try to access
the same memory location (or the shared variable from a programmer’s point of
view) at the same time. Because of the random scueduling of the processes. a
svnchronization mechanism must be used to ensure that different processors are
working in the correct order and with the correct data. This accounts for the so-

called contention delay. which obviously aggravates as the number of processors

increases'.

®The computing on multi-computer networks is usually referred to as distributed computing.
This type of computing was considered not to speed up the execution of individual jobs. but to

increase the global throughput of the whole system [183].
1]t is gencrally considered to be a practical limit for 16 processors to share a common memory,

82).
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Figure 2.1: The schematic model of a shared memory multi-processor computer.
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Figure 2.2: The schematic model of a distributed memory multi-processor computer.
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For a distributed memory parallel machine, for which a schematic model is pre-
sented in Figure 2.2, there is no global memory. Each processor has its own local
memory and thus there are no direct interactions with the memory on any other
processor.

This type of computer architecture is heuristically termed as a “message passing”
multi-processor computer because of the fact that the communications between var-
lous processors are made possible by sending and receiving messages through some
inter-connection networks. For distributed memory machines. different from shared
memory computers. there is no explicit hardware svnchronization. Synchronization
must be explicitly coded by the programmer. In general. this requires major recod-
ing efforts for porting programs written for serial machines onto distributed parallel
computers.

There are numerous inter-connection schemes {66. 124. 188] in which processors
are connected. Whatever schemes are used, they all suffer from the same shortcom-
ing. namely. data may need to be passed through several intermediate processors
prior to their reaching their final destinations. An important parameter which may
be used to measure the seriousness of this disadvantage is the communication diam-
eter or length, which refers to the maximum number of transmissions that must be
made in order to communicate between any two processors [185)].

Due to the coexistence of these two quite different MIMD tvpes of parallel ar-
chitectures. there is constantly an ongoing debate as to which one is to be preferred
with regard to implementing numerical algorithms. An excellent discussion on this
issue is provided in [204].

To conclude this section, we point out that another simple and clear classifi-

cation strategy was proposed in {183] which classifies multi-processor systems into
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the following three categories. namely. fine-grain. medium-grain and coarse-grain

machines.

2.4 Some Issues Related to the Design of Parallel Numerical

Algorithms

The availability of multi-processor svstems has introduced new issues and chal-
lenges [182. 204] for numerical analyvsts and computational scientists. To take advan-
tage of such advanced architectures. one has to partition his problem into separate
computational tasks. schedule each task for execution on a processor and perform
communication and synchronization among the tasks. This generally goes well be-
vond some trivial reorganization of an existing sequential code, but requires signifi-
cant redesigning and restructuring of the basic algorithm. As a consequence. some
good sequential algorithms were found unsuitable and, on the other hand, some
old and inefficient sequential algorithms have been revisited and resuscitated due to

their potential for parallelism (see [219] and references therein).

2.4.1 Complexity and Degree of Parallelism

Traditionally, efforts were made to design such algorithms as to minimize the
number of arithmetic operations {computational complexity) involved. Although
computational complexity is still a fundamental consideration for parallel scientific
computing. there are other more important factors to take into account: the degree
of parallelism!!. i.e.. the amount of work (measured in percentage) which can be

executed in parallel, and the communication & synchronization penalty [93].

Hwhich is a key parameter in the Amdahl's law (see Section 2.6). Note that the definition here

for the degree of parallelism is different from that given in [185].
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The availability of various parallel architectures requires computational scientists
(1) to adapt already existent sequential algorithms to the new architecture and (2)
to directly design and develop novel parallel algorithms for the efficient task-to-
processor mapping. In order to impose a parallel structure on a given problem
and/or increase the degree of parallelism. one usually applies (often simultaneously)
the following two related ideas [2. 183. 185. 187. 207]. namely. (1) renumbering or
reordering and (2) divide and conquer or decomposition strategies.

Renumbering or reordering is used for restructuring the computational domain
and/or the sequence of operations in order to increase the percentage of the com-
putation that can be carried out in parallel and. sometimes. remove critical regions
and minimize the number of synchronization points [35. 36. 85]. The divide and
conquer approach itself is concerned generally with breaking up the original prob-
lem into several smaller subproblems and computations into a number of stages.
then assigning the different subproblems to different physical processors for inde-
pendent treatment within each stage followed by inter-processor communication and
synchronization at the end of the stage. Quite often, renumbering or reordering is
applied to decouple the original problem and realize the divide and conquer ap-
proach. Domain decomposition based on substructuring ideas. to be detailed later.
1s one good example.

It should be pointed out. however. that the degree of parallelism is often improved
at the cost of introducing extra computational work. In a series of papers which
address the problem of solving bi- or tri-diagonal linear systems [48. 76, 116, 140.
218.233] on vector and parallel computers, the authors developed the following three
techniques. namely. recursive doubling, cyclic reduction and divide and conquer.
Unfortunately, all these three techniques resulted in a substantial increase in the

number of floating-point operations which made these methods less attractive. This
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emphasizes the important role of computational complexity analysis even in the
study of parallel computing. An efficient parallel algorithm should possess a good
degree of parallelismn and. at the same time. result in only a small amount of extra
comp.ut‘ation.

In general. an algorithm with a high degree of parallelism does not necessarily
result in an efficient parallel computing method (remember that point Jacobi method
as an iterative scheme for solving algebraic linear systems possesses a perfect degree
of parallelism. but it is seldom used due to its slow convergence rate). There is a
balance to be found between parallelism and the amount of computation necessary to
find the solution to a given problem {240]. The ultimate goal of parallel processing is
to reduce the wall clock time by a factor close to the number of processors allocated
to a job without having to pay significantly more for the increase in CPU time. In
other words, parallel processing shortens the production time of computing results
but, at the same time. usually introduces an extra cost and is computationally
more expensive than its sequential counterpart. It is this extra cost that we try to

minimize.

2.4.2 Communication and Synchronization

Another critical issue that has an important impact on the performance of a
parallel algorithm involves communication and syvnchronization. which constitute.
if several physical processors are emploved to cooperatively solve the same prob-
lem simultaneously. an unavoidable overhead which we strive to minimize. During
communication and syvnchronization. processors are not performing any useful com-
putation and some of them. in order to coordinate their steps. may be forced to
stay idle. Memory contention delays for a shared memory system may cause seri-

ous problems. depending on the amount of computational work within the critical
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region of the code and the number of processors involved. Hence. communication
and synchronization should be used sparingly in order to achieve high efficiency of
parallel processing on a single job.

Sometimes. a clever renumbering (e.g. a muiticolor renumbering). which is es-
sentially equivalent to a proper reordering of computational sequences. may remove
the critical regions and. at the same time, minimize the number of synchronization
points [33. 36. 83]. In general. instead of devising algorithms of small granularity
that require relatively frequent communication and synchronization between pro-
cessors. a non-interactive way of apportioning the work among different processors
should be found so that tasks of relatively large granularity are created. However.
this may lead to additional difficulty in load balancing'? — another important is-
sue in parallel computing. An unbalanced load distribution will, in turn, increase
syvnchronization costs. Indeed, parallel computing has brought about much more

complicated issues than sequential computing.

2.4.3 Synchronized vs. Asynchronous Parallel Algorithms

In all of the above discussions, we have tacitly assumed that the algorithm un-
der consideration is the so-called svnchronized parallel algorithm. This type of
algorithms consists of more than one process with the property that there exists
a process such that some stage of the process can not be activated until after an-
other process has completed a certain stage of its program. The elapsed time for
completing a certain stage of the computing is determined by the slowest process.
This constitutes the basic weakness of a synchronized algorithm. which may result

in worse than expected speedup results and inefficient processor utilization.

12Load balancing is easier for tasks of smaller granularity, e.g., splitting a loop and distributing

them across processors [66)].
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As a remedy. some researchers have been concerned with designing and devel-
oping asynchronous parallel algorithms [124]. in which. although contention delay
is still a potential problem. processes generally do not have to wait for each other
and communication is achieved by reading dynamically updated shared variables
stored in the shared memory. It should be pointed out. however. that in developing
asynchronous parallel iterative numerical algorithms. the iterates generated by the
asynchronous iterative algorithm may be different from those produced by the se-
quential algorithm or synchronized parallel iterative algorithms due to the random
scheduling of processes. hence the convergence or convergence rate is hard to predict

and a general theory is not vet available.

2.4.4 Memory Access and Data Organization

As a final, but not the least important issue, we address concisely those concepts
and techniques which are most relevant to vector and parallel computing, namely.
memory access and data organization.

In fact, with the increasing power of functional units, it is important to match. at
a reasonable price. the information transfer rate (the so-called memory bandwidth!®)
with the processor speed. In other words. to sustain the fastest possible processing
speed offered by the computational units. one has to ensure that the memory is able
to deliver instructions & operands fast enough to the computational units and that
the computational units can get rid of their output sufficiently fast. The movement
of data from and to the main memory can be as costly as arithmetic operations on

data. Anexample was given in [237]. which showed. for matrix-matrix multiplication

13The bandwidth of a system is generally defined as the number of operations performed per
unit time. The memory bandwidth is measured by the number of memory words that can be

accessed per umit time.
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problems, that the execution of a vector code can be slower than that of a scalar
version due to improper memory management.

The data flow between the memory and the computational units is the most im-
portant and critical part of a computer design. It is too expensive to build a large
memory with such a high speed as to match the fast processing speed. To get around
the dilemma of needing rapid access to the memory. on the one hand. and also having
a large amount of memory space. on the other hand, computer designers built a hier-
archical structure into the memory. A typical memory hierarchy (consisting of a fast
but small cache'* and the slow but large main memory. etc.) was illustrated in {183].
From bottom to top. each level in the hierarchy represents an order-of-magnitude
increase in memory access speed, and several orders-of-magnitude decrease in ca-
pacity, for the same cost.

In general, efforts should be made to obtain a high ratio of time spent on com-
putations to time spent on memory references in order to efficiently and effectively
utilize high speed processors. Typically. processor speed is much greater than the
access (cither fetch or store) speed to the main memory. The speed gap between
the processor and main memory is closed by using a fast. but small. cache memory
between them. To prevent the memory from becoming a possible bottleneck. one
must exploit and make use of the locality of references in the code development.
Specifically. memory references to data should be contained within a small range of
addresses and the code exhibits reuse of data [66]. Thus. most memory references
will be to data in the cache and the overall memory access rate will be effectively

approaching that of the fast cache memory. which is typically 5 ~ 10 times faster

1Cache memories are high speed buffers inserted between the processors and main memory.

which are typically five to ten times faster than the main memory.
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than the main memory. resulting in a bandwidth balance between processors and
the memory.

As a very good example. we mention here that one of the reasons that Basic
Linear Algebra Subprograms (BLAS) [63, 141, 65, 64] were gradually brought to
higher levels is to increase the ratio of floating-point operations to data movement
and make an efficient reuse of data residing in cache or local memory. Typically. for
level 3 BLAS. it is possible to obtain O(n?>) floating-point operations while requiring

only O(n®) data movement, where n specifies the size of matrices involved.

2.5 Programming Aspects

Many different types of parallel computers have been provided by various com-
panies. Each one of these types has its own unique architecture and characteristics
equipped with extensions, for parallel programming, to an existing programming
language such as FORTRAN. or a new language specially designed for a particu-
lar machine (see, for instance. [13, 26, 83] and [67] along with references therein).
Imposing a standard model of parallel computing language is still too early and is
impeded by the current level of understanding about parallelism. In fact, there is
no agreed-upon point of view about what a parallel programming language should
be or, at least. in which direction the extension should be made to currently avail-
able serial high-level languages. Researchers interested in implementing their par-
allel algorithms on different types of parallel computers are, therefore. faced with
formidable tasks.

The purpose of this section is, of course. not to review different parallel pro-
gramming tools supported by their respective hardware and operating systems.

Appropriate computer manuals should be consulted for this purpose. However.
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knowing where to impose a parallel structure in the code is essentially a data prob-
lem. not a coding problem. Indeed. the major consideration that limits parallelism
within a program is the scope of data items. Whichever machines and program-
ming languages are chosen. a parallel code consists of some logical and machine-
understandable expressions of control flows which enable the computer to process
those sections containing data capable of being operated on simultaneously without
adversely affecting other data. In view of this. we discuss. in this section. topics

related to data dependencies. control and execution flow.

2.5.1 Control Flow Graph

A control flow or data dependency graph is an invaluable aid to parallel pro-
gramming which was presented and recommended in [67, 68]. Although it was
originally emploved to illustrate and facilitate the use of a software package called
SCHEDULE for portable FORTRAN parallel programming, the technique actually
has a much wider applicability in the development of codes for both fine-grained
and coarse-grained parallelism.

A typical control flow graph consists of two basic elements, namely. nodes and
directed edges. which stand for processes or subroutines and execution dependen-
cies, respectively. A process (represented by a node) can not be initiated unless all
the other processes with edges directed to it have completed their execution (i.e..
the incoming edges have been removed from that node). Processes without incom-

ing edges (as have been removed) have no data dependencies’® and hence may be

executed in parallel.

15For shared memory systems. this means that there is no contention for “write” access, but

“read” access to a shared variable is allowed.
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We present a sample data dependency graph in Figure 2.3. where level a ~
level e have no real meaning but are labels used for an easy and clear description
of the graph. The computations begin with H. G [level ¢] and D [level ¢] working
in parallel. As soon as H is completed. D [level b]. E [level b] and G [level b] can
proceed simultaneously and. possibly. in parallel with the already existing processes
G and D mentioned above. if they have not finished vet. Two copies of D at
level b may be understood as two identical subroutines operating on two different.
independent data sets (the same convention applies to other identical copies of the
nodes). The execution of I can commence and continue simultaneously with other
existing processes provided that G [level ¢] has completed its calculation. However.
processes B and C can not be initiated even if G [level ¢] and D {level c] have
finished their jobs. E [level ¢] may start immediately after the completion of G
[level b]. However. F can not be started unless all four processes at level b have
completed their calculations. B (C) can be executed as long as G [level ¢] and F
(D [level ¢]. E [level ] and F) have been completed. Finally. as soon as B. C and
1 finish, one can execute A, which terminates the whole computation process upon
its completion.

It 1s obvious that the control flow graph to a given problem is not unique. Even
using the same parallel algorithm. the graph can be made at different levels of
detail and granularity. In principle. given a target machine. the control flow graph
may readily be translated into a parallel program. A parallel algorithm and the
corresponding control flow graph for the solution of a triangular linear system of
equations Tz = b was provided in [66]. A control flow graph for evaluating 7%,
where k is a positive integer. was given in [237]. Some more examples {67. 68] are

available in the context of developing a user interface to the SCHEDULE software
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package. Simplified control flow graphs for the iterative Schur and modified interface
matrix domain decomposition algorithms are provided later (see pages 81 and 122).

A control flow graph respects data dependency relations and identifies the next
schedulable process(es). Following the logical flow of such a graph. the computa-
tion can be expected to proceed in the correct order leading to correct computing
results. However, the graph does not take performance efficiency into consideration.
For load balancing and other implementation details. an execution graph may be
constructed to properly partition the computation and/or data as well as to force
certain processes to complete before others. Such a graph must not, of course.

violate the execution dependencies specified by the control flow graph.

2.6 Performance Analysis

2.6.1 Performance Analysis for Vectorization

The computational speed of today’s high performance architectures is usually
measured in terms of Mflops (millions of floating-point operations in one second) or
even Gflops (1 Gflop = 1000 Mflops). Extensive research 1s vet to be carried out for
achieving a sustainable teraflop (1000 Gflops) peak performance in the future.

By definition. the rate of computing may be expressed the following way

Tr =

N
" Mflops (2.1)

where NV is the number of floating-point operations (flops) carried out in ¢ microsec-
onds (107¢ seconds).

Vectorization is capable of sustaining a high speed of computing by performing
exactly the same operation (no muitiple fetches of the same instruction from the

memory) on many data items and by using pipelining techniques. However, due to
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the delay before obtaining the desirable results for timely loading of operands into
the pipeline. there exists a problem of data dependency and recurrence which will
prevent a given loop from vectorization, resulting in a low speed of calculation. In
fact. the computational speed is often far from uniform for any realistic numerical
simulation of a process. Therefore. the classical way of evaluating the efficiency of
an algorithm by simply counting the number of flops is obviously no longer valid for
vector processors. New ways of analyzing and modeling the computational perfor-
mance had to be developed.

A formula capable of predicting the improved performance as a result of vector-
ization was introduced in [6] while vector machines were still in the design stage.
The formula is the well-known Amdahl’s law for vector processing. If we assume
that there are only two modes of operation. namely. one with a high speed and the
other with a low speed. then the formula predicting the overall performance may be
expressed by

a l-a

r=(—+ )=! Mflops (2

r S

to
o
~—

where
e r -— overall or average speed of computation:
e v — high computing speed or vector processing speed:
e ¢ — low computing speed or scalar processing speed:

¢ a — degree of vectorization. i.e.. fraction of the total amount of work carried

out with a computing speed of v Mflops.

In order to quantitatively appreciate (2.2), we plot, in Figure 2.4, the speedup
/s due to vectorization as a function of a and the ratio of vector processing speed to

scalar processing speed v/s. It is clear that the overall performance is unfortunately
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dominated by the low-speed mode. In other words. the overall computing speed can
be drastically reduced for even a small portion of calculations (1 — a being small)
which are carried out with the rate s. Increasing the vector processing speed v will
only marginally improve the overall performance if the bottleneck due to the Jow-
speed mode of operation is not removed or made less serious. All this suggests that
it may not be cost effective for computer manufacturers to invest a lot of human
effort and material resources to improve vectorization without investing into the
enhancement of the scalar processing speed (see also [61]).

The formula corresponding to n modes of operation can easily be generalized as

follows
N
r= _
(Ny/ry + Nyfra+ -+ Ny fry)

where. for 1 = 1,2,.... n,

Mflops (2.3)

e r; — computing speed corresponding to i-th mode of operation;
e N, — number of flops carried out with a computing speed of r, Mflops
and N = Ny + N, + ...+ N, is the total number of flops required of a given task.

2.6.2 Performance Analysis for Parallelization

For parallel processing. the goal is to reduce the wall clock time (elapsed time
for execution). while the total CPU time involved in parallel computing is usually
larger than the CPU time consumed by the execution of a sequential code for the
same problem. Ideally. the wall clock time would be reduced to 1/n of the wall clock
time required for sequential calculation if the work can be divided into n equal-size
parts which are executed by n cqually powerful processors. However, this is not
possible due to the existence of non-parallel segments contained in a parallel code

and various parallel processing overheads involved.
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The performance of a parallel code is usually measured by the speedup. namely.

W

:‘—‘—/:;

S. (2.4)
where

e S, — speedup for a system of n processors:

o W, — serial processing wall clock time:

o 1", — parallel processing wall clock time by n processors.

The corresponding efficiency for using a computing svstem with n processors is

defined by
Sn
E,=— (2.5)
n

It should be pointed out that W in (2.4

~—

was proposed to mean the wall clock
time for using the best sequential algorithm on a particular architecture {188]. How-
ever, determining the fastest sequential algorithm for a specific application problem
on any particular computing svstem may be more difficult than developing a parallel
algorithm itself. Consequently. the speedup as defined by (2.4) often measures how
a given algorithm compares with itself on one and n processors. This measurement
properly incorporates any communication and synchronization overhead and. in a
sense. expresses how busy the processors are kept computing (rather than communi-
cating and waiting). However. a potential pitfall is that an algorithm with a perfect
speedup may not run much faster or may even run slower than a serial algorithm
designed for solving the same problem.

Amdahl's law (2.2) is easily extended to the parallel case. The assumption is
that the whole computational work can be divided into only two parts. i.e., a strictly

sequential part and a part which can be carried out simultaneously on n processors.
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Then. in the absence of communication and synchronization overhead. the speedup
1s

n

S, = m (2.6)

where
e S, — speedup obtained on a system with n processors:

e a — degree of parallelism. i.c., percentage of the total work (measured in CPU

time) which can be carried out in parallel using n processors.

The similarity between Amdahl's laws for vector and parallel processing is no-

table. Specifically. if we make the following substitutions

and understand « in the context of parallel processing, then the speedup S, obtain-
able on a system with n processors is graphically shown in Figure 2.4 as a function
of a and n. Similarly. we conclude that the overall performance of using a multipro-
cessor svstem is dominated by the sequential part. A small amount of serial work
(1 = a being small) will result in a large reduction in the speedup. especially for
large n. Moreover. no matter how close a is to 1. the speedup will soon fall behind
n. In Figure 2.5, we show that the efficiency (obtained by (2.5)) is a decreasing
function of the number of processors involved, while keeping a fixed.

For a vector-parallel computing system. i.e.. a multi-processor system in which
cach of its processors has vector capabilities, the most efficient utilization of the
resources requires that the product r/s - S, of speedup r/s- duc to vectorization
and the speedup S, due to parallel processing be maximized. It was illustratively

explained in [83] that both the degrees of vectorization and parallelism must be high
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enough in order to ensure substantial improvement over serial processing and the
overall performance will be deteriorate as the number of processors increases.

Amdahl’s law for parallel processing casts a pessimistic shadow on the possible
benefits one can obtain from massively parallel computing. The implicit assumption
behind Amdahl’s law is that the size (measured in . see (2.4)) of the problem
under consideration is fixed. The formula given in (2.6) was obtained by assuming
that part of this fixed-size problem may be carried out in parallel and the rest be
done sequentially. By this formula. the possible maximum achievable speedup is
only 100 even if 99% of work is carried out in parallel on a multi-processor system
with an infinite number of processors. Is massively processing really meaningful and
beneficial or is Amdahl’s law inappropriate in this context?

An alternative formulation was put forth in [106] in an attempt to explain some
unprecedentedly excellent speedup results [107] on a 1024-processor hypercube in
Sandia National Laboratories. The fundamental observation is that. in practice.
the problem size is not fixed, but scales with the number of processors involved in
the actual computation. The key assumption in this new formulation is that W,
(measured in a dedicated mode for multi-programming operating systems) being
held fixed. If a fraction o (measured as a percentage) of W', is spent on parallel
computing and the rest time on serial processing. then the same work would take
W = (1 —a)ll, + anll’, to run on a single processor. Therefore. the speedup is

",
",

=l—-a+an (2.8)

In contrast to Amdahl’s law. (2.8) indicates a predicted speedup of 5, = 0.014-0.99n

on a multi-processor system with n processors if 99% of the work (mecasured by 117,)

may be carried out in parallel.
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For comparison with the efficiency predicted by Amdahl's law (see Figure 2.5.
we produce a similar 3-D figure indicating how the modified efficiency. as calculated
by using (2.8). depends on the number of processors and o (see Figure 2.6).

The above discussion did not. however. take into consideration the communica-
tion overhead. which may dominate the overall performance. The overhead issue
was incorporated into the formulation in {7] for analyvzing the expected performance
due to massive parallelism. The result is. unfortunately. discouraging. Due to this
result. it was claimed in [61] that. in the future. there mmay be a convergence of ideas

and techniques around architectures comprising only a few hundred processors.

2.7 Conclusions

e Parallelism was introduced to be one of the novel architectural features of
today’s computers for further increasing processing speed. Although the ideas
of parallelism are old and simple, the efficient and cost effective implementation
of parallel numerical algorithms is not an easy task. More difficulties originate

in a plethora of different parallel computing systems.

¢ Flynn’s taxonomy provides one of the simplest characterizations of essentially
different parallel computer architectures. There are other more refined clas-
sifications. However. the intricate nature of parallel computing systems may

make an absolutely satisfactory taxonomy impossible.
e In the MIMD category. we have

multi-computer networks
MIMD

i shared memory parallel computers
multi-processors

local memory parallel computers
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It 1s generally considered that the shared memory (tightly coupled) paral-
lel computers represent conventional architectures: while the local memory

(loosely coupled) parallel computers stand for novel or modern computer ar-

chitectures.

In the context of parallelism, the quality of a numerical algorithm can not be
judged by the analysis of computational complexity alone. equally important
factors are the degree of parallelism (i.e.. the percentage of the total work
measured in CPU time which may be done in parallel) in the algorithm. com-
munication & synchronization issues and the locality of reference within a

code.

A control flow or data dependency graph is an invaluable aid to parallel pro-

gramming.

The performance analysis for vectorization shows that the overall computing
speed 1s dominated by the scalar processing rate. Rather similarly. the perfor-
mance analysis for parallelization reveals that the efficiency cf parallelism is
very sensitive to the existence of even a small amount of serial computational

‘work.



CHAPTER 3

DOMAIN DECOMPOSITION METHODS
3.1 Origins

Over the past thirty vears. a tremendous variety of parzallel numerical algorithms
for scientific and engineering computing have been proposed {189]. Most of the
recently proposed parallel computational strategies for solving partial differential
equations (PDE’s) were based on domain decomposition ideas.

Domain decomposition ideas are actually not new, but are rather old ones which
have been forgotten. It is widely acknowledged that Schwarz [209] was the first
to employ domain decomposition ideas for establishing the existence of harmonic
functions on regions with nonsmooth boundaries. by constructing the region under
consideration as a repeated union of other regions. A class of domain decomposi-
tion techniques based on the early work of Schwarz is now known as the Schwarz
alternating method (see. among others. [16. 98. 144, 145. 146. 160. 161. 215]).
The Schwarz alternating procedure is now. however. generally called multiplica-
tive Schwarz method in contrast with the more recently proposed additive Schwarz
algorithm. which may be regarded as a method for constructing parallelizable do-
main decomposition preconditioners (relevant references and some details will be
furnished later in Section 3.5.2).

Another class of domain decomposition methods. namely. iterative substructur-

ing methods!. may be traced back to the work of structural engineers in the sixties

'The methods are closely related to some mathematical theories developed by Poincaré and

Stekiov in the 19th century (see [197] and references therein).

40
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(see [93. 193. 202] and. in addition, we mention. among numerous other papers.
[3. 37. 84. 131. 236]). Substructuring techniques were developed in the sixties pri-

marily for the following two reasons:

e the substructuring treatment of acrospace structures provides a way to save
a significant amount of computer storage and thus made possible the finite

element modeling of very complex structures at that time:

e the substructures themselves may be viewed as complex (super) elements
whose stiffness matrices can be stored for later use in an overall different
problem but with the same or rather similar structural components to avoid

repetitive work.

We refer to [235] for some further, however, general remarks on the aforementioned
two classes of domain decomposition methods.

The term “domain decomposition™, in a rather general sense, refers to a class of
numerical techniques for the replacement of PDE’s defined over a given domain with
a series of problems defined over a number of subdomains which collectively span
the original domain. The solution to the original problem is obtained by solving
a subproblem (which is probably much easier to solve than the original) defined
on each of these subdomains (different grid resolutions and numerical techniques
may be used in different subdomains) and by patching together the subdomain
solutions. The computational work on each subdomain is usually associated with
a task or software process which will be scheduled onto and handled by a different

processor of a parallel computer.
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3.2 Saint Venant’s Torsion of a Cylindrical Shaft with an Irregular

Cross-Sectional Shape

As an example, let us consider the torsion of a cylindrical shaft — an important

problem in engineering. The cross section (in the x-y plane which is not shown in

the figure) of the bar is of the shape given in Figure 3.1 (a). The problem is to

determine the stress distribution and deformation of the shaft under the action of

an external torque. The solution to the problem can be obtained by Saint Venant's

theory of torsion [92]. The corresponding mathematical problem may be formulated

in either of the following two ways:

o

Py 0%
32 T oy T

subject to Neumann's boundary condition

0 inQ (3.1)

Qf_
On

= ycos(zr,n) — rcos(y.n) on 9N (3.2)

where (z.y) is the warping function and n is a unit outward normal vector

to the lateral surface of the shaft:

dv 9w

gri oy?

= -2Ga in (3.3)

subject 1o Dirichlet’s boundary condition
=0 on df) (3.4)

where v'(z,y) is Prandtl’s stress function, G is the shear modulus of the shaft

material and a is the angle of twist per unit length.
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Figure 3.1: Saint Venant's torsion of a cvlindrical shaft with the cross section shown
in (a). The original cross-sectional domain  is artificially divided into five nonover-
lapping subdomains Q;. Q,. .... s, as shown in (b).
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Domain decomposition techniques can be applied to solve the above Laplace’s or
Possion’s equation by artificially dividing the original domain €2 into five nonover-
lapping subdomains y, Q. .... Qs (see Figure 3.1 (b)). In principle. as long as
the numerical values on the interfaces (represented by the dash lines in Figure 3.1
(b)) are known. the subdomain problems are well defined and may be solved inde-
pendently and. due to the regularity of the subdomain shape. by using fast solvers
[221. 222]. The key issue is how to determine the interfacial degrees of freedom
efficiently. An iterative procedure with appropriate preconditioners [38. 46. 131] is
usually carried out to find interfacial values with desired accuracy. Because fast
solvers are locally exploitablie. the application of domain decomposition methods to
this particular problem can be beneficial even for serial computing, provided that
the computational cost involved in enforcing proper conditions on the interfaces is
not greater than the computational work already saved. The possibility of mapping
each of the subdomain calculations onto a different processor for parallel computing

would result in a further reduction in execution time.
3.3 Three Decomposition Strategies for the Parallel Solution of PDE’s
In general. given a boundary value problem in € of the form

Lu=f (3.5)

there are three different ways of devising parallel numerical algorithms for the solu-
tion of (3.3). These are operator decomposition. function-space decomposition and

domain decomposition. The main algorithmic features of these three approaches are

explained below:
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e Operator decomposition: The main idea is to decompose the original differen-

tial operator. namely.

L=Li+L,+...+ L, {3.6)

or when n is small. by taking advantage of the independent tasks within each

phase embedded in an outer iteration which encompasses all terms of L,. 7 =

e Function-space decomposition: For this approach, one decomposes the solu-

tion u € [ into n component solutions u,. 1 = 1.2..... n. which belong to

appropriate subspaces U;. 1 = 1.2... .. n., of the space . namely.
u=u;+u;+...4 Uy, (3.7)

Numerical algorithms are designed so that u,, 7 =1,2,..., n, may be obtained

in parallel:

e Domain decomposition: In this algorithmic paradigm, one decomposes the

original physical domain € into n subdomains. namely.
Q2 UuU2Uu---uQ, (3.8)

The form of the original differential operator is preserved in each subdomain
and the smaller problems defined in the subdomains are coupled only at their

common boundaries (interfaces).

Three examples are furnished in [130] corresponding to these three types of
decemposition just described, which are the classical alternating direction implicit
(ADI) scheme. the spectral method and the additive Schwarz overlapping domain

decomposition method. Generally speaking. by employing domain decomposition
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algorithms. each processor operates on a subset of the data and the amount of
data flow for sustaining the parallel computation among processors is rather small.
However. for the other two forms of decomposition. each processor performs a subset
of the calculations operated on all of the data. Hence. the expensive global data
flow or exchange costs proportional to the discrete problem size are expected.

According to the classification proposed in [237], there are broadly two types of
strategies for partitioning a given task for distribution across the available proces-
sors. namely, (1) partitioning of the computation. and (2) partitioning of the data.
Although these two types of partitioning are not mutually exclusive. domain-based
parallelism may be roughly classified into the latter while the other two decomposi-

tion approaches usuallyv fall into the former type.

3.4 Motivations for Domain Decomposition

During the past decade. there has been a significant increase of research activ-
ities in the area of domain decomposition. The primary motivation for developing
and extending this “old™ technique is. no doubt. to exploit potentially high level
parallelism it can offer and to take advantage of the commercially available high-
performance parallel computers.

In fact. from the discussion above. domain decomposition algorithms are gener-
allyv superior to either function-space or operator decomposition from the perspective
of parallel computing®. Thus, for the purpose of parallel computing. the original

physical domain is often divided into a number of regular subdomains in such a

2see [130. p. 9) and references therein for a more detailed exposition in terms of the interprocessor
data flow analysis. In particular, it can be argued that, among aforementioned three decomposition

strategies. only domain-based decomposition does not require the global movement of a significant

amount of data between processors.
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wayv that computational work may be approximately equally distributed across all

subdomains (processors).

However, even for sequential computing, there are good motivations for this

revival of interest in domain decomposition. Some of these, among others, are listed

below:

1.

(S

Domain decomposition techniques offer a possible way to solve PDE’s defined
on irregular domains with a finite difference or spectral method [136. 201]. To
this end. one divides the original problem domain into subdomains of simpler
structure on which standard solvers (possibly. fast subdomain solvers based

on fast Fourier transform or cyclic reduction techniques) are effective.

Domain decomposition techniques allow us to use different numerical schemes,
orders of approximation and resolutions for different subdomains (see, for ex-
ample, {137]). Thus thev offer opportunities to combine the advantages of
finite element, spectral and multigrid methods for devising more efficient and
accurate algorithms applicable to multi-processor architectures (see [224] and

references therein).

. The technique also provides us with possible means for isolating regions which

require special treatment. Thus the computational effort can be focused upon
regions where large gradients. boundary lavers. shocks or even singularities

occur [96. 138]. by, for example. carrving out local adaptive mesh refinement.
{ Jo 13 g p

. The technique may be applied to some physical problems which require dif-

ferent mathematical models for different subdomains. for instance. in fluid

dynamics. using a viscous model near the boundary and an inviscid model in
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the far field {62, 97]. Interested readers are also referred to [196] and references

therein.

3.5 Some Domain Decomposition Algorithms

Domain decomposition consists of two major classes of techniques which are
characterized by the way subdomains are partitioned. namely. with and without
overlapping of the subdomains. For both overlapping and nonoverlapping domain
decomposition methods. the original physical domain can be constructed as a union
of strips or boxes. while the corresponding subdomain solvers may be exact or
inexact. Box-wise domain decomposition methods are more likely to be used on
parallel computers with a very large number of loosely coupled processors, while
partitioning of the original domain into strips is better suited for parallel computers
with a small number of powerful vector processors. like the CRAY Y-MP (see [157]
for more information).

It should be pointed out that the overlapping and nonoverlapping approaches are
not fundamentally different. In some cases and under some conditions. for a given
Schwarz overlapping algorithm there corresponds a Schur complement nonoverlap-
ping domain decomposition algorithm. with a particular preconditioner. which pro-

duces identical iterates on the interfaces [21. 42].

3.5.1 The Multiplicative Schwarz Overlapping Domain Decomposition
Algorithm

A typical example of overlapping methods is the Schwarz alternating procedure

which is now discussed in detail. Consider solving an elliptic PDE Lu = f defined

in domain = Q; U Q; shown in Figure 3.2. subject to some specified boundary

condition on Jf. The restricted problems of the original problem to subdomains
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0, and €; can be independently solved as long as the boundary conditions are

correctly specified on the artificially introduced interfaces 4; and 7,. These boundary

conditions are iteratively updated until a desired accuracy is obtained by repeatedly

solving subdomain problems as follows:

o

. Start with an initial guess on one of the interfaces. say. 1;:

. Solve the problem Lu = f on , using the boundary condition on 7; together

with the original boundary condition on the rest of the boundary:

. Based on the solution from step (2), the boundary condition on 7, 1s updated:

. Solve the problem Lu = f on Q; using the boundary condition on v, together

with the original boundary condition on the rest of the boundary:

. Based on the solution from step (4), the boundary condition on 7, is updated.

go back to step (2).

The convergence of the above procedure is guaranteed [144] using an analysis in

terms of projections in Hilbert spaces. The rate of convergence depends on the extent

of overiapping. The larger the region Q;; = Q; Ny, the faster the convergence.

Some numerical results for the Possion’s equation defined on a unit square can be

found in [157]. The procedure may obviously be extended to the case of more than

two subdomains. although there is a decrease in convergence rate as the number

of subdomains increases. Moreover. a classical red/black numbering of subdomains

may paralielize the procedure.
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Figure 3.2: The union of two overlapped regions £ = Q; UQ; in which the solution
of a PDE is sought.



3.5.2 The Additive Schwarz Overlapping Domain Decomposition Algo-
rithm

The additive Schwarz algorithm [32. 33. 71. 72. 73. 74, 75. 130. 151], proposed
for the solution of elliptic PDE’s with the Galerkin finite element method. is an
approach for constructing domain decomposed preconditioners by deriving an alter-
native linear system which has the same solution as the original problem. As the
simplest example. the additive Schwarz method without overlapping corresponds
to transforming the original linear system into a block-Jacobi preconditioned linear
svstem.

Krvlov or conjugate gradient-like algorithms are usually employed for the solu-
tion of this transformed linear system of algebraic equations. At each iteration. one
solves a global coarse grid finite element problem and a number of local problems
defined in the overlapping subdomains, which collectively span the original physical
domain. The local subdomain problems may be solved either exactly or approx-
imately and in parallel. This approach is very competitive for certain classes of
elliptic problems due to its use of overlapping subdomains and the incorporation
of a global coarse mesh. The introduction of additive Schwarz algorithms was mo-
tivated by the error propagation operator (a polynomial of projections) associated
with the multiplicative Schwarz method.

To fix these ideas. let us consider solving a steady state heat conduction problem

specified by the following equations

J h . .
5ﬂk,,»#)-;«f:() in 0 (3.9)
- 3
v=u onl, (3.10)
k —ain, =4 only (3.11)

Y0z,
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where k;;’s. 1,7 = 1.2 are conductivities and v is the temperature. Note that
Einstein’s summation convention has been used here.

If we define a bilinear form

Jw Ou
ky; a2
(w.u) // Ja:rc')rj (3.12)
and two inner products
= [ [ wrdn (3.13)
(w-q)qu=/r wqdl (3.14)

our original boundary value problem (3.9). (3.10) and (3.11) (known as the strong

form) can be shown to be equivalent to the following so-called weak form

a(w.u) = (w, f) + (w. 9l (3.15)

Here u and w belong to properly defined Sobolev spaces V" and W of trial solutions
and test functions. respectively (see Appendix A).

To solve numerically the heat conduction problem by the Galerkin finite element
method. we need to construct a finite dimensional space 11"* to approximate the

function space W’ defined as

W={weH Q)|w=00nT,} (3.16)
HYQ) = {w]|w € L*(Q): Vuw € L}(Q)} (3.17)
Assume that the function ¢* = @ on I’y and let u* = v* + g for ©* € W*. Then

the Galerkin finite element formulation may be stated as follows:

e Find u* = v" + ¢*. v* € WA such that for all wh e W,

a(ut. v?) = (wh, f) + (u"‘.(j)qu —a{u®, g"). (3.18)
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From (3.18). we deduce that a(w*.v) = a(wh.v"). As a result. the finite element

solution v* (from which. we obtain u* = v* 4+ ¢* for the solution of the original

problem) is the projection (with respect to the inner product definition in (3.12))
of the exact solution v onto the finite element space W*.

To be specific. let us think of 11"* as a piecewise linear triangular element function

space (see Appendix A). Upon specifving a set of global shape functions A;’s in the

space W#, (3.18) reduces to a linear system of algebraic equations

Av = g. (3.19)

We now decompose the original physical domain Q into N nonoverlapping sub-
domains ;.7 = 1.2.... . N (see Figure 3.3). In addition to the h-level finite element
space W, we define another piecewise linear H-level function space W#  whose typ-
ical element w¥ is continuous in Q. linear in the subdomain Q, and vanishes on I'y,.
To obtain some overlapping, we extend each subdomain to a larger region Q) which
does not cut through any h-level elements. Subdomain extensions lying outside the
original physical domain are cut off {see Figure 3.3). Associated with each extended
subdomain Q! is a finite element space W* = H}(Q)) N W, which is inherited from
the already defined h-level function space 1™,

The finite element function space W* may be represented as the sum of the

following N + | subspaces

Wh=Wh Wk 2w (3.20)
where W is replaced by W&, The projection operator
P: Whwh (3.21)
foreach1 =0.1.2...... N'. may be defined as follows

a(u®, Pty = a(uwh . oh). Vit € Wk (3.22)
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Figure 3.3: The original physical domain is decomposed into N nonoverlapping
subdomains ;. 1 = 1.2,....] N. To obtain some overlapping, each subdomain ; is
extended to a larger one Q).



Instead of directly solving the linear system (3.19) resulting from (3.18). in the
additive Schwarz algorithm. one works on a transformed equation of the following
form

Pet =b (3.23)
where P 1s the sum of .N + ] projection operators defined above in (3.22). namely.
P = TN P. The right hand side b = %, P, where Pt for cach of i =

0.1,....N.is obtained by solving
a(u®. Pa") = (wh. f) + (u'h.q)qu —a(ut, g®). Vut e Wh (3.24)

Algebraically. the equation (3.23) is nothing but a transformed linear system of

(3.19)

B 'Av = B~y (3.23)
where
N
B! = Z RZ(A;_)"R;c (3.26)
k=0

A typical entry of the subdomain matrix Ay is defined by (Ag),, = a(N,. ;). where
N,’s are piecewise linear global shape functions which span the space W}. Each
matrix R k= 1.2.....] V. plays the role of restricting the global solution vector
to the interior of the extended subdomain }. Finally. the matrix Ry serves as a

fine-to-coarse grid restriction operator.

3.5.3 The Iteration-by-Subdomain Nonoverlapping Domain Decompo-
sition Algorithm

As one of many possible nonoverlapping domain decomposition methods. we de-

scribe the so-called iteration-by-subdomain method [91. 150. 194, 195]. The method

allows for the reduction of the original problem into a number of independent sub-

problems of reduced computational complexity at the differential equation level.
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rather than at the algebraic level. by enforcing proper transmission of information
(according to some applicable physical laws) between adjacent subregions. Because
the method is based on solid physical ground. the resulting domain decomposition
algorithm is rather robust and may be applied to a wide range of physical problems
of practical interest.

To illustrate these 1deas. we consider the physical domain Q shown in Figure 3.4.
The original domain § is divided into two nonoverlapping subdomains of smaller
size € and Q, with an artificially introduced interface 4. The model problem under
consideration is Lu = f with some specified boundarv condition, say u = g. on 9.
where L = ~ Zi]:l 5%((1,]—6%) + ao. Denoting by u; the restriction of u to Q. for

7 = 1,2, the original problem is equivalent to
Luy=f in{y (3.27)
with the original boundary condition on 99; — 1. i.e..

uy =g on BQ, -5 (328)

'

and
Lu; =f i, (3.29)

with the original boundary condition on dQ1, — 1. t.c..
up=g¢ on Jy —~ (3.30)
provided that the following transmission conditions are imposed on the interface 4

$(uy) = d(uz) on A (3.31)

and

Y(u) = W(up) on -~ (3.32)
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Figure 3.4: The original physical domain € in (a) is divided into two nonoverlapping
subdomains 1, and €, in (b).
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For the Possion’s equation. ¢(u) = u and ¥(u) = Z~Z. where n is the unit normal
vector on 4 directed from © to Q5. In the case of linear elasticity. by using Einstein’s
summation convention, we have the foliowing well-posed problems in the domain

(see [139] for the meaning of notations and additional details)

o Equations of motion

Girs + pfi = iy (3.33)
e Stress-strain relationships
1 .
gy = 5(11;',1‘ + u,) (3.34)
¢ The constitutive law
aw’ .
Oi; = 5o T CijkI€kI (3.35)
i
or for isotropic materials
0i; = Augbi; + 2ps,, (3.36)

o The boundary condition of specified displacements
u; = u; on Jf, (3.37)
e The boundary condition of specified stresses

t,=a,yn, ondf, (3.38)

Appropriate initial conditions are also required for this initial boundary value prob-
lem. The interfacial transmission conditions consist physically of the continuity of

displacements and stresses across the cornmon interface, i.e.,

ul = u? (3.39)
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oln, = oln, (3.40)

where n; is a unit normal vector to the interface 4 shown in Figure 3.2. Hence. in
this case. ®(u;) = u; and ¥Y(u,) = oy;n,.

The iteration-bv-subdomain algorithm assumes the following form, for ¥ =
0.1.... until convergence.

Luttt = f in
Wil =g on 90, — 1 (3.41)
S(uh*!) = 00 (uk) + (1 = 0)d(uF) on 4
Lust' = f in O
ubtl = ¢ on 9Q; — 4 (3.42)
(ubt) = W(uf*') on
where 6 > 0 is a relaxation or acceleration parameter and u and u$ are given
initially.

The algorithm just presented for the case of two subdomains is sequential. i.e..
calculations in £, and £, can not be carried out simultaneously. However. this does
not really matter. since parallel computing involving only two subdomains is of little
interest. In the case of n subdomains (n being much larger than 2). the subdomains
may be renumbered as red/black (see Figure 3.5) such that calculations in different
subdomains with the same color can be carried out in parallel.

The iteration-by-subdomain algorithm is also known as the Dirichlet-Neumann
method. It is interesting to note that, at the discrete level. the method can be
related by the Poincaré-Steklov’s operator [4, 197] to the Schur complement (to
be introduced in Chapter 4) of a linear system of algebraic equations. Precisely.
an iteration-by-subdomain iterative procedure can be shown to be equivalent to a
preconditioned Richarson's iterative method for the solution of a linear svstem with

the coeflicient matrix being the Schur complement matrix C.
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Figure 3.5: The red/black subdomain numbering for strip-wise and box-wise domain
decomposition.
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3.6 Conclusions

o Although 2 tremendous variety of parallel numerical methods have been pro-
posed for solving PDE’s over the past thirty vears, the most recently in-
vented parallel computational strategies for the numerical solution of PDE’s

are largely based on or closely related to domain decomposition principles.

¢ Among many other desirable properties. the domain decomposition method
extends the usefulness of some special numerical techniques (for example. fast
direct solvers). The local applicability of these special numerical techniques
makes the domain decomposition method attractive even for serial computing.
The possibility of mapping subdomain calculations onto different processors for

parallel processing puts a further premium on the application of the method.

e Decomposition by domains is the best among three possible decomposition
strategies for the parallel solution of PDE’s. namely. operator decomposition.
function-space decomposition and domain decomposition. The nature of do-
main decomposition techniques guarantees that only a small volume of data
(relative to the scale of the discretization) needs to be exchanged between

processors and the global remapping of the data onto processors is avoided.

e The iteration-by-subdomain. multiplicative and additive Schwarz domain de-
composition methods introduced in this chapter as well as the Schur and the
modified interface matrix (advocated here and proposed before by the au-
thor) domain decomposition methods along with parallel block precondition-
ing techniques to be introduced in later chapters are some general approaches
of domain-based decomposition methods for solving elliptic PDE’s or time

evalution problems (of parabolic or hyberbolic tyvpe) discretized with imphieit
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temporal schemes. These general approaches. with a modification of one or
more of their ingredients. provide almost infinitely many variants of the so-
called iterative domain decomposition algorithms. Another dimension will be

added to this variety if implementation details are taken into account.



CHAPTER 4
THE SCHUR DOMAIN DECOMPOSITION METHOD AND ITS
APPLICATIONS TO THE FINITE ELEMENT NUMERICAL
SIMULATION OF THE SHALLOW WATER FLOW
4.1 Introduction

We have pointed out and illustrated two approaches of domain decomposition
methods, namely overlapping and nonoverlapping. Generally speaking, the multi-
plicative Schwarz overlapping approach is rather robust. It can be applied to various
difficult physical problems of practical interest. With this approach, different nu-
merical schemes, different mesh resolutions or even different mathematical models
in different subdomains may easily be used or incorporated into the formulation.
However, it is usually less efficient than a nonoverlapping domain decomposition
approach designed for a specific application which sets up an iterative procedure
accelerated by appropriate preconditioners.

To reduce the serial complexity of the nonoverlapping domain decomposition
algorithms, most of the research, up to now, has almost exclusively focused on the
interface(s), or more specifically. on finding good preconditioners for the conjugate
gradient (CG) algorithin [52] or for any competitive iterative method (GMRES [206].
for example) for symmetric or non-symmetric linear systems of algebraic equations.
arising from finite difference or finite element discretizations of elliptic partial dif-

ferential equations in two or three dimensional regions. To recomimend just a few

63
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papers. see [20, 34, 38, 43, 44, 46, 69. 70, 99, 131, 133, 149, 157, 158, 159, 173. 174]
for more details.

The primary reason for this focus is that the iterative solution of the interface
Schur complement matrix system involves repeated solutions of all the subdomain
problems (see Figure 1.5 for a highly simplified data dependency graph) and the
interface solver itself is a potential bottleneck for the coarse-grained parallelism. A
good interface preconditioner can drastically reduce the number of iterations on the
interfaces, thus allows significant saving of computational work in the subdomains
and in the whole solution process.

Due to the paramount importance of the shallow water equations in meteorology
and oceanography, where they serve as test models for the development of new
algorithms, the eflicient finite element solution of the shallow water equations has
attracted the interest of many rescarchers. A tremendous amount of work has been
carried out in this direction, see, for example, [58, 166, 167, 168, 169, 170, 172, 175,
177, 179, 181, 217], to cite but a few references. Unfortunately, these algorithms
were not designed to run efficiently on various multi-processor architectures.

In this chapter we extend applicability of nonoverlapping domain decomposition
methods to a set of coupled nonlinear hyperbolic shallow water partial differential
cquations defined on a 2-D limited-arca domain, using finite element discretization
in space and an implicit integration scheme in time (see Appendix A).

Specifically, we report on our work on the Schur domain decomposition method
applied to a finite element model (Appendix A) of the nonlinear shallow water
equations over a limited-arca domain. We begin with the idea of substructuring and
the Schur complement matrix. Then we gradually introduce tools and algorithins
designed to solve efficiently the capacitance linear systems associated with interface

nodal variables.  Numerical results and discussions concerning the finite element
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domain decomposition solution of a set of nonlinear shallow water equations are
given in Section 1.7. Considerations related to parallelization will be postponed to

a later chapter for a unified treatment.

4.2 Substructuring and the Schur Complement

It is well known. in the finite element method, that internal degrees of freedom
can be condensed out at the element level prior to the assembly process (see. for
example, [246]). When this idea is applied to a group of elements. i.c.. a substructure
or a subdomain. it leads to what is known among engineers as the substructuring
techniques.

The idea is that the whole structure or domain is considered to be an assembly
of substructures or subdomains (sce, for example, [93, 193, 202]). Each substructure
or subdomain, in turn, is idealized as an assembly of finite elements, and all internal
degrees of freedom are statically condensed out (sce also [241]).

To fix ideas, two classes of variables are usually identified, namely the internal
variables relevant to nodes within subdomains, and the interface variables relevant
to nodes belonging to two or more subdomains. The internal variables may be
numbered cither before or after the interface ones.

We only consider solving time dependent PDE’s with implicit time discretization.
Lxplicit methods are algebraically equivalent to a matrix-vector product problem
and thus readily parallelizable. However, implicit time schemes involve matrix in-
versions and, consequently, are highly sequential. As a standard practice in parallel
computing (see Chapter 2), a renumbering or reordering strategy may be used for
restructuring the sequence of caleulations in such a way as to reveal the parallel

structure of the problem.
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Figure 1.1: The original domain Q is decomposed into four subdomains of equal or
nearly equal sizes with a quasi-uniform subdomain width /I and quasi-uniform grid
size h.
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Here we are particularly interested in the computational speedup resulting from
applying the domain decomposition technique. Our target machine for the im-
plementation of various algorithms is the one with a number of powerful vector
processors sharing a common memory, such as the CRAY computer family. For
this type of computer architecture, it is more suitable to divide the physical domain
into strips instead of small boxes in order to yicld longer vectors [157]. Thus, we
will consider subdividing the domain Q under consideration into 1 nonoverlapping
horizontal strips Q,,7/ = 1.....n of equal or nearly equal sizes (see Figure 1.1). The
n — I interfaces I';, 0 = 1,....n — | separating these n subdomains from cach other

are collectively denoted by I'. We have the following relations

Q= UU---UQUT (1.1)
0NQ, =6 fori#j (1.2)
=T uUlbU-- Ul (1.3)

Clearly, cross points are climinated from our consideration.

The differential operator governing the problem on Q can be split up into oper-
ators acting on the interfaces I' and the » subdomains Q,.i = 1,...,n at cach time
step, as can be realized by identifying two types of variables and renumbering. To fix
ideas, let us consider solving PDE’s involving only first and/or second order partial
derivatives, which are typical of computational fluid dynamics (CFD) problems, by
employing numerical schemes having a five point finite difference or a seven point
linear triangular finite element stencil' as shown in Figure 1.2, 1If we denote the
matrix representations of these reduced operators as ;.1 = 1,....1 on each of the

subdomains and Ay, on the interfaces I, we obtain systems of algebraie equations

YA nine point linear rectangular finite clement stencil may similarly be taken into account .
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Figure 1.2: (a) A five point finite difference stencil; (b) A seven point linear trian-
gular finite element stencil.



at cach time step of the following form
Ar=7§

where the matrix A assumes the following block-bordered structure:

xl,“ .‘1,1,

A A

In (4.5). Ayy s a block diagonal matrix

f‘,{d = (“ﬂg[/““. A‘lgz. ..... 3 1“"]

69

(1.6)

with each block Ay, for 1 = 1,2....,n. being the discrete analog of the restriction

of the original differential operator on each subdomain.

Ay and A,y represent connections between subdomains to interfaces.

assume the following block bi-diagonal forms

Ion
F, E,
Ads = 1“';
I':n-—l
i F,
and ) ]
G, I,
G,
A= 2 3
{ ("n— 1 lln 5
where

Io=(0.0,...,0 , FEin )7
N’

m.~-1 blocks

They

(1.7)

(1.9)
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Fi=(Fua,00.....0)" (1.10)
N g’

m,~1 blocks
(,;i:(0.0.....O.G;\m,) (111)
[
m.-1 blocks

H; = (H;iy.0.....0,0) (1.12)
| SO

m,—1 b]OCkS

m; being the number of horizontal grid lines in the i'th subdomain. The blocks
Eiin,s Fias Gion, and H;y in matrices £;, Fi, G, and H;. respectively, are either
diagonal or bi-diagonal point matrices. depending on whether a five point finite
difference scheme or a seven point stencil resulting from a linear triangular finite
element method being used.

Note the matrix A consists essentially of the assembly of the subdomain stiffness
matrices, see also [20]. If we let n;, i = 1,2,...,n, be the number of unknowns
in each of the subdomains and n, be the number of unknowns on the interfaces.
then cach of the matrices Ay, A;, and Ag; is of size n; x ny, n; x n, and n, x n;,
respectively, for i = 1,2,...,n. Likewise A,, is of the size n, x n,.

A,, corresponds to the discretization of the original differential operator re-
stricted to the interfaces. The interfaces include n — 1 internal boundaries [,
i =1,2,....n~1, and no mesh points from different internal boundaries will appear
in the same stencil. This accounts for the special structure of the matrix A,,. For
instance. A,y is diagonal for a three point stencil 1-D problem and the following
block diagonal form for a five point finite difference or a seven point triangular finite

clement stencil in the 2-D case

Ay = (“"‘g[’l'n- (LY Tn—l,n-ll (1.13)

where cach block is associated with one of the interfaces.
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The non-zero entries of Ti. 7 = 1.2..... n — 1. amount to the following cyelic
tridiagonal structure induced by the presence of periodic boundary conditions im-

posed on our physical problem (to be detailed in Section 1.6)

] b(l.‘) C(li) u(l.') ]
A0
T = (1.14)
a f.‘l 1 bf:l 1 (‘5:1 1
) a0

By plotting the surface formed by the entries of a matrix as a function of its
indices, the typical block-bordered structure of the matrix A given by (1.5} corre-
sponding to a substructure numbering of the nodes is generated for a four subdomain

case (sce Figure 4.3), where the following modifications are made to the entries of

the matrix A:
. 1 ifa; £0
a;; d:‘ ’ # . (115)
0 ifa;; =0
The numerical solution of Ar = f is equivalent to solving the following
Cr,=y¢ on T (4.16)
A.’,‘.I‘,‘ = f,' - /1,'3.1', in Q,‘ (llT)

where I'and Q,, 7 = 1,2... ., n.stand for the interfaces and subdomains, respectively

and
~  def -1 5
C = Ay — A AL Ags {1.18)
= Ay =Y Audit A (1.19)
=1
and
def ~1 .
g9 = [i—= Ay Sy (1.20)

= fs"i"‘m"lslfi (121)
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where (" is the well-known Schur complement matrix. capacitance matrix or Gauss
transform in different contexts (see [53, 119, 185]).

It is clear that the subdomain problems (1.17) are trivially decoupled (indepen-
dent of each other) and the subdomain solutions may be sought in a highly parallel
way once the internal boundary conditions xr; on the interfaces I' between artificially
divided subdomains are obtained by solving (1.16).

It should be pointed out that the Schur complement matrix C is generally dense.
although each of the matrices A;;. i = 1.2,...,n and A, corresponds to a lower
dimensional local differential operator and hence are sparse. Consequently, the so-
tution of (1.16) is expensive to obtain using a direct solver. especially as the degrees
of freedom on the interfaces increase as higher mesh resolutions are introduced.
We illustrate the denseness of the matrix €' assoctated with the three interfaces of
a four-subdomain strip-wise domain decomposition (see Figure 4.1) in Figure 4.4,
where each x represents a non-zero entry of the matrix C, assuming that there
arc 15 nodes on each interface. The fact that the matrix €' assumes a block tridi-
agonal structure, as clearly shown in Figure 4.4, may readily be explained in the
context of the finite element method by observing that the Schur complement ma-
trix C consists essentially of the assembly of the substructure (or sometimes called
a “superelement™) stiffness matrices.

It is also important to note that sizes of Ayy and A,y in (1.5) are very different.
Specifically, the discrete dimensions of Ay and Ay, are, respectively, O(h~*) and
O(H='h=Y), where H characterizes the subdomain length scale and A is the mesh
size (see Figure 1.1). Thus, in general. we have a relatively smaller problem to solve
on the interfaces than that in cach of the subdomains. We point out that. in the case
of box-wise domain decomposition, the cross points of interfaces (or equivalently.

subdomain vertices) constitute a coarse grid discretization in the original physical
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domain. The discrete dimension of the matrix corresponding to the discretization
of the original differential operator restricted to this coarse grid is only O(H~%).

Finally, we mention that. for box-wise domain decomposition approach, two lev-

els of discretization are usually considered for the original physical domain, namely.

a global coarse grid constituted by subdomain vertices and a local fine grid de-

fined within each subdomain. Therefore, two length scales. i.c., the H-scale and the

h-scale. respectively, have been taken advantage of in the construction of domain de-

composition preconditioners. We refer interested readers to [22.30, 31,101, 105] and

references therein for details on two-level Krylov domain decomposition methods.

4.3 A Node Renumbering Scheme

In a computer program designed for solving partial differential cquations, we
may introduce a modification of the code in order to accommodate various mesh
resolutions aimed at obtaining higher orders of accuracy and testing the convergence
of the method.

Let us now denote the original nodal numbers by the old numbering, while the
nodal numbers after renumbering (i.e. the substructured numbering) will be denoted
by the new numbering.

If we discretize the partial differential equation based on the new numbering
scheme, the relations between the interface nodal numbers and those nodal numbers
of the subdomains adjacent to the interfaces become difficult to predict for arbitrary
high mesh resolutions.

This becomes evident for the case of the finite element discretization in which
the relationship amongst global nodes. local nodes and element numbering turns
out to be very different if we try to formulate the problem using the new numbering

systems for various mesh resolutions.
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In view of this, other eflicient ways for transforming the original system matrix

into the block-bordered matrix like that in (1.5) need to be devised. For example,

the following node renumbering scheme may be used for this purpose:

Step 1

Step 2

Step 3

Set up the relationship between the old and the new numbering system
by defining an array number(n), where n is the total number of nodes
and the number(?) is the nodal number under the new numbering scheme

corresponding to the old nodal number ¢:

Renumber the nodes by putting the j'th column of the original matrix

into the j,'th column of the transformed matrix, where j, = number(y):

Change the positions of nodal actions by putting the "th row of the matrix

obtained at step (2) into i;’th row of the transformed matrix, where 7, =

number(?).

After these three steps have been implemented we obtain the block-bordered

matrix which has the same structure to that of (1.5) corresponding exactly to the

new nodal numbering defined by the array number(n). This idea also provides an

casy way for implementing multicoloring techniques.

A segment of computer code for calculating number(i), i = 1.2,... . n is provided

below for illustration purposes:

Renumber the nodes in the subdomains

do 10 1=1,kd

ib=(i-1)*ns

do 20 j=(i-1)*ni+1,i*ni



20

10

40

30

-1
-1

num(j+ib)=j
continue

continue

Renumber the nodes on the interfaces

do 30 1i=1,ks
k=kd*ni+(i-1)*ns
ib=i*ni+(i-1)*ns
do 40 j=ib+1,ib+ns
k=k+1
nun(j)=k
continue

continue

where ns is the number of nodes on one interface, ni is the number of nodes in the

’th subdomain, kd is the number of subdomains and ks is the number of interfaces.

4.4 Schur Domain Decomposition Algorithms

Historically, it was common practice to apply the LU or Cholesky factorization

in each subdomain and form the Schur complement matrix (' and its right hand

side g. Thus the solution to (1.16) can be obtained, followed by that to cach of the

subsystems (1.17). However. explicitly obtaining the Schur complement matrix (7

is an expensive process involving nn, subdomain solves, where n is the number of

sitbdomains and n, is the number of interfacial degrees of freedom.
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The coupling between subdomains i1s now handled more efficiently using pre-
conditioned iterative solvers without constructing the Schur complement matrix
explicitly. However, as has been pointed out in [131]. the approach based on explic-
itly forming the Schur complement matrix still remains a useful procedure for some
cases. As an example. the computational cost of constructing the Schur comple-
ment matrix ' may be amortized over multiple right-hand sides (g in (1.16)) when
a discrete linear system with an identical coeflicient matrix appears at cach time
step for a time dependent problem (see [190]).

As formulated in [185], it requires n(n, + 1) forward and back substitutions to
obtain " and g. A minor improvement can be introduced here to reduce this number

to nn,. The algorithm assumes the following form:

Algorithm 4.1

Step 1  Carry out the LU decomposition for cach of the subdomain matrices

Ai = LU, ¢ =1,...,n. This part is highly parallel.

Step 2 Solve Y,;U/; = A,; and X,;L; = Y;; tow by row for : = 1,...,n. Form
C= A, =30, Xsidis and g = f, — 327, Xyifi. This part can also be

calculated in parallel, where X,; and Y;; are two n, X n; matrices.
Step 3  Solve (4.16). This is a bottleneck for parallelism.

Step 4  Solve (1.17) in parallel by using the LU decompositionof A0 =1,....n.

The aforementioned algorithii requires the formation of the Schur complement
matrix explicitly, a computationally expensive procedure for most problems. Like
the Schur complement matrix approach formulated by the CG algorithm, the fol-

lowing algorithm may be formulated for any non-symmetric iterative solver in which
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only matrix-vector multiplications are required, although we specifically refer here

to the conjugate gradient squared (CGS) algorithm ([216]. see also Section 1.5.2).

Algorithm 4.2

Step 1 Solve
A,’,‘b,‘ = f,' (122)
and form AA,b;, 2 = 1.2,.. .. nin parallel; Form the right hand side of the
Schur complement matrix system

g=Ji= 3 Agb; (1.23)

Step 2 Use the CGS algorithm to solve the Schur complement system (1.16).
This is an iterative process carried out until a prescribed convergence
criterion on the interfaces is met. The product of the Schur complement
matrix with a vector w,, Cw,, may be cvaluated as follows: Solve cach
subdomain problem

A,‘,‘U,‘ = —A,;,w, (12‘)

once and form the product Age; for7 = 1,2,. ... n in parallel. Then form

the product

Cw, = A, + Z Az (1.25)

=1
Step 3  Once the interface nodal values ry are obtained, we may solve in parallel

(1.17) for each subdomain.

The above algorithm may be heuristically deseribed as a “divide and feedback™
or “divide, conquer and combine”™ process.  Krylov or conjugate gradient-like it-

erative algorithms (CGS algorithm in this case) are employed for the solution of
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the interfacial Schur complement linear system. The matrix-vector multiplication
("wy is obtained by concurrently solving n smaller problems in the subdomains €2,.
i = 1.2.....n. The information gathered from the solution of each of these subdo-
main problems is then fed back to the interface iterative solver. If the convergence
criterion is not met on the interfaces, the domain is decomposed again and the sub-
domain problems are solved. This ~divide and feedback™ process continues until the
convergence criterion on the interfaces is attained.

A highly simplified control flow (data dependency) graph for the iterative Schur
domain decomposition algorithm (Algorithm 4.2) is illustrated in Figure -1.5.

After convergence is attained on the interfaces I' = T U T U --- U I', 4. the
subdomain problems are trivially decoupled with specified boundary conditions of
desired accuracy on the artificially introduced interfaces between subdomains and
may be solved in parallel. Finally, the solutions in the subdomains and on the
interfaces are patched together to obtain the sought-after solution in the original
physical domain.

This “divide and feedback” process described above immediately indicates that
the efficiency of this approach relies on the number of iterations required for ob-
taining convergence on the interfaces as well as on the computational cost for each
subdomain solver. Preconditioning techniques must be used to reduce the number
of iterations on the interfaces. In the subdomains, for the case where fast solvers do
not exist, either direct solvers based on LU factorizations or iterative methods may

he applied.
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Figure 1.5: A highly simplified control flow (data dependency) graph for the iterative
Schur domain decomposition algorithm.
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4.5 Iterative Linear Solvers and Preconditioning Techniques for the

Subdomain and Interface Problems

4.5.1 Direct Methods vs. Iterative Methods

For reasons indicated in Section 1.2, instead of using a direct solver. a Krylov or
conjugate gradient-like iterative linear solver is generally employed for solving the
Schur complement linear system on the interfaces. However. whether to use a direct
or au iterative scheme in each of the subdomains is quite case-dependent.

Direct solving techuiques for linear systems are often based on the Gaussian elim-
ination or some variant thereof and are able to generate the exact solution (within
machine accuracy) in a finite number of artthimetic operations. However, there are
some fundamental drawbacks. The direct elimination will cause the phenomenon of
so-called “fill-in”, which results in an incrcase in both the computational complex-
ity and the storage requirement, although some techniques have been developed to
minimize the fill-ins (sce {10], [77], [78], [147]. [153] and referenced cited therein).
For large problems (especially for numerical solutions of PDE’s in three dimensions),
peripheral storage devices may be required to store the matrix and 1/0 costs will
dominate. In addition, the build-up of round-off errors or errors in the initial data
may be rather severe for direct methods (see [9] and [10]).

In contrast, itcrative methods do not suffer from the fill-in phenomenon and
have the advantage of minimal storage [127], typically requiring only the nonzero
entrics of the matrix and a few vectors of corresponding length. For Krylov or
conjugate gradient-like algorithms, all that is needed is the matrix-vector product
Ar and the storage of the matrix is not required. As pointed out in [9]. when these
algorithms are effectively preconditioned. one may derive algorithms with almost

optimal computational complexities and by a careful evaluation of the residuals, the
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influence of round-off errors may be reduced by orders of magnitude as compared
to direct methods. In addition. iterative methods can benefit from a good initial
approximation in the design of iterative solvers for boundary value problems or
time dependent problems with implicit time discretization (see [10, p. 385] and
Chapter 5) and are much easier to program than direct methods. To appreciate
how complicated a code may be for performing the sparse Gaussian elimination, see
[77] for a segment of the Fortran code. which is directly extracted from the Harwell
Subroutine Library MA23. The most recent systematic review of iterative solution
techniques for large sparse lincar systems can be found in [112].

As a result, we generally prefer to let iterative methods serve as subdomain
solvers. In [171], we compared the relative computational costs of two domain de-
composition algorithms using the same interface preconditioning, but with precondi-
tioned CGS (PCGS) iterative and LU direct solvers, respectively, in the subdomains.
The results indicate that the algorithm with LU direct subdomain solvers is less ex-
pensive than the PCGS method when the mesh resolution is relatively coarse and
the ratio between the size of each subdomain problem and that of the interface
problem is less than two. However, as the mesh resolutions increase and the degrees
of freedom on each subdomain get larger compared to those on the interfaces, the
algorithm with PCGS subdomain solvers turns out to be computationally more effi-
cient. The results obtained there agree in some sense with those reported in [200], in
which the Gauss direct solver was compared with the PCGS method. Similar results
were obtained in [194] where the direct solver based on a complete LU factorization
was compared with the preconditioned conjugate gradient (PCG) method.

We point out that, in most practical applications, the subdomain problems are

much larger than the one defined on the interfaces. As a result, the preconditioned
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iterative solution in each of the subdomains is to be preferred (at least for our case),
especially for large-scale problems.

However. for certain problems with regular subdomain geometries and nice op-
erators (see Section 3.2 in Chapter 3), fast direct solvers, based on either the fast
Fourier transform or cyclic reduction. are available ([221] and [222]. sce also [39]).
In these cases, fast direct solvers are definitely to be preferred in the subdomains.
In fact. domain decomposition techniques are often applied in order to extend the
uscfulness of some special and powerful numerical techniques (fast solvers in this

case), which are only locally exploitable in irregular regions.

4.5.2 Iterative Algorithms for Linear Systems of Algebraic Equations
The basic preconditioned iterative algorithm for solving a linear system
Ar=1b (-1.26)

begins by defining another matrix B, called preconditioning matrix, which must
be relatively inexpensive to invert. The iterative scheme has the following defect-

correction type, namely, for £ =0,1,...
BALKEHD = _pB) Gl () g p(4D) (4.27)

where r® = Ar® — b is the defect or residual and Ar® is the correction at stage
k.

If we split the matrix A into A = D — L — U7, where D is (block) diagonal part
and L and 7 are the lower and upper (block) triangular parts of /. then we obtain

the following four basic preconditioners or iterative schemes ([229] and [239])
o the (block) Jacobi preconditioner or iterative method if B3 = D,

o the (block) Gauss-Seidel preconditioner or iterative method if B =D — L;
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o the (block) successive overrelaxation (SOR) preconditioner or iterative method

fB=w'D-1L;

o the (block) symmetric successive overrelaxation (SSOR) preconditioner or it-

crative method if B = (2 —w) Y w™'D = L)(w™ ' DYy W'D = 7).

To accelerate the basic scheme (4.27). one introduces acceleration parameters 7

and considers the following more general iterative scheme
) = p Yy gt (1.28)

If we introduce an iteration error ¢¥) = r — r®) then, by (1.28), 5+ = (] —
7 B71A)e™. Upon defining a polynomial P,,(A) = [T, (1 —7A), the error ™) may
be expressed as ¢™ = P (B7'A)c!?. Requiring that ||¢™)/||c®| be minimized
leads to the well-known Chebyshev polynomial acceleration of the basic iterative
schemes ([113], see also [9] and references therein).

As is well known, the most efficient acceleration method for symmetric and posi-
tive definite linear systems is the conjugate gradient (CG) algorithm [52], [60], {118]
(see also [10], [100], {212] for recent expositions of this method). Today this method
with suitable preconditioners is considered one of the best methods available for the
iterative solution of large sparse symmetrie and positive definite linear systems. We
also note that vectorized conjugate gradient methods have been applied to large-
scale minimization problems in metcorology {176].

The CG method is self-adaptive in the sense that the optimal parameters are
calculated within the algorithm so that the error in the energy norm ||y =
("™ NTA™N12 is automatically minimized. It may be shown ({10]) that, when

applying the conjugate gradient method with a preconditioner B = EET 1o the
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solution of (1.26), the number of iterations will not exceed
L
m= mt[;n‘?ln(—) + 1] (1.29)
& 4

in order to achieve the result |lx — r™)| 4 < cllx — 219} 4. where £ is the spectral
condition number of the matrix £~'AE-T (which is equal to the spectral condition
number of B7'A) and ¢ is a small positive real number (convergence accuracy).
Morcover, when the cigen-spectrum of E7'AE~T is clustered, the upper bound
given by (1.29) may even be reduced (see [9] and references therein).

Unfortunately, this algorithm is not applicable to the solution of non-symmetric
linear systems such as arise from the discretizations of non-self-adjoint elliptic partial
differential equations, and of the hyperbolic system of shallow water equations we
are considering here. As such, some other algorithms applicable to non-symmetric
lincar systems have to be considered.

A large number of generalizations were proposed in the literature (see [66, 203,
205] and references therein) for solving large linear systems with non-symmetric
coeflicient matrices. However, none of them may claim to be a clear winner.

In this application, we choose to apply conjugate gradient squared (CGS) al-
gorithm for the iterative solution of systems of linear algebraic equations both in
the subdomains and on the interfaces. The algorithm arranged in a form ready for
computer implementation (by introducing only seven one dimensional arrays of the
size of the problem) is provided below for solving Ar = b. Detailed theoretical and
numerical comparisons between various competitive non-symmetric iterative solvers,
such as Bi-CGSTAB [227], (!GS [216] and generalized minimal residual (GMRES)
[206] methods, applied to our problem will be presented in Chapter 6 in connection

with domain decomposed preconditioning techniques.



The CGS Algorithm:

r=>b, r=uy, r=r-Ar

Choose i such that 41

(For) £ 0

il

pl =Ap (-1.30)
00 = (F.pl). a=461/60
g=u—apl. u=u+q. r,=u5+au
If the convergence criterion is met then stop, otherwise continue
pl=Au, r=r—apl. 62=(r.r)
B=2862/61, 61 =262
u=r+p3q, p=u+iq+sp)
goto (-1.30)

where the right hand side b and the initial guess x¢ are input vectors and (| )
denotes the usual Euclidean inner product.

It is the preconditioning which makes C'GS and other iterative methods highly
competitive. While we adopt an untransformed version of PCGS method in [171].
here we use the transformed PCGS algorithms. Instead of solving Ax = b, if a
preconditioner is applied on the left. we solve a transformed linear system Ar = b,
where A = B~ A and b = B~'b; if a preconditioner is chosen to be applied on the
right, we solve AF = b, where A = AB™" and & = Br. For the left preconditioning,.
the transformed residual at &'th iteration is related to the original one by #%) =
B='r¥) Tor the right preconditioning. the residual remains unchanged but the final

solution needs to be recovered by r = B7'r,
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Typically, the preconditioning linear system (say Bp = q) is solved by the direct
method. Hence, the so-called preconditioning iterative scheme may be viewed as
a hybrid of iterative and direct methods. In the extreme. it becomes a “purely™
iterative method (B = [) or, basically, a direct solver (B = /). In between, the
matrix f3 is usually of a certain special structure or form which allows it to be

cheaply inverted by the direct method.

4.5.3 Preconditioning in the Subdomains

In addition to the four basic types of preconditioners B mentioned in See-
tion 1.3.2, there are other preconditioning techniques available which generally be-
have better, such as those based on LU or Cholesky incomplete factorizations and
truncated series approximations to A™! (polynomial preconditioning), where A is
the matrix to be inverted. For details, we refer readers to [9, 10, 81, 131] and ref-
erences cited therein. Reference [181] is especially recommended for a clear and
concise overview of various acceleration methods and preconditioning techniques.

Incomplete LU (ILU) or modified incomplete LU (MILU) factorizations are
among the most popular preconditioning methods which have been incorporated
into the domain decomposition algorithms. The methods are based on Gaussian
elimination techniques with restricted fill-ins and can be traced back to [228]. The
methods are further developed in [12, 13, 11, 128, 151, 155].

Before the ILU can be started. one chooses a set of ordered integer pairs J C
J =A{, 7). =1.2.....n} which defines the allowed fill-ins, where n is the size

of the matrix under consideration. Most often. the set J is chosen to be

J = {(1.j) |if a;; # 0} (1.31)

where A = (a;;) is the matrix to be inverted. In all our numerical experiments, we

employ the set (1.31) of the index pairs, which indicates that no fill-in bevond the
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non-zero pattern of the original matrix is to be allowed in the factorization. The

ILU or MILU method corresponding to this choice of J is often denoted by ILU(0)
or MILU(0), respectively.

Briefly speaking, upon specifyving the index-pair set .J and at the £'th stage of the

. . . k . . .
factorization, we use the pivot row a(kj). J=kEk+41,....n to eliminate the nonzero

entries "E:)~ 1=k + 1.k +2.....n below the pivot (12?. If af-f) € J. we compute

(1) _ () _ () (k

2 .. ) . k) -
a; i “L-,')/“(kk)~ fori,j = k+1,k4+2.....n. Otherwise, asj) is unchanged.

or in the case of MILU ([10. 109. 110}). aff) is unchanged and the modification
—aff)aﬁ)/aw is added back to the pivot u}f,;). In the latter case. it may be shown that
rowsum of the original matrix A is preserved, namely, 7_ ai; = 20, 30, L.

Preconditioning methods based on the MILU factorization were proposed so that

the spectral condition number of the matrix B! A satisfies the following asymptotic

relation (a necessary condition of the methods introduced in [109]):
K(B'A)~0O™), ash—0 (4.32)

where h is the mesh size, instead of O(h~?) as for ILU. Here B= LU = A+ D + R,
12 is the so-called defect or error matrix whose rowsum is zero for each row of R.
is a diagonal matrix containing some preconditioning parameters?.

Specifically, for a class of M-matrices or a class of weakly diagonally dominant

symmetric L-matrices, it was shown that the MILU factorization could be con-

*The analysis required to determine optimal preconditioning parameters contained in the diag-
onal matrix D is far from trivial even for model problems (see [110]). However, many numerical
experiments [108] suggest that number of iterations is rather insensitive to the choice of these
parameters. As pointed out in {110], for many problems, quite satisfactory results are obtained by
choosing D = £h3diag(A), for £ > 0. say £ = 5 or even £ = 0 (namely 2 = 0). D = 0 is what we

employ here.
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structed such that (11.32) holds. For some other more general coeflicient matrices.
as pointed out in [109]. the same rate of convergence was observed.

In this application of Schur domain decomposition algorithms to the finite el-
ement solution of the shallow water equations. we use MILU factorizations as our
subdomain preconditioners. It is readily observed that. at each time step. the in-
complete factorization has to be carried out only once for cach subdomain during
the entire divide-and-feedback process. The work required for the preconditioning
of cach subdomain then consists mainly of the forward and back substitutions which
may be computed in parallel.

Another class of factorizations is the so-called relaxed incomplete LU factoriza-
tion (RILU), whose algorithm will be presented in detail in Chapter 6. For this
method, the rowsum criterion is only partly satisfied. However, the convergence

rate is often better than that of cither ILU or MILU (sce [3. 11, 231]).

4.5.4 Interface Probing Preconditioners

The subdomain preconditioning is not so different from the preconditioning of a
linear system corresponding 10 the discretization of the original PDE’s on the whole
domain in the sense that each of the subdomain matrices A,;;, 7 = 1,2.....nis known
in advance. Nevertheless, the interface preconditioning poses a new problem. On
the interfaces, a preconditioner is to be constructed for the Schur complement linecar
system Cry = g, where, however, the matrix (7 is not explicitly known.

Several interface preconditioners have been proposed for linear elliptic PDIs
(see, for example, 20, 22, 23, 43, 15, 99, 214] and references therein). A critical
review of some of these interface preconditioners may be found in [16]. Unfortu-
nately, most of the existing preconditioners are constructed based on at least two

of following assumptions abont the differential operator. namely, elliptic, linear.
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constant-coeflicient. second order or self-adjoint, ete. It is thus difficult to extend
the usefulness of these preconditioners to more complicated differential operators
like the ones of nonlinear shallow water equations. As a result, we are interested
in some general methods for deriving the interface preconditioners which are less
critically dependent on the special form of the differential operator.

The interface probing ideas proposed simultancously in [43] and [79] (sce also
[131. 132] and references cited therein) are a class of general and robust techniques
for constructing interface preconditioners. We refer to [11] for the most recent
and comprehensive review of this type of preconditioners. The method only takes
advantage of the property that Schur complement matrix operator is predominantiy
local, reflecting the strong local coupling of the neighboring nodes and very weak
global nodal coupling on the interfaces. Hence, the Schur complement dense matrix
may be reasonably approximated, as an interface preconditioner, by a very low-
bandwidth sparse matrix, which is obtained by evaluating the multiplications of the
Schur complement matrix with a few carcfully selected probing vectors ([39]). Thus.,
the interface probe preconditioning techniques are purely algebraic and may easily
be extended for use to complicated nonlincar differential operators or to higher order
(say, fourth order) linear elliptic operators. For the latter case, we refer interested
rcaders to [10].

The observation that the entries of the Schur complement matrix (7 are “large”
on or very close to the main diagonal of €' and decay very rapidly away from the
diagonal was first made in [99]. In this reference, the following estimate has been
made regarding (" = (¢;;) for the model problems and geometries and for the five

point finite difference stencil

I(‘iJI =0

for i, j away from the diagonal (-£.33)

=
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For more complicated first and/or second order operators and geometries using.
say, five point difference or seven point finite element stencil shown in Figure 1.2,
one may observe empirically that ' is close to being a tridiagonal matrix. This
is the motivation for efficiently constructing appropriate tridiagonal or other low-
bandwidth approximations (& for the Schur complement matrix C, such that the
spectral condition number £(G1C) 1s small.
A class of interface preconditioners (/(k) may be constructed by requiring that

(/(k) be a banded matrix with upper and lower bandwidth & and have the same

action as the Schur complement matrix € on a set of (probing) vectors v; defined

on the interfaces, namely.,
Gk)vj=Cry, forj=1,2,....2k+1 (1.31)

If we split GG(k) into G(k) = Ay, — P(k), by (4.18), the above cquation (4.31) may

be written as
Pk); = A,dA;d' Agsty, for g =12,...2k+ 1 (1.35)

The least expensive preconditioner is obtained by taking & = 0. The probing

vector vy for this case is chosen to be
vp=[LELLLLLLT

Three probing vectors vy, 1, and 3 given below are required for the construction of

the preconditioner G(1)

vy = [1.0,0.1.0,0....]"
vy =[0.1,0,0.1.0....)"

ra=[0,0.1.0.0.1....]"
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For & = 2. there are five probing vectors which assume the following special forms
vy =[1,0,0,0.0,1....])7

vz = [0.1.0,0,0.0,...)"
s = [0.0.1.0.0,0,...J"
vy = {0.0,0.1,0,0....)"
vs = [0,0,0,0,0,1....]7

The above procedure may be extended in a straightforward manner to cases where
2 < bk < ng,e AMATLAB code for constructing the interface probing preconditioners
G/(k) is provided in [11].

It can be readily verified that all non-zero entries in the banded matrix P(k) are
compressed in the 2k 41 vectors P(k)e,, j = 1,2,...,2k+1, and can be directly read
off from corresponding entries in A,dA;d'Ad,vj,j = 1,2,...,2k + 1. The possible
inconsistency of overdetermination ([132]) in (1.35) may reasonably be ignored if the
Schur complement matrix operator C is truly predominantly local. It is also clear
that 2k + 1 solves are required in cach of the subdomains to coustruct the interface
preconditioner (7(k). For this reason, in many practical applications, & is usually
taken to be 0 or 1. In the limit, when & = n, — 1, the exact Schur complement
matrix C is constructed. On the other hand, when & = 0, the rowsum of the matrix
(' is preserved.

It was reported in [13] that. relative to its extra cost of formation. G/(1) docs
not yield much improvement over (4(0) in the context of solving a model diffusion-
convection equations using a five point finite difference stencil.  For solving the
shallow water equations, we found, in [I71], that G/(1) does not behave as well

as (7(0). Hence, the rowsum preserving preconditioner (7(0) is to be preferred for
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our problem. However, as indicated in [31]. we will make some modifications to
(7(0) and construct our interface preconditioner by retaining the cyvclic tridiagonal
structure of each Tj; in A, and then replace each entry in the main diagonal of
A,s by the corresponding rowsum of the Schur complement matrix €. Numerical
experience indicates that the preconditioner modified in this way is better than ((0)
(see [31. 33] and Section 1.7).

Specifically, the preconditioner (& used for accelerating CGS algorithm is the

following block diagonal matrix
(; = (liﬂg[(;“, (1'22. ey (l'n..l'"._ll (13())

This block diagonal matrix (i is the same as A,, (see (1.13) except that the main

diagonal of G is modified according to the following
diag((G) = Cv (-1.37)

where v = [1,1,....1}T. Obviously, only onc subdomain solve is required in each
subdomain to evaluate (4.37).
The preconditioning linear system Gw, = p in the PCGS algorithm may be split

up into the following n — 1 smaller systems and solved in parallel
(r"‘,'ll!‘(,'.) =D (133)

fori=1,2,....,n — 1. where the definitions of w.(,") and p; are obvious.

Since each (7 in (1.38) is eyclic tridiagonal (see also (1.11). we can use the
so-called (see {225]) Ahlberg-Nielson-Walsh algorithm [5]. which is an extension of
the well-known double-sweep algorithm of Thomas {229]. For an efficient numerical

algorithm for solving cvelic pentadiagonal linear systems, we recommend {171].
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4.6 The Shallow Water Equations

The shallow water equations are a set of first order nonlinear symmetrizable
hyperbolic partial differential equations having many important applications in me-
teorology and oceanography. These equations may be used in studies of tides and
surface water run-off. They may also be used to study large-scale waves in the at-
mosphere and ocean if terms representing the effects of the earth’s rotation (Coriolis
terms) are included.

Here we are concerned mainly with the domain decomposition solution of the
2-1) shallow water equations on a linited-arca domain discretized by finite element

approximations (sce Appendix A). If we let {7 = (@, u,v)! and

u w0 ]
A=|1 u 0 (1.39)
0 0 u
v 0 ¢
B=101v¢ 0 (1.10)
I 0 v
00 0
C=1{0 0 —-f (1.11)
0 5 0

then our shallow water equations (continuity and momentum equations) model un-
der our consideration, in its primitive variables, may be presented compactly in the
following form
U,—U+A'\(‘_)l+l)‘2[—i+('17:() (1.12)
ot dr dy

0<r<L. 0<y<D. t>0
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where the Coriolis parameter is given by the d-plane approximation
f=f+3y-D/2) (4.13)

and

I. and D — dimensions of a rectangular domain of arca A = LD:

u and v — velocity components in the x and v directions. respectively:

h — height of the free surface of the fluid;

¢ = gh — the geopotential;

g — the acceleration of gravity;

f — the Coriolis parameter;

f'aml f — two constants.

The model assumes that the fluid is homogencous, inviscid. barotropic and in-
compressible. These pure convection equations are defined on a limited-arca rectan-
gular domain which corresponds to a channel on the rotating carth. The southern
and northern boundaries are assumed to be rigid. i.c., v = 0 and the flow is assumed

periodic in the west-cast direction. Specifically, we have

Ulr,y ) =U(r+ L.y t) (141

and
v(r, 0 t)=rv(r.D.)=0 (-1.15)

Initial conditions also need to be specified for the o, w and v fields, namely

wl(r.y.0) = wo(r.y) (1.16)
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Under these boundary and initial conditions. the total encrgy

1 ¢L b . v
E= ~/ / (u® 4 v* + @) Ldrdy (4.47)
2J0 Ju q

is independent of time, i.e., it is an integral invariant.
This 1s a standard shallow water equations model which was used to test various
finite difference schemes in [102]%, in which the initial conditions recommended are

determined from the following initial height field

2D

g f ¢ 2— 2x
+1ysech® (M)—l—)—-———'/—)) sin (_1_1') (4.18)

( 9 _
hixr.y) = Hy+ Hytanh (L])—/:——ﬂ)

)

The initial geopotential ¢ and velocity fields « and v are derived from the initial

height field using the following geostrophic relationship

7l adl
o=gh. u=—(g/f)em. v=(g/f) (1.19)
dy or

To scale the problem, we need to have a good control of the magnitude of the
geopotential field ¢, which is dimensionally the dominant variable. For this reason,
we introduce a pre-selected reference geopotential ¢ to scale the geopotential. We
use the following set of dimensionless variables, which are different from those intro-
duced in [102], to non-dimensionalize the equations and auxiliary conditions (e.g..

initial conditions, geostrophic relationship, etc.)

=/, y' =y/l. (1.50)
' =1/7of L. ¢ = ¢/o. (1.51)

o= uf /7o =/ fo. (1.52)

YThe model is essentially the same as the one earlier used by Houghton et al. [121].




Wo=h/L. H)= I/, (1.53)
H = /L. H,=H]L, (1.51)

g =gllvo, [ =[L/\/¢. (4.55)

where Hy, H, and H, are three constants related to the Grammeltvedt’s initial
height field.

By using this set of dimensionless variables, the governing equations assume the
same form after dropping the primes. However, the Coriolis parameter and the
geostrophic relationship. amongst others, require minor changes (see [171]). Specif-
ically. by using (1.50) — (1.53) and dropping the primes our problem can be shown
to be governed by (1.42) — (1.46), (1.13) and (1.19) with L being 1, D replaced by
D/L, f by Lf/\/% and 3 by L*3/ /%

Experience has shown that the inviscid, incompressible shallow water equations
model is able to describe many important aspects of atmospheric and oceanic mo-
tions. Indeed, it has become customary when developing new numerical methods
for numerical weather prediction or oceanography, to study first the simpler non-
lincar shallow water equations system, which possesses the same mixture of the
slow-moving Rossby waves and fast-moving gravity waves as the more complex baro-
clinic 3-D primitive equations of motion. It should be pointed out. however, that
the model may not be applied to situations in which the density-stratification effect
can not be ignored.

We now briefly describe the finite element discretization of the shallow water
cquations given in (1.12). Interested readers are advised to read Appendix A for
details.

Upon using the Galerkin finite element discretization procedure with triangnlar

piccewise linear elements, the continuous shallow water equations (-1.12) are trans-

o~
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formed into the following three sets of matrix equations

M- Kyp=0 (-1.56)

Mi+ Kyu+ Ky — Kyje =0 (4.57)

Mo+ MNyv+ Ky + Kqju=0 (-1.93)

where . u and v are nodal unknown vectors and M, Ky, .... K5 arc matrices

defined by integrals of the element shape functions or their spatial derivatives and
the nodal unknowns u and v.

An extrapolated Crank-Nicolson scheme is employed for the time discretization.
in which the nonlincar advective terms are quasilinearized by the following second

order approximation in time

3 1
PETEE W (1.59)
o2 :})-v" _ él,n-—l' (1.60)

After collecting and rearranging terms, we obtain the following three linear systems

which neced to be inverted at cach time step

A"AQ" = f1. BrAR =, (A = [ (41.61)

[eR)

where A™, B™ and C" are nonsymmetric matrices due to the presence of advective
terms and Ap" = "t — 5" Aum = wH —ut, Aot = " — ", Three right hand
stde terins in (1.61) are functions of nodal unknowns at the previous steps.

It is worth pointing out that the above discretization procedure transforms the
originally coupled PDIE’s into a set of decoupled discrete algebraic equations at the
(n + 1)-th level. which corresponds to reduced storage requirements and improved

computational efficiency compared to methods which generate coupled algebraic
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equations. The explicit appearance of A, Au and Av instead of ¢, v and ¢ mini-
mizes the build-up of round-off errors in the computation (sce [37]) and offers direct

indications as to the choice of initial guesses for iterative methods.

4.7 Numerical Results and Discussions

We carried out numerical experiments on the CRAY Y-MP/432 which has a
machine accuracy around 0.8 x 107" for a single precision arithmetic. For our
numerical experiments, we used the following constants whose numerical values are

summarized below (see Section 1.6).
L = 6000 km. D = 1100 ki

g = 10 m/s, Hy = 2000 m
H, =220 m, Hy =133 m
f: 1077 &7, B=15x%x10"" s~

The geopotential field distribution in the present problem has the order of mag-
nitude 10* m?/s%. The pre-selected reference geopotential has been chosen to be
wo = 102 m?/s? so that the initial residual norm of the Schur complement linear
system corresponding to the non-dimensionalized geopotential ¢ as defined by (11.51)
has the order of magnitude of O(1). Under this choice of reference geopotential the

dimensionless constants become
L' =1 D' = 0.73333:

g =6000 I =0.333333 x 107°

17 = 0.366666 x 10~ I, = 0.221666 x 10~
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ff=6 =51

The initial non-dimensionalized geopotential distribution for the 2-D shallow
water equations under consideration is shown in Figure 4.6.

In order to allow for further flexibility of the code, a modification has been
introduced which allows, by changing just two parameters corresponding to the
number of grid points in the x and y directions respectively, the introduction of
arbitrary mesh resolutions of the model. The automatic transformation of the global
finite element matrices to the block-bordered (4.5) forms has been rendered possible
by the node renumbering scheme presented in Section 1.3.

In the actual implementation, the matrices are seldom stored in full due to their
sparsity property. Hence the general node renumbering scheme in Section 1.3 has
been adapted for transforming the information corresponding to compact matrices
(see Section A.3 in Appendix A). Here we essentially transform the arrays which
rccord the nonzero elements of the sparse matrices. The solutions of shallow water
equations using the Schur domain decomposition algorithm (Algorithm 1.2) are the
same as those presented in Section A8 of Appendix A.

In the following, unless otherwise stated, we present numerical results corre-
sponding to a four-subdomain domain decomposition. Computations are carried out
corresponding to various spatial mesh resolutions with a time-step size At = 1300 s.

As pointed ont in Section 1.5.4, empirically, the matrix ' is often close to being a
tridiagonal matrix. reflecting a strong coupling between neighboring nodes and weak
global dependencies on the interfaces. To justify our choosing to apply the interface
probing preconditioners to the iterative solution of the Schur complement lincar
svstems defined on the interfaces, we present in Figure 1.7 the surface generated by

the entries in the non-dimensionalized geopotential Schur complement matrix as a
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function of its two indices at the end of one hour with a half an hour time step. The
mesh resolution used for this calculation is 15 x 15. Hence. the number of nodes on
the interfaces is n, = 15 and the size of the Schur complement matrix ¢ is 45 x 1.

We observe that the matrix structure of (" resembles that of Ay, and may be
viewed. ignoring small entries, as “trulv” block cvclic tridiagonal. As a matter
of fact. a plot of the surface formed by the entries of the matrix A,, can not be
distinguished from that formed by the entries of the matrix €' on the scale shown
in Figure 1.7.

By (4.18), the contributions to the matrix (7 come from two parts: A,,, i.c., the
discrete counterpart of the original differential operator restricted to the interfaces
and those due to the coupling between the interfaces and the subdomains through
bi-diagonal matrices Ayy and Ay (see (4.7) and (1.8)). As can be expected, the
former constitutes the major contribution. The probing interface preconditioning is
essentially concerned with how to appropriately and efficiently incorporate the latter
contribution into the matrix A,,, so that the spectral condition number &(G=1(")
can be rendered as small as possible, without investing much CPU time.

To appreciate how the matrix A,, dominates, we plot, in Figure 1.3, the surface
formed by the entries of the matrix A, —C = A,,,ul;,{' Ays. We notice that, in general,
entries of the matrix A,, overestimate those of the Schur complement matrix 7. To
facilitate the comparison, Figure 1.8 is drawn on the same coordinate systems as
Figure 1.7.

We plot, in Figure 1.9 and 1,10, the entries of the sixteenth row (associated with
a boundary node) and the twenty fourth row (associated with an interior grid point)
of the following four matrices, namely, A, . (. the rowsum preserving preconditioner
(:(0) and its modification (i (see (1.36)). Since node 16 is on the computational

boundary (sce Figure A.2). the periodic boundary condition (1.44) determines that
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node 16 will interact not only with its neighboring node (node 17). but also with
node 30. This is clearly seen in Figure 1.9, where the entry in column 30 of the
matrix does not vanish. In contrast, A,,(21.30) = G(0)(21.30) = ((21,30) = 0
and C'(21,30) is negligibly small, or precisely. of order O(107%) which is. of course.
indistinguishable on the scale of Figure -1.10.

Based on the information provided by Figures 1.7, 1.9(b) and 1.10(b). we con-
clude that there are only three entries on ecach row of the Schur complement matrix
C’ which are relatively “large™ and all other remaining entries are comparatively very
small. However, due to the periodic boundary condition imposed on onr problem.
(" may not be viewed as a tridiagonal matrix. We also notice that. as an approxi-
mation of the matrix €7, the rowsum preserving preconditioner (7(0) underestimates
C' on the main diagonal but overestimates C' on those off-diagonal “large”™ entries.
On the other hand, as a modification of (/(0), the preconditioner (¢ consistently
overestimates C on all “large” entries.

For higher mesh resolutions, the conclusions just made above remain true. For
instance, the Schur complement matrix C inherits the block cyclic tridiagonal struc-
ture of the matrix A,,. In Figure 1.11, we show that the matrix structure of C
corresponding to a mesh resolution of 55 x 31. In this case, there are 165 nodes on
the interfaces (ny, = 165) and hence the size of the matrix €' is 165 x 165, It was
also found that structures of the Schur complement matrices governing the velocity
distributions on the interfaces are all similar to those displayed in Figures 1.7 and
111, respectively.

To show that, in general. the modified preconditioner (¢ behaves better than
the rowsum preserving preconditioner (7(0) in our application, we employ an IMSL
library routine ([125]) to estimate the condition numbers of the following three pre-

conditioned Schur complement matrices, namely, #{(ANC) = ||AZTCIC AL
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K(G(0)1C) = J|GO)'CILICTIGO)ly and k(G-'C) = [|GTICHL)

C-'Gily. The

results are reported in Table 1.1.

Table 1.1: Condition numbers associated with the 1-norm for three preconditioned
Schur complement matrices A7MC. G(0)7'C and G™'C

ny || K(AZC) | K(G0)1C) | k(G0

15 1.18 1.42 1.11

155 1.50 1.A7 119

For all subsequent convergence tests of the preconditioning iterative method.
the 2-norm or Euclidean residual norm will be emploved throughout the rest of this
section. The stopping criterion is based on the 2-norm of the final residual vector
being smaller than 0.1 x 10710,

Before confirming numerically that the interface probing preconditioner ¢ is
computationally more efficient than (;(0) (sce Section 4.5.4), illustrate the effect of
MILU preconditioning on the iterative solution in the subdomains. Typical conver-
gence behaviors are depicted in Figures 4.12(a) and (b) for two mesh resolutions,
namely, 60 x 55 and 120 x 115. Timing results are given in Table 1.2, We observe
that the number of iterations required fer MILU preconditioned CGS algorithim in-
creases by a factor of two when moving from the coarser mesh (case (a)) to the finer
mesh (case(b)). This may be explained by the asymptotic relation (1.32) given in
Section 1.5.3 since h, = 20, where h, and hy are the mesh sizes for the smaller and
larger mesh resolutions, respectively. However, as we note, a general convergence
theory on PCGS method is not available. It is also worth noting that the above re-
sult is for MILU preconditioners applied from the left. Right MILU preconditioning

is found to be not as good for this particular situation.



111

20l e i b L

o Wi}_})uut ‘prcc:oxlv(i_i‘&ianigg

w 4

g o MILU preconditioning

g -zo- R
p—

[

= A\\\

=

8 i 4

S —-06.0 -

= -

[

=]

- R TY

<

a --10.0 -

g :

T e e R e e L B LA Al fant it SERLIE SR Bt SRR R

0 4 8 12 16 20 24
Iteration numbers
@)
FL s T SRR Sy G SVPUSUS SIS S SR S
@ o Withoul preconditioning
) &
E o  MILU preconditioning
o
5 —2.0- -
—
«
=
=l
- —
a
L] —-0.0 - P
I
QD
-
=
o ¥
a --10.0
=7+] .\1
e LN B R B e Tl e E i e SR
0 8 16 24 a2 40
Iteration numbers
(b)

Figure 1.12: The evolution of logyy Euclidean residual norms as a function of num-
ber of iterations in the subdomain for the non-dimensionalized geopotential matrix
system at the end of one hour with and without MILU preconditioning. The mesh
resolution is (a) 60 x 55 and (b) 120 x 115. There are 780 and 3360 nodes. for cases
(a) and (b), respectively, in cach of the four subdomains.
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Table 1.2: MILU preconditioning in a typical subdomain

Resolutions || No preconditioning | MILU preconditioning

60 x 55 0.12s (22 iterations) | 0.057s (5 iterations)

120 x 115 |} 0.89s (39 iterations) | 0.42s (9 iterations)

Now we turn to numerical tests on various interface preconditioners. Specifically.

the following four cases will be considered (see Section 1.5.4):
e SDD I — without any interface preconditioners.

e SDD II — the preconditioner simply taken to be the matrix A, explained in

Section 1.2 (page 70);
e SDD IH — the interface probing preconditioner (:(0);
e SDD IV — the interface probing preconditioner (7

We present, in Figure 4.13 — 4,16, the logjo norms of the residual vectors on
the interfaces versus the number of iterations corresponding to cach of these cases
listed above and for four different mesh resolutions, namely, 30 x 27, 60 x 35, 90 x 83
and finally 120 x 115. Both the number of iterations and CPU time consumed
for each case are recorded in Table 1.3 for the solution of the non-dimensionalized
geopotential Schur complement linear system at the end of one hour.

The suitability and efficiency of the interface probing preconditioner (7, which is
introduced in Section 4.5.4 (page 91) and is based on a modification of the rowsum
preserving preconditioner G/(0) (see page 92), have been numerically confirmed. We
may observe that, as the mesh resolution inereases, A,,. as an interface precondi-

tioner, displays poor adaptivity. However, both preconditioners (7(0) and (7 possess
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Figure 4.13: The evolution of log;o Euclidean residual norms as a function of number
of iterations for the Schur complement matrix linear system on the interfaces for
the non-dimensionalized geopotential matrix system at the end of one hour of model
integration. The mesh resolution is 30 x 27. For this choice, there are 90 nodes on
the interfaces.
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the interfaces.
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Figure 4.15: The evolution of log,, Euclidean residual norms as a function of number
of iterations for the Schur complement matrix linear system on the interfaces for
the non-dimensionalized geopotential matrix system at the end of one hour of model
integration. The mesh resolution is 90 x 83. For this choice, there are 270 nodes on
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Table 1.3: A comparison of CPU time in seconds (number of iterations) for the
iterative solution of the Schur complement linear systems on the interfaces

Mesh resolutions || 30 x 27 | 60 x 55 | 90 x 83 | 120 x 115
SDD 1 0.68 (9) [ 3.33 (11) { 9.95 (12) | 25.10 (13)
SDD 11 0.41 (3) [ 2.31 (6) | 7.72(8) | 23.74 (12)
SDD 111 0.57 (8) | 2.52(8) | 6.63 (8) | 1.1.70 (9)
SPD 1V 0.38 (3) | 1.70 (5) | 5.10 (6) | 12.12 (6)

much better adaptivities to mesh refinement. We also notice that, for the case of
30 x 27 mesh resolution, SDD IV is computationally cheaper than SDD [T although
they both require the same number of outer iterations. This is due to the fact
that, using the former preconditioner. the convergence rate of the iterative solution
in cach of the subdomains tends to be faster, namely, comparatively fewer inner

iterations are required.

4.8 Conclusions

e The Schur domain decomposition method provides a “divide, conquer and
combine” algorithmic structure for mapping a whole computational effort onto
a number of processors for the parallel numerical solution of PDI’s, using
cither the finite difference or the finite element discretization. The resulting
domain decomposition algorithm is casy to implement. However, this method

may not be cost effective in the absence of fast subdomain solvers.

e The Schur complement matrix (7 is so dense that Algorithm 1.1, although an
improvement of it has been made here over the traditional one, is not ree-

ommended in general, except for special cases (for example, discrete linear



116
syvstems with an identical coefficient matrix at each time step in a time depen-
dent problem or Newton's method for solving a nonlinear system of algebraic
equations by freezing the Jacobian matrix for a number of steps [37. p. 166]).
In other words, the generally preferred Schur domain decomposition approach
should be based on Algorithm 1.2 which represents a “divide and feedback™

iterative procedure illustrated in Figure 1.5,

The node renumbering scheme proposed in this chapter not only facilitates the
modification of an existing code into a non-overlapping domain decomposition
code, but also provides an casy and alternative way for implementing classical

multicoloring techniques.

The efliciency of this Schur approach strongly depends on the number of outer
iterations, i.c., the number of iterations required for a Krylov or conjugate
gradient-like iterative solver for lincar systems on the interfaces to satisfy a
prescribed convergence criterion. The predominantly local characteristic of
the Schur complement matrix operator justifies the use of interface probing
preconditioning ideas for accelerating the convergence of the iterative solution
of the Schur complement lincar system. However, the most often used rowsum
preserving preconditioner (/(0). although well-behaved for most elliptic PDEs,
does not carry over to the current application and requires a modification as
proposed in Section 1.5.4. The application of this modified rowsum preserving
preconditioner (7 results in a much better convergence behavior. especially for

finer mesh resolution cases.



CHAPTER 5
THE MODIFIED INTERFACE MATRIX DOMAIN

DECOMPOSITION ALGORITHMS AND APPLICATIONS
5.1 Introduction and Motivation

In Chapter 4. we have scen that, as a “divide and feedback™ process, the iter-
ative Schur domain decomposition method provides a good algorithmic structure
for mapping the computational work involved in the numerical solution of PDE’s
onto multi-processor computing systems for parallel processing. The computational
cost of this approach is determined by two factors, namely, the number of iterations
required of an iterative algorithm to solve the Schur complement linear system on
the interfaces and the computational costs of the subdomain solvers. One of the
drawbacks of the method is that subdomain solutions are usually carried out ex-
actly. For problems where fast direct subdomain solvers are locally exploitable (see,
for example, Section 3.2 of Chapter 3), the Schur domain decomposition method
with an appropriate interface preconditioner provides an efficient and cost-effective
algorithm. Unfortunately, fast subdomain solvers are not available in most appli-
cation problems. For such cases. the Schur domain decomposition method may not
be efficient when considered from the computational complexity point of view.

Domain decomposition ideas based on the modified interface matrix (MIM) ap-
proach 314, 174] are proposed to reduce the cost for obtaining subdomain solutions.

For this novel approach. the subdomain solutions are still carried out exactly, how-
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ever, with the improved intial solutions, they can be obtained faster and less expen-
sively as the iterative procedure continues. Thus, the disadvantage arising from the
absence of fast subdomain solvers is mitigated. The ideas proposed for improving
the initial solutions in the design of iterative solvers for time-dependent and bound-
ary value problems are not new and have been pointed out, for example. in {10. p.
385). These ideas will be further studied and implemented here in connection with

domain decomposition strategies.

5.2 The Modified Interface Matrix Domain Decomposition Method

5.2.1 The Basic Theory

For the Schur domain decomposition method presented in the previous chapter.
the subdomain problems (1.17) are solved only after the solution x, on the interfaces
is obtained. We propose, in this section, a new approach to handle coupling between
different subdomains. This new approach is largely based on the following two
theorems (Theorem 5.1 and 5.2) and differs from the Schur domain decomposition
method in that the approximations to the solutions on the interfaces and in the

subdomains are successtvely improved.

i vy

Theorem 5.1 Scquences of approximation ). for i = 1.2 ..n, and &%) pro-
I\ Pl s |

duced by
For bk =0,1,2,...
/hi-rfkﬂ) =fi— A,»,.ri"’ fori=1.2,....n (5.1)

/1,,.F£k+l) =f, - Z .",,’.I‘Ek+n (5.2)

i=1

converge to 7. for i = 1.2, ... n, and .} for an arbitrary initial solution r{" on the

interfaces if and only if the spectral radius of the matrix [, — A7 satisfies

p(l, = AZC) < | (5.3)
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where I, is an identity matrix of size ny X ng, x5 and rf. for ¢ = 1,2,....n, are the

solutions of (1.16) and (4.17).

PROOF. Define an error vector ¢!¥) = ¥ — r7 for the interface approximation.
Since .rfk“) = :1,-",-‘(]} - A,—,.r(f)). for : = 1,2.....n. 1t 1s then straightforward to
show that A,, 1) = g+ (A,, = C)r!® where ¢ is defined by (-1.21). It follows that
D = (1, — AZNC)®). Hence we have o8 — 17, as k — oc if and only if (5.3)
holds. Now let & — oo in (5.1). it follows from (1.17) that .r.f-k) — xi.as kb — oc. for
i=1,2.....n. Q.L.D.

By theorem 5.1. we obtain the following iterative procedure for solving the linecar
system Ar = f. The iteration starts with an arbitrary initial solution +{" on the
interfaces I' = MU, U---UT, -y, solves the subdomain problems (3.1) in parallel,
then updates the approximation on the interfaces by solving (5.2). In this way
we solve the subdomain problems and the interface problem successively until the
convergence criterion on the interfaces is satisfied.

Compared to the Schur domain decomposition method, the algorithm based
on theorem 5.1 is quite straightforward and the condition (5.3) is satisfied in our
applications for various mesh resolutions. Specifically, our numerical experiments
indicate that for various mesh resolutions of the discretized domain, the spectral
radii p(l;y — AZNC) are about 0.13. lence the asymptotic rate of convergence
~Inp. (see, for example, [113]) is about 2.0102. Thus, in order to reduce the norm
of the initial error vector on the interfaces by a factor of, say, 107", roughly seven
iterations are required.

We now proceed to modify this iterative procedure. Since cach iteration using
(5.1) and (5.2) requires the solutions of all the subdomain problems once, it is

important to reduce the number of iterations. It is well known that the smaller the
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spectral radius, the faster the rate of convergence. In order to reduce the spectral
radius, we construct a matrix Ay, such that A+ Ny, is a good approximation of the
Schur complement matrix C in the sense that the spectral radius p[(A,, + Ky, )71
is close to 1. The matrix A,, + A, is referred to as the modified interface matrix.

Now assume that the matrix K,, has been chosen, the following result may be

proved in a similar way:

Theorem 5.2 Sequences of approximation .rf ) for i = 1,2.....n, and B ob-

tained by

For bk =0,1,2,...

Agr® = 1 fori=1,2,.. .0 (5.1)
(Ags + Kyp)A2® = f, — Az® = 57 A, zFHY (5.5)
=1

converge to r}, for 1 = 1,2,...,n, and &} for an arbitrary initial solution 9 on
the interfaces if and only if the spectral radius of the matrix 1,, — (A,, + K,,)~'C
satisfies

plly — (Ays + Ky)7'C) < 1 (5.6)

where Arl® = pU+HD 30 [ s an identity matrix of size n, x n,, r; and r}., for
: = 1,2.....n, arc the solutions of (4.16) and (1.17). Morcover, the following normn

relations hold

1(Ass + Ke) A = |lg = C2P] (5.

ot
-1
~—

where (7 is the Schur complement matrix and g is the corresponding right hand side,

defined by (4.21).

Based on theorem 5.2, the iteration starts with an arbitrary initial solution .+ on
~ 3

the interfaces and we successively solve the subdomain problems (5.1) in parallel and
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the lincar system (5.5) on the interfaces until the norm given by (5.7) is sufficiently
reduced. A highly simplified control flow (data dependency) graph is presented in
Figure 5.1. Notice that the computational work involved in n — 1 interfaces may
also be carried out in parallel with smaller granularity. This fact is hidden in the
figure.

It is interesting to make an analogy here and think of each of the equations in
(5.1) as the governing equation for the displacement distribution within a substruc-
ture subjected to a load f; originally acting upon it. and the boundary interaction
forces —A,el?) due to interface connections between the substructures.

By taking % to be some initial solution on the interfaces that differs from
the true solution r;, we are actually imposing some constraints in addition to the
original constraints (the boundary conditions) to the structure and thus making it
stiffer. However, as guaranteed by theorem 5.2, the extra constraints introduced

due to the incorrect initial solution will be continually relaxed by solving the lincar

system (5.5) repeatedly.

A Krylov or conjugate-gradient like algorithm is applied to both (5.4) and (5.5),
accelerated by the MILU preconditioner for the former and a modified version of the
rowsum preserving interface preconditioner (see Section 5.2.3) for the latter. The
stopping criterion for the iterative procedure introduced in Theorem 5.2 is based
on the final Euclidean residual norm |lg — Cx{|| being smaller than a pre-defined
small number, say, 0.1 x 107!9, and this residual norm information is conveniently

and less expensively provided by [|(A,, + 1,0 ) Qx| (see (5.7)).

5.2.2 The Construction of i,
We now investigate the construction of the matrix K, designed so that the

modified interface matrix A, + A, constitutes a good approximation of the Schur
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Figure 5.1: A highly simplified control flow (data dependency) graph for the modified
interface matrix domain decomposition algorithm.
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complement matrix ¢C. Since we are mainly interested in non-symmetric iterative
methods for which only matrix-vector products are required for the solution of the
system (5.3), it is more efficient to consider the algorithm of computing K, w, for
a given vector w, rather than first forming the matrix and then the product,

As a first approach. let us consider a splitting of cach of the subdomain matrices

A
Ay = DPi = Qi = Pullii — i) (5.8)
where P is a nonsingular matrix and /;; 1s the identity matrix of size n; x u;.
Assuming that the spectral radius of i, = [; — 1’551,*,- is less than 1, we may

obtain the following Neumann series expansion
(.
AG =0 = P AR P (5.9)
k=0

C — A, can be approximated by using only a finite truncated expansion, i.c.,

n
C— Ay K,y ==Y A X (5.10)
1=1
where
(m+1) _ [\
rim+4 - 3 - -
Xt = 30 = Pt AN P A (5.11)
k=0
To derive an iterative method for computing Kw, = = 5%, A X e, we
consider solving cach of the following lincar systems of the form Ao, = u;. for

i1 =1,2,...,n, by a linear and stationary iterative scheme

ol o 4 P s~ A (5.12)

i

(Ii = P7 )™ 4 Pty (5.13)
From (5.13). we obtain

o' = (L= P e + P (5-11)



o = (L= PPANT + (i = PTADP wi+ Pilee (5.19)

1‘53) = (1,‘,‘ b P‘-‘—-l,‘l,',')al?go) + (1,'“ — 1’51:\,‘,’)2 P.-;lll,'

+ (L — P,-:l:l,',')[);lu,‘ + P;lll,‘ (5.16)
and in general
o™ = (L= PP+ = PTG P e (5.17)
k=0

Based on (5.13) and (5.17). the following iterative algorithm for computing K e,
is obtained

'(m+l)

n
Kow, == Ay, (5.18)
i=1

(m+1)

where the vector v, can be obtained by the following iterative procedure: for

k=0,1,...,m, starting with v,(u) =0
I’ig(v,(k“) - v,(k)) = —Ai,-vfk) + (5.19)

for i = 1,2,...,n and u; = Ajw,. Notice that (5.19) can be implemented and
(m+1) . .

Agiv, formed, for 1 = 1,....n, completely in parallel.
Another approach is to use MILU preconditioners in the subdomains A = L;U;

to construct the matrix I,,. Specifically, we take

-t
I
=
~—

N,y = —ZA_,,'(L;U,')’]A,',. (H.
=1

Here the matrix-vector product may be evaluated as follows:

ot
t~
—
~

n
Nyyuwry = — Z Asi”i (: y
i=1

where v; can be determined by

Livi = A, (5.

ot
t~
(8
~—



and

Ui, =0 (5.23)
for : = 1,2,....n. The solutions of (5.22) and (5.23) can be carried out and Ay v;
formed in parallel.

Numerical results indicate that the spectral radii p(l,, — (A5 + Ny)7'C) for
various resolutions arc around .01 by retaining just the first term in the Neumann
series and 0.002 by using the MILU factorization. Thus, roughly either only four
or two iterations. respectively, will be required in order to reduce the norm of the

initial error vector on the interfaces by a factor of 107°.

5.2.3 The Algorithm

Prior to presenting an algorithm of the MIM domain decomposition approach,
we discuss here how to choose the initial guesses for the solution of (5.4) as well as
that of (5.5) and how to precondition (5.5).

Rather than making a random guess of the initial vector for an iterative solver
to start with, we take .zrf-k), for i = 1,2,...,n, as the initial guess for the solution of
cach of the lincar systems in (5.4). for & = 1,2,..., as well as the zero vector as the
initial guess for the modified interface matrix linear system (5.1), for £ =0, 1,....

It is clear from theorem 5.2 that, as k increases, ;rfk“) - .rfk) — 0 in the subdo-
mains Q;, for i = 1,2,...,n, and Az!®) — 0 on the interfaces I'. Conscquently, the
initial vectors selected this way become better approximations to the subdomain
solutions .rka). fort =1,2,....n.as well as to the solution on the interfaces A.rgk).
as the iterative procedure defined by (5.4) and (5.5) proceeds, and thus requiring

fewer iterations! for the iterative solutions in the subdomains (5.1) and on the inter-

"I'he numerical results on this are very encouraging, see Figures 5.5 and 5.7 on pages 138 and

139.
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faces (5.5). As a result, the computational cost of the MIM domain decomposition
algorithm decreases as k increases. The reduced cost for the subdomains mitigates
the disadvantage of unavailability of fast subdomain solvers.

For any fixed k. we use here essentially the same preconditioner (7 (see (1.36))
as previously used for the precounditioning of (1.16). with the Schur complement
matrix replaced by the matrix Ay + Ky, Only a single probing vector of the form
¢ = {LLLLLILLL...}T is required for this construction. The product A, is
cvaluated by using cither (5.18) or (5.21). If (5.21) is used. it is casy to sce that
just one inexact solve is required for the construction of this preconditioner in cach
subdomain.

Based on the above discussion. we present in the following an algorithm for the
MIM domain decomposition approach, where Steps 1 to 3 are required for set-up
purposes. The iterative procedure is described by Steps 1 through 6. To fix ideas,

we specify CGS to be our iterative solver in the algorithm.

Algorithm MIMDD (Modified Interface Matrix Domain Decomposition)

Step 1. Carry out the MILU factorizations of A;;, Ay = Lil/;, for i =1.2,...,n,in

parallel.

Step 2. Construct a modified rowsum preserving interface probing preconditioner

for (5.5). A large part of this calculation may be carried out in parallel by

using cither (5.18) or (5.21).

Step 3. Set & = 0. Specify 19 on the interfaces and solve subdomain problems
(5.1) in parallel by using a MILU preconditioned CGS solver with a suitable

initial solution.
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Step 1. Solve (5.5) by the CGS solver with the preconditioner constructed in Step 2.
and an initial solution taken to be the zero vector on the interfaces. Notice

that the preconditioning system may be solved in parallel and the matrix-

vector product I,,w, may be computed by either (5.18) or (5.21) mostly in

parallel. where w, varies between iterations.

Step 5. Test for convergence on the interfaces (by using (5.7)). If the convergence
criterion 1s met, go to Step 6 and stop: Otherwise, go to Step 6 and then go

back to Step 4.

Step 6. Set & «~ &k + 1. Solve subdomain problems (5.4) in parallel by using the

MILU PCGS solver with initial solutions If—k). fori=1,2.....n.

5.3 Numerical Results and Discussions

5.3.1 Accuracy of the Modified Interface Matrix

We now provide some numerical results along with discussions to support the
theory and algorithm introduced in Section 5.2. First, the critical factors affect-
ing the successful application of the theory and algorithm discussed there are the
spectral radii p(l,, — A7NC) and p[l,, — (A + K,,)7'C). respectively. Our goal
is to render the matrix A,, + K,; to be an accurate representation of the Schur
complement matrix C, in the sense that p[ly, — (A, + Ny,)7'C) s small, without
sizably increasing the computational work for the construction of the matrix A,
Our numerical experiments applied to various mesh resolutions indicate that the
condition (5.3) is satisfied and that the advantage of modifving A to A, + A, is

computationally significant.
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The spectral radii p(£,,— A7) and pll;—( Ay + Ky5) 71 C] corresponding to the
non-dimensionalized geopotential at the end of one hour (for a time step of half an
hour) for several mesh resolutions are summarized in Table 5.1, where the matrix i,
is constructed by MILU factorizations. The spectral radius p{/,, — (A5 + Ky,) 7' CY,
for which K, is formed by the Neumann series expansion (see (5.10 and (3.11)) can
be found in our carly paper [171]. Comparisons were also made in {174] between
MILU and the Neumann series constructions of Ky, the general conclusion being
that MILU is more suitable for this particular application. By retaining more terms
in the Neumann series expansion, we can render the spectral radius p[l,, — (Ayy +
N45)7'C'] very small, however. the extra CPU time required usually outweighs the
gain obtained by the reduction of the number of outer iterations of the MINIDD
algorithm. As expected, the spectral radius increases with the mesh refinement,
implying that additional outer iterations will be required for satisfying the same
prescribed convergence criterion.

Table 5.1: The spectral radii of the matrices I,, — A7NC and I, — (A,, + K,)7'C
for three mesh resolutions

Mesh resolutions || p(l,s — AZC) | pllss = (Ags + K,5)7'C]
36 x 27 0.134 1.930 x 103
H6 x AT 0.134 2,236 x 107*
T2 x 63 0.191 3.485 x 1073

The modified interface matrix A,, + K, constructed according to (5.20) consti-
tutes quite a good approximation to the Schur complement matrix (', defined in
(4.18) or (1.19) of Chapter 1. A plot of the surface formed by the elements of the

modified interface matrix as a function of its indices can hardly be distinguished
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from Figure -1.7. In view of this. we present. in Figure 5.2, the surface generated by
the entries in the matrix ¢ — (A,, + K,,) corresponding to the non-dimensionalized
geopotential matrix at the end of one hour of model integration for a time step of half
an hour using, for the illustration purpose. a mesh resolution of 25 x 19. However.

similar results are observed for cases corresponding to other mesh resolutions.

5.3.2 The Convergence Behavior

Now we present some convergence results obtained by using the iterative algo-
rithms introduced in Theorems 5.1. which does not modify the interface matrix A,,.
and in Theorem 5.2, which is referred to as the modified interface matrix domain
decomposition (MIMDD) algorithin [171] (its algorithin is desceribed in detail in Al-
gorithm MIMDD on page 126). The stopping criterion is that the final Euclidean
residual norm |lg — Cr®| of the Schur complement linear system on the interfaces
be less than 0.1 x 107", essentially the same convergence criterion as employed in
Chapter 4. However, for the present algorithms, we do not have to deal with the
Schur complement matrix for convergence tests, but just to take advantage of the
relation given ia (5.7) (setting Ky, = 0 for the unmodified case).

For each of the subdomain problems expressed in (3.1) or (5.4), as usual, the
CGS iterative algorithm with an MILU preconditioner is used. On the interfaces,
however, for the unmodified case, due to the special structure of the matrix A,,.
it is more cost effective to employ the so-called Ahlberg-Niclson-Walsh algorithm,
mentioned in Section 1.5.4; for the modified case, we use the CGS algorithm ac-
celerated by the modified row-sum preserving interface probing preconditioner (see
Algorithm MIMDD).

In Figure 5.3, we display the convergence histories for both the unmodified and

modified interface matrix domain decomposition algorithms on two mesh resolutions.
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Figure 5.2: The surface generated by the entries of the matrix ¢ — (A,, + I,,) for
the non-dimensionalized geopotential system at the end of one hour of integration.
The mesh resolution is 25 x 19 for the original domain. For this choice. there are 75
nodes on the interfaces for the four-subdomain domain decomposition. Note that
the mesh lines have been thinned by a factor of two in both directions along 1 and

J-
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The results correspond to the non-dimensionalized geopotential matrix system at
the end of one hour of model integration with a time step of half an hour. We see
that the modified version represents a great saving of number of outer iterations
and. as a result, a saving of number of subdomain solves. Actually, this is to be
expected since the spectral radius p{ly, —~ (Ags + N,ys)7'C] is of order O(1073). while
pllss — AZC) is of order O(1071). We also note that the unmodified approach is
quite sensitive to the mesh refinement. On the other hand. the number of outer
iterations required for MIMDD algorithm to converge does not increase very much
even for higher mesh resolutions, implying a good adaptivity of the algorithm.

In ‘Table 5.2, we privide some timing results which further confirm that the
MIMDD algorithm is to be preferred to the corresponding unmodified version of the
algorithm. Each given CPU time corresponds to the integration of the finite element
shallow water equations model for one hour with a time step of half an hour. Also
included in the table, for comparison purposes, are those timing results using the
Schur domain decomposition method with the modified row-sum preserving interface
probing preconditioner on the interfaces, denoted by SDD 1V (see page 112). The
number of outer iterations required for solving the geopotential linear systems at
t = 1 hour for several mesh resolutions are also included in the table.

From the table, we observe that even the unmodified interface matrix domain de-
composition algorithm is competitive with the Schur domain decomposition method.
while MIMDD method is the best (i.c., computationally cheapest) among these three

algorithms.
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Figure 5.3: The evolution of logis Fuclidean residual norms of the Schur complement
matrix lincar system on the interfaces as a function of number of outer iterations
for using the modified and unmodified interface domain decomposition algorithms.
The results correspond to a non-dimensionalized geopotential matrix system at the
end of one hour of integration with a time step of half an hour. The mesh resolution
is (a) 60 x 51 and (b) 104 x 95, respectively.
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Table 5.2: A comparison of CPU times in seconds for integration to the end of
one hour with a time step of half an hour (numbers of outer iterations for solving
the geopotential linear systems at { = 1 hour) between the unmodified, modified
interface matrix domain decomposition algorithms (timing results for the Schur
domain decomposition method are also included for comparison)

Mesh resolutions || Unmodified | Modified | SDD IV
24 x 15 1.07 (14) | 0.78 (5) 0.97
16 x 27 287 (11) | 217(3) | 2.7
48 x 39 594 (14) | 1.52(5) 5.75
60 x 51 10.72 (13) | 8.59 (5) 11.04
T2 x 63 17.95 (14) | 14.63 (5) 17.96
84 x 7H 29.08 (17) | 21.01 (5) | 28.62
96 x 87 16.27 (19) | 3731 (6) | 46.39
101 x 95 68.69 (22 51.23 (6) 69.23
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5.3.3 The Significance of Successively Improved Initial Solutions in the
Subdomains and on the Interfaces

One of the reasons that the MIMDD algorithm performs better than the tradi-
tional Schur domain decomposition method is due to the improved initial solutions
in the subdomains and on the interfaces being systematically made as the outer
iterations continue.

To show how these improved initial solutions affect the performance of both
the MIMDD algorithm and the unmodified version. we present, in Figures 5.4, 3.5.
5.6 and 5.7, histories of improved initial solutions in the subdomains and on the
interfaces (for the MINMDD algorithm only) for the non-dimensionalized geopotential
matrix system at the end of one hour of model integration with a time step of half
an hour, for both unmodified and modified interface matrix domain decomposition
algorithms. We present these results corresponding to two mesh resolutions only,
namely, 60 x 51 and 101 x 95. However, similar behavior can be observed for other
mesh resolutions. For the case of higher resolution, we notice that the unmodified
interface matrix algorithm fails to reduce quickly the initial residual norms in the
second and third subdomains after cach outer iteration step. However, the MIMDD
algorithm self-adapts the mesh refinement and behaves well even for high mesh
resolutions.

Finally, we report timing results to illustrate the significance of the improved
initial solutions within cach outer iteration. As before, we integrate the shallow
water equations for one hour by using both unmodified interface matrix domain
decomposition and MIMDD algorithms with or without the updates of the initial
solutions in the subdomains. For cases in which no improvements are made, the
initial subdomain solution vectors are simply taken to be zeroes. The numerical

results are shown in Table 5.3, where the following notations have been adopted
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UMIMDD I:  unmodified interface matrix DD without improved initial subdomain

solutions:

UMIMDD II: unmodified interface matrix DD with improved initial subdomain

solutions;
MIMDD I MIMDD algorithm without improved initial subdomain solutions:

MIMDD [E MIMDD algorithm with improved initial subdomain solutions.

Table 5.3: A comparison of CPU times in seconds between the unmodified and
modified interface matrix domain decomposition algorithms with and without im-
provements of initial solutions made in the subdomains

Mesh resolutions || UMIMDD I { UMIMDD 11 | MIMDD I | MIMDD 11
24 x 15 1.53 1.07 1.02 0.738
36 x 27 4.31 2.87 2.85 217
48 % 39 8.98 5.91 6.06 452
60 x 51 15.89 10.72 11.46 8.59
72 x 63 26.26 17.95 19.05 14.63 N
81 x 715 12.36 29.08 31.40 2101
96 < 87 63.36 16.27 19.27 3731
104 < 95 106.28 63.69 67.79 51.23

As can be expected that, for higher mesh resolutions, the subdomain problems
hecome more costly to solve and hence the differences of the computational cost
between UMIMDD I and UMINMDD I or between MIMDD Tand MIMDD I become

more pronounced.  From these examples, it is elear that the importance of the
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successive improvements of initial solutions made in each of the subdomains. as

proposed in Algorithm MIMDD., can not be overemphasized.

5.4 Conclusions

¢ A new domain decomposition algorithm (MIMDD algorithm) has been pro-
posed in this chapter along with some supporting theorems. In contrast with
the Schur domain decomposition approach, in which the numerical solution
on the interfaces is first determined. the MIMDD algorithm starts with an
initial guess on the interfaces and then iterates back and forth between the
subdomains and the interfaces until a convergence criterion is satisfied on the
interfaces. Beginning from the second outer iteration step. the iterative sub-
domain and interface solvers become increasingly less expensive due to the
successively improved initial solutions. The reduced computational cost in
obtaining subdomain solutions this way mitigates the disadvantage of the un-
availability of fast subdomain solvers for any specific applications. The results
obtained by applying this algorithmm to our application improve upon those ob-

tained by employing the traditional Schur domain decomposition algorithm.

¢ With the modified interface matrix constructed by the MILU factorizations.
the spectral radii p[l,, — (A, + Ns3) 7' C'] for several mesh resolutions tested are
of order O(107?), compared with O(107!) for the unmodified version. More-
over, we also note that a significantly increased number of iterations will be
required for the nnmodified interface matrix approach to converge for higher
mesh resolutions. However, the convergence of the MIMDD algorithn is only
weakly dependent on the mesh size b, implying a good self-adaptivity to the

mesh refinement.
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e Irom Figures 5.4, 5.5, 5.6 and 5.7 as well as Table 5.3. we notice the remark-
able effect of the iteratively improved initiai solutions on reducing the overall
computational complexity. These numerical results suggest a beneficial impact
of the application of multigrid iterative solvers in the subdomains. Like any
other iterative schemes for the solution of linear systems, multigrid method
will perform even better with an appropriate initial solution provided at the
finest level. In fact. the nested iteration is often combined with the coarse
grid correction scheme (collectively called full multigrid scheme) to provide a
good initial solution for the next finer level, starting from the coarsest level
(see. for instance, [25. 127, 220]). From our experimental results. we conclude
that. except for the first outer iteration, the nested iteration does not seem so
important and coarse grid correction cycles may be applied directly for improv-
ing the solution at the finest level through a sequence of transferred residual
information from the finer-grid to the coarser-grid. The MIMDD algorithm

with multigrid subdomain solvers is currently under investigation.
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Figure 5.4: The history of improved initial solutions in the subdomains using
the unmodified interface matrix domain decomposition algorithm for the non-
dimensionalized geopotential matrix system at the end of one hour of integration
with a time step of half an hour. The mesh resolution is 60 x 51.
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Figure 5.5: The history of improved initial solutions in the subdomains and on the
interfaces using the MIMDD algorithm for the non-dimensionalized geopotential
matrix system at the end of one hour of integration with a time step of half an hour.
The mesh resolution is 60 x 51.
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Figure 5.6: The history of improved initial solutions in the subdomains using
the unmodified interface matrix domain decomposition algorithm for the non-
dimensionalized geopotential matrix system at the end of one hour of integration
with a time step of half an hour. The mesh resolution is 104 x 95.
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Figure 5.7: The history of improved initial solutions in the subdomains and on the
interfaces using the MIMDD algorithm for the non-dimensionalized geopotential
matrix system at the end of one hour of integration with a time step of hall an hour.
The mesh resolution is 104 x 95,



CHAPTER 6
PARALLEL BLOCK PRECONDITIONING TECHNIQUES AND

APPLICATIONS
6.1 Introduction and Motivation

The numerical solution of elliptic or time dependent PDE’s with implicit time
discretization basically involves two stages, namely, 1) discretization and 2) numer-
ical solution of the resulting systems of algebraic equations. Usually, the execution
time for the first stage is only a small fraction of that for the second stage [188].
These algebraic equations may be linear or nonlinear corresponding to the nature of
the original PDE’s and the accuracy requirement. However. if the original problein
indeed necessitates the solution of nonlinear systems of algebraic equations, many
solution methods (sce [101], [186] and references therein) may be interpreted as
successive modifications, through a sequence of linear approximations, of an initial
solution of the nonlincar system, until a certain convergence criterion is satisfied.
In other words, lincar solvers are essential kernels to nonlinear solvers. As a re-
sult, to reduce the major computational work involved in the second stage defined
above, the availability of a cost effective (often problem dependent) linear solver is
absolutely desirable for both linear and nonlinear systems of algebraic equations.

As a matter of fact, due to its important role in scientific and engineering com-
putations. the scarch for the efficient solution of a lincar system of algebraie equa-

tions has always been a central issue in numerical analysis.  Multigrid methods

140
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([21. 27, 127, 152] and/or domain decomposition techniques constitute modern ap-
proaches for the solution of a linear system of algebraic equations. Approaches of
this type rely on and take advantage of an underlying continuous problem.

As has been introduced in Chapter 3, although domair: decomposition ideas are
traceable to the work of Schwarz [209] in 1869 and that of engineers beginning from
the 1960’s [193. 202, 93]. an cfficient way to handle the coupling between artificially
divided substructures was first proposed by Dryja in 1982 [69]. a work considered to
be seminal, in the context of the Preconditioned Conjugate Gradient (PCG) linear
symmetric iterative algorithms. In essence. this is a divide-and-feedback process
which continues until a prescribed convergence criterion on the interfaces is satisfied
(sce Chapter 4 for details).

Since the feasibility of this process is based on the property that only matrix-
vector products are required for the PCG algorithm for solving a symmetric lincar
system, the idea is readily extendible to the non-symmetric case. However, this ap-
proach. which proceeds via the Schur complement matrix, usually requires repeated
exact subdomain solutions which are not cheaply implementable for non-separable
elliptic operators or for other more complicated cases such as, for instance, the
shallow water equations.

To improve the efliciency of the parallel solution of partial differential equations,
for which no fast subdomain solvers are available, at least two other approaches have
been proposed. One is a domain decomposed preconditioner approach (DDPA) (also
called full matrix domain decomposition in [132]) advocated in [22]. the other being
the recently proposed modified interface matrix domain decomposition (MINIDD)
(see [171] and Chapter 5). Both approaches abandon the idea of Schur domain de-
composition method that decoupled subdomain problems are independently solved

only after the interfacial degrees of freedom are specified.,
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In short, the DDPA consists essentially of the construction of a domain decom-
posed preconditioner designed so that approximate solutions in the subdomains and
on the interfaces can be simultancously updated at the cost of only inexact subdo-
main solves. On the other hand, the MIMDD algorithm successively improves the
subdomain and interface approximate solutions with iterative improvements of the
initial guesses in both the subdomains and interfaces being made. Thus it mitigates
the disadvantage due to the absence of fast subdomain solvers.

The MIMDD algorithm has been presented and discussed in the last chapter.
In this chapter, we concentrate our attention on the development and application
of the DDPA to the finite element shallow water flow simulation. Specifically, we
consider three types of domain decomposed (DD) preconditioners and their appli-
cations. Solutions to the preconditioning linear systems are provided by inexact
subdomain solves. Results concerning performance sensitivities of these precondi-
tioners to inexact subdomain solvers will also be reported. Parallel implementation
issues and speed-up results will be presented in Chapter 7.

Non-symmetric lincar iterative solvers are important kernels to the current do-
main decomposition approach. Among many available algorithms, we are especially
interested in three of them, namely, GMRES [206], CGS [216] and Bi-CGSTAB
[227]. We expect that these three algorithms will be more extensively studied and
compared by numerical analysts and be widely applied to many important problems
in science and engineering. Although a thorough analysis and comparison of these
three methods are beyond the scope of this dissertation. we share here our numerical
experience related to their application with DD preconditioners in the context of

numerical solution of equations describing the shallow water flow.
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6.2 Parallel Domain Decomposed Preconditioners

6.2.1 An Equivalence Theorem and its Significance

The domain decomposition methods based on building DD preconditioners (in-
terpreted as block preconditioning techniques) into the iterative linear solvers were
proposed with more complicated and real-life problems in mind. They may be
viewed as being motivated by the following theorem due to EFisenstat [131] for the

conjugate gradient solution of a symmetric linear system (4.1).

Theorem 6.1 Algorithm PCG applied to C'ry = ¢ (sce (1.16)) with initial guess
9 and preconditioner (7 is equivalent to algorithm PCG applied to Ax = f (see

{1.1)) with imtial guess

nn

7O = (A7 (i = Aer), o A (= Aner ), 0T

and preconditioner

/1 1(5
B=|"" o (6.1)
A G+ T8, AudA A

in the sense that, for all £ > 0,
3 - ¢ - 3 I\T
o8 = (AT = Ae™) A (S = A, )

and there is no advantage to choosing an initial guess more general than ) as
above, in the sense that [[r® — r]l4 < |l — r||4. where w®) is the k-th iterate

generated by PCG from the initial guess
-
m((’) = .r(()) -+ (£l~ e ~En-0)

The theorem immediately suggests the algebraic form of a possible preconditioner

for the PCG iterative solution of the symmetric system Ar = f. Instead of keeping
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the subdomain stiffness matrices Ay, for 1 = 1...., n. we use the approximations f3;
to replace A in (6.1) such that only inexact subdomain solves are needed for the
solution of the preconditioning linear system (say Bp = ¢) at cach iteration step.

We reach a preconditioner of the following form

By, Ay
B=| " 1 (6.2)

A G+ T, AB A
Let us take right preconditioning as an example to clarify some basic concepts.
As discussed in Section 1.5.2 of Chapter 1, instead of solving the original lincar
system Ar = f, we solve AF = f. where A = AB~! and & = Br. The matrix-
vector product Aq required in each iteration step is obtained by solving Bp = ¢
and then form Ap. The final solution is given by & = B~'x. Obviously, an ecfficient

preconditioner B must satisfy the following three requirements
e AB!is better conditioned;
e The preconditioning matrix B is easy to invert;
e 'The solution of the preconditioning lincar system Bp = ¢ is parallelizable.

The preconditioner given by (6.2) can greatly reduce the condition number of
the matrix A if one selects B, § = 1.2,....n, to be good approximations (say.
incomplete LU or a few multigrid cvcles) of /A;; and constructs a good interface
preconditioner (. The fact that Bp = ¢ can be solved in parallel will become clear
in Section 6.2.2. It may be readily verified that the solution to the preconditioning
linear system Bp = ¢ may be obtained at the cost of 2n inexact subdomain solves.

where n is the number of subdomains.



6.2.2 Three Types of Domain Decomposed Preconditioners

For problems in which the fast subdomain solvers are not available. DDPA may
turn out to be more eflicient. Instead of solving for the interface unknowns first.
this approach simultaneously updates, at the cost of only inexact subdomain solves.
the approximate solutions in both the subdomains and on the interfaces. The idea
here is to directly solve the lincar system Ar = f. where the matrix A has a block-
bordered structure as shown in (1.5). with an appropriate preconditioner having the
same block-bordered structure. Two types of such preconditioners were reviewed in
the literature (see [131]. for instance).

To derive three types of DD preconditioners which are of interest here, we notice

that the block-bordered matrix (1 in (1.5) may be factorized as

Agg Ay Ay 0 A,;,il 0 Agr Ads
Ay A, Ag C 0o ¢! 0 C
where C is the Schur complement matrix given in (4.19).

Searching for possible preconditioners of A, we consider another matrix B fac-

torized in exactly the same way as that in (6.3)

By 0 Bl 0 Bu gy
B = dd 11 id 1 (G.'l)
A G 0 G 0 G

where By and G are approximations of the matrices Ay and C, respectively. The

matrix /3 may also be written as
I}rl'i "111.1
Asli B.m
where

By =G4+ AuBpl Ay, =G+ AGB A, (6.6)

i=1
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It is casy to sce that (6.5) is exactly the same as (6.2). although we derive it in a
different way.

The first type of DD preconditioners considered here are of the structurally
symmetric form given by (6.5), where A4 and Ay are given by (1.7) and (1.8).
The matrix Byy has the same structure as that given by (1.6) except that each B,
= 1.2...., n. is now an approximation of A;. For example, B; might be the
relaxed incomplete LU factorization (RILU) [11] of A;;. B, is given by (6.6)., where
(i is an appropriate preconditioner to the Schur complement matrix C.

It may be verified that the solution of the preconditioning linear system Bp = ¢

is equivalent to solving the following linear systems

Gps, = q,— Z AuBZ'qi (6.7)
=1
Bipi = qi— Aips. fori=1,2....,n (6.8)

where the meaning of p; and p, is clear.

Instead of solving a lincar systemn with a coefficient matrix By; exactly, we may
cquivalently solve the original linear system with cocflicient matrix A,; approxi-
mately. Therefore, the preconditioning system Bp = ¢ may be solved in the follow-

ing fashion:
I. Solve approximately in cach subdomain
Aipt™ = 4, (6.9)
for i = 1.....n in parallel:

2. Solve the interface preconditioning system

Cps=qo =3 Aup” (6.10)



3. Solve approximately in each subdomain

Aap® = —Aip, (6.11)
fort = 1,...,n in parallel;
4. Form
pi = pfl) + pi—z). fori=1..... n. (6.12)

The second type of DD preconditioners, applicable only to a nonsymmetrice linear
system, is obtained by taking the rightmost factor in (6.4). It assumes the following

block upper triangular form

Ba Aus _
p=| """ T, (6.13)
0 G

Now the solution of the preconditioning system Bp = ¢ requires only one inexact
subdomain solve in each subdomain, compared with two such solves in the previous
case with B given by (6.5). Obviously, the solution p of Bp = ¢ can be obtained by

first solving the preconditioning system on the interfaces

Gps = qs (6.14)

and then approximately solving in cach subdomain

Aip = qi — Aisps (6.15)

for ¢ = 1....,n in parallel.
The third type of DD preconditioners is obtained by considering the leftmost
factor in (6.1). This type of preconditioners assumes the following block lower

triangular form

Bui 0
p=|"" . (6.16)
A G
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We need to solve approximately

Aapi = qi (6.17)
for i = 1....,n in parallel and then the preconditioning linear system on the inter-
faces

Gp, = g5 — Z Agpi. (6.13)
=1

A couple of observations arise immediately for this type of preconditioners. First.
similar to the second type of preconditioners. it applies only to non-symmetric sys-
tems of algebraic equations due, typically, to the discretization of the convection
terms. Second, the computational work involved here for this third type of DD

preconditioners is only part of that required for the first type

compare (6.17)
and (6.18) with (6.9) and (6.10). However, a greatly improved computational effi-
ciency results. This is to be expected theoretically and is confirmed by numerical

computations (sce Scction 6.4).

6.2.3 Analysis of Preconditioners

A question arises as to what constitutes an appropriate algebraic form for the
interface preconditioner (i for cach of the three types of DD preconditioners. Let us
first consider right preconditioning. Results corresponding to left preconditioning
will be given toward the end of the section. For preconditioners of the first two
types, (¢ may be constructed as a preconditioner to the Schur complement matrix.
This construction is, however. not appropriate for preconditioners of the third type
and it leads to a deterioration in performance (see Section 6.4). In order to see this,
we provide formulas for AB™! below in which a matrix M is used to replace (7 in

(6.6). (6.13) and (6.16). Due to the importance of these formulas. we derive them

in the form of a lemma.
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The following lemma may be readily verified following the procedure demon-

strated in [18. pp. 71 -72].

Lemma 6.1 Let

Au Aw
A= (6.19)
“‘21 /i')g

r4

If A, Aq and A, are nonsingular, then

X — A7 AW X - X ApAZ
AT = R = e (6.20)
— WAy A W —AF AnX W
where
”"' - (A-),-g - A)]Arll /‘12)-1 = A;zl + A;zl /121.\’.‘112/‘;; (()21)
.\’ = Al—ll + A;ll/\lg“".’lgll‘ll-ll - (/‘11 - Alzfl;zl Agl)_‘. (622)

On applying the Lemma to (6.5), (6.13) and (6.16) to obtain the inverses and

by post-multiplying (4.5) by these inverses, we obtain

. Py Py o
ARV = (6.23)

) )
21 22

where P;'s, 1,7 = 1,2, are determined below.

o For the first type of DD preconditioners

Pn = AuBr + (AuBr — L) A, M~ A, By, (6.21)
Py o= (Ly— AuBrl)AM™! (6.25)
Py = [l = (Ayy = AuBo A )M A8y (6.26)

Py = (A~ AuBrl A )M (6.27)
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¢ lor the second type of DD preconditioners

Py = AuBp) (6.28)
Py = (Ly— AuBp)AM™! (6.29)
Py = AuBp} (6.30)
P = (Ay— AgBr A )M (6.31)

e For the third type of DD preconditioners

Pyo= (A= A M AL By (6.32)
Py o= AgM™! (6.33)
Py o= (I, - A, M YA,BL (6.31)
Py = AMT! (6.35)

By examining (6.27), (6.31) and (6.35), one may see that, for the first two types of
preconditioners, the optimal interface preconditioner M (in the sense that Py = [,)
should be constructed so that

n
M = Ay — AuBil Ay = Ay = D AGB; A (6.36)
i=1
Hence, the matrix M essentially consists of the approximate Schur complement
matrix of the problem. For preconditioners of the third type, however, M = /g,
is an optimal choice. Under these choices. Py = 0 and Iz = [, for the first
type of preconditioners. %4, = [, for the second type. Py = 0 and Py = 1, for
preconditioners of the third type.
At every time step, a certain amount of work is necessary for the construction of

the matrix M for cach of the first two types of DD preconditioners. However, this

computational work is not required for the third type of DD preconditioners. After
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one has constructed the preconditioner B, the major computational work required
for solving the preconditioning linear systems of the form Bp = ¢ at each iteration
step. corresponding to each of the three types of DD preconditioners is summarized
in Table 6.1. It is clear that. if the number of iterations required for the residual norm
to decrease by a predetermined order of magnitude is roughly the same for all three
types of DD preconditioners. the iterative method accelerated by preconditioners
of the third type will consume the least amount of CPU time, while application of
preconditioners of the first type turns out to be the most computationally expensive.

Table 6.1: A comparison of the amount of work required for solving preconditioning
linear system Bp = ¢ corresponding to the three types of DI preconditioners

First type | 2n inexact subdomain solves

Second type | n inexact subdomain solves

Third type | n inexact subdomain solves

Although the matrix MM is explicitly available for preconditioners of the third
type, for the first two types of DD preconditioners, nn, inexact subdomain solves
must be carried out for the construction of M so that Py = [,,. Here n is the
number of subdomains and n, is the number of degrees of freedom on the interfaces.
The exact construction of the matrix M according to (6.36) is computationally too
expensive. To reduce the number of subdomain solves and to improve computational
efficiency, we must be satisfied with an approximate construction of M. Fortunately,
similar to what we have observed in Chapter 1, the action of the matrix operator
M s, in fact, predominantly local and the matrix M., although dense, allows itself

to be approximated by a very low-bandwidth sparse matrix (7.
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The particular structure of the matrix M can be examined in a three dimen-
sional space by plotting a surface formed of the entries of M viewed as a function of
its two indices. If we approximate each subdomain stiffness matrix A;; by its ILU
factorization B;; = L;U;. the surface M constructed based on (6.36) can not be dis-
tinguished from that in Figure 1.7 or 4.11 for the same mesh resolution. This clearly
indicates a strong coupling between neighboring nodes and very weak dependence
between nodes which are a mesh-size distance apart on the interfaces. This suggests
that the idea of interface probing techniques [13]. which was developed mainly for
elliptic PDE’s, may be extended to the current problem. See [11] and Section 1.5.1
in Chapter 4 for a discussion on interface probing ideas.

Similar to the idea introduced in Chapter -1, we construct an approximation (¢
to the matrix M by using a modified version of the rowsum preserving interface
probing preconditioner (sce Section 4.5.4, Chapter 1). Following [35], we denote
this particular construction by MIP(0). For convenience, we set M = G = A,, for
the third type of preconditioners. Thus, for these three types of DD preconditioners,
the matrix G preserves the block diagonal structure of A, (see (1.13) and (4.36)).
The lincar system (6.10), (6.141) or (6.18) can be split up into n — 1 smaller systems
and the solution may be obtained in parallel.

With this particular interface probing construction MIP(0) of the matrix M. we
can readily observe that the number of subdomain solves involved in using cach
of these preconditioners, for the solution of a lincar system at each time step, is
(2ky + 3)n, (ky + 2)n and (k3 + Dn. respectively, where &y, by and by are numbers
of iterations required to achieve convergence for an iterative method (where only
one matrix-vector multiplication is needed in each iteration, like GMRES) using the

first. second and third types of DD preconditioners, respectively. Please note that.
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in the above counts of subdomain solutions. the work required for recovering the
final solution & = B~'¢ is also included.

As to inexact subdomain solvers, we employ the so-called relaxed incomplete LU
factorization (RILU) [8, 11] to approximate the subdomain stiffness matrices A,
1= 1.2..... n. namely, B; = L;U; = A; + Ry, where Rj; is an error matrix. In
short. given a matrix A,x,, the RILU factorization of A can be obtained in the

following n — 1 steps of transformation,

A=A'o 5ot =0
where. for k= 1.2,..., n — 1. the following calculations are carried out
Ly = a,k /a

a — Ll (k1< <n)N(G)) €N # J;

al™M =20, if(k+1<j<n)N((.g) &)
a® 1 a® » — lixaly) iy =1
a;; lkal.x + wZ(P—L+l and ('P)e‘,)(a'p ltkUkp ), lfj o

here J is given in (4.31) and 0 <w < 1.
To conclude this section, we privide some results corresponding to three types

of domain decomposed preconditioners applied from the left. We may verify that if

On O
g | On Qo (6.37)
Q'H (222

then entries Q;;'s, ¢,j = 1,2, of the matrix B~'A are given by

e Lor the fiest type of DD preconditioners

Qu = Bl Aw+ Bl Ay M A(BE] Awg = L) (6.38)
Qiz = B! Aug[les + M7V (AuB} Ay — Ay (6.39)
Qn = M Au(lu - Byl A (6.10)
Qr: = M YA, ~ AuB7 AL) (6.11)



o For the second type of DD preconditioners

Qu = B (Au— AM Ay (6.42)
Quz = Br Ayl — M7 A) (6.13)
Qn = M 'A, (6.41)
Qn = M7'A, (6.15)

e Lor the third type of DD preconditioners

Qu = B Ay (6.16)
Qu = B A, (6.17)
Qn = M '"Au(lu— By} Aw) (6.13)
Qn = M™'(Aw— AuBgl As) (6.49)

We notice that, for left preconditioning, the approximate construction of an in-
terface preconditioner is required for the first and third types of DD preconditioners.

but not for the second type.

6.3 Iterative Methods For the Solution of Non-Symmetric Linear

Systems of Algebraic Equations

While the PCG algorithm accelerated by suitable preconditioners seems to be the
most competitive for the solution of a positive definite, symmetrie system of linear
algebraic equations, competitive non-symmetric linear solvers abound. According to
[200], CGN (the conjugate gradient algorithm applied to the normal equation of the
original non-symmetric system), CGS (Conjugate Gradient Squared) and GMRES

(Generalized Minimal Residual) seem to be the most often used algorithms. A fast
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squared Lanczos method for non-symmetric linear systems was recently proposed
in [419]. This new algorithm was claimed to be very fast and robust compared to
GMRES. More recently, Bi-CGSTAB, a fast and smoothly convergent variant of the
bi-conjugate gradient method. was developed [227].

There is only limited numerical experience at present with most of these non-
symmetric iterative solvers, especially when applied to real life applications. In
their efforts to generate part of production code for the modelling of weak plasma
turbulence, Radicati, Robert and Succi [200] studied CGN, BCG (Biconjugate Gra-
dient), CGS and GMRES algorithms as applied to non-symmetric time-dependent
linear systems arising from discretization of their problem. According to their re-
port, the CGS and GMRES algorithms yield the best performances and are highly
competitive to cach other.

Both the theory and application of iterative solutions of symmetric positive def-
inite linear systems may be considered to be in a quite satisfactory state. However,
both the state of theory and numerical experience with iterative solvers for non-
symmetric linear systems are far from being satisfactory. Quite a number of meth-
ods have been proposed in the literature (see [205] for a good survey) for solving
non-symmetric lincar systems. Apparently, a clear winner remains to be identified.

In our work, we choose, among many others. three relatively new and competitive
iterative algorithims, namely, GMRES [206], CGS [216] and Bi-CGSTAB [227] for
solving the geopotential and velocity non-symmetric lincar algebraic systems, arising
from the finite element discretization of the shallow water equations, with three
types of DD preconditioners disenssed above. We choose to use preconditioning
from the right only. since it does not yield results very different from those obtained

by preconditioning from the left for our block preconditioning computations and
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morcover a linear system preconditioned from the right preserves the residuals of
the original linear system.

Various extensions have been made to generalize iterative algorithims for syvin-
metric linear systems to the non-symmetric case. GMRES algorithm is such an
extension of the conjugate residual method for symmetric indefinite linear systems
[17]. Mathematically, GMRES method is equivalent to ORTHODIR [126] and the
generalized conjugate residual method [30] and is closely related to Arnoldi’s method
[203]). GMRES is a rather robust algorithmn and never breaks down the way Arnoldi’s
algorithm does [28].

On the other hand. the CGS and Bi-CGSTAB algorithms are extensions of the
BCG (bi-conjugate gradient) method [88] for non-symmetric linear systems, which is
an extension of the CG (conjugate gradient) method for solving symmetric, positive
definite linear systems. Although Bi-CGSTAB is a relatively new method, the CGS
algorithm has been studied for quite a while. The broad consensus reached is that the
CGS method is very competitive with GMRES (sce. among others, [200, 199, 29]).
In some cases, the CGS algorithm outperforms GMRES [17]. The comparison of
performance of the GMRES, CGS and Bi-CGSTAB algorithms is currently of great
interest in the area of numerical linear algebra.

The GMRES algorithm starts with an initial guess xy for the linear system
Ar = b and computes the initial residual 7y = b — Arg. At the k-th iteration, a
correction vector ¢ is chosen such that

zp = arg :EIII\]‘;l:lro) 1o~ Alro + 2| (6.50)

where KNi(ry) is the Krylov subspace

I\'k(r()) = S[)(’]ll{l'(). /\7‘(). feey .‘1k_|7'()}. (()-)l )
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The approximate solution at k-th iteration is then &y = &g + z. It is clear from
(6.50) that the residual norm will never increase from one iteration to the next, which
explains the smooth convergence behavior of the GMRES method (sce Section 6.1).
In contrast, Arnoldi’s algorithm generates residual norms which exhibit a saw-tooth
pattern.

'The implementation of the GMRES algorithm involves solution of a least squares
problem (6.50) on the Krylov subspace (6.51) at each iteration. This is done by
generating a particular orthonormal basis {vy va, ..., v} of Ki(re) and an upper
Hessenberg matrix £l using a modified Gram-Schmidt process in the Arnoldi’s
method [206). This is the approach we take in our numerical experiment. although
another implementation approach is also possible using the Householder transfor-
mation [232]. To reduce computer storage requirements, we may use restarted GM-
RIES(m), which is, nevertheless, usually accompanied by more iterations before con-
vergence. In our experiment, however, GMRES is used without restarting.

The CGS algorithm was derived from the BCG algorithm by squaring the resid-
ual and direction matrix polynomials. The BCG algorithm generates two sequences
of residuals r; and 7y by relations similar to the CG algorithm in which (r;, 7;) = 0,
for i # j. It was shown in [216] that r; = Py(A)ry and #; = P;(AT)ry where Py(A) is
a polynomial of degree ¢ in the coeflicient matrix A. The motivation for formulating

CGS is the observation that p, = (f;,7;) in BCG can be expressed as
pi = (Fir) = (PAAT Yo, Pi(N)ro) = (Fo. PH(A)ry) (6.52)

and a similar relation prevails for the direction vectors p; and p,. A detailed algo-
rithm ready for computer implementation was given in [171].
Similar to BCG, for an n x n system matrix. CGS converges to the exact so-

lution in m (i < u ) iterations in the absence of round-off errors if 1t does not
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break down. However, the CGS algorithm is generally more efficient than the BCG
method since the transpose of the coeflicient matrix explicitly appearing in BCG is
no longer required in CGS. Moreover. CGS is known to amplily the effects of the
Lanczos method and as a result it converges faster (roughly twice as fast theoreti-
cally, although often it fails to do so in practical applications).

The Bi-CGSTAB algorithm as proposed by van der Vorst [227] is expected to
render the convergence behavior smoother by removing local peaks often appearing
in the convergence curve for CGS. Bi-CGSTAB replaces the relations r; = Pi(A)ry
and pp1 = Ti(A)ro in BCG with the recurrence relations r; = Qi(A)F(A)ro for
the residual vector and piyy = Qi(A)T;(A)ry for the direction vector. in which
Qi(x) = M _;(1 —wir). The constants wy are computed so that the residual r; is
minimized in 2-norm. The new algorithm was found to converge faster and yield a
smoother residual history than CGS for certain classes of problems.

It should be noted that other versions of Bi-CGSTAB have appeared in the
literature since the publication of van der Vorst's paper — see [213] and references
therein. However, we do not test other versions of the Bi-CGSTAB algorithm in this
dissertation. To avoid confusion, we present below the unpreconditioned version of
the Bi-CGSTAB algorithm, which is based on [227] cast in an algebraic form ready

for computer implementation
r=b, r=uog. r=r-—Ar

Choose 7 such that 81 = (F.r)# 0, p=r
pl=Ap (6.53)
0= (r,pl), a=061/60. s=r—apl

t=As. n0=(4L1), pl=(.5), w=nyl/y0
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r=r+aptws
If the convergence criterion is met then stop. otherwise continue
r=s—wl. 8l =(rr), 3=061/(wd0), p=r+3(p-uwpl)
Goto (6.53)

where the right hand side b and the initial guess xy are input vectors and ( . )
denotes the usual Euclidean iuner product. This algorithm will be accelerated with

right preconditioning in our numerical experiments.

6.4 Numerical Results and Discussions

In this section, we provide some carefully selected numerical examples along
with discussions on the use of three types of DD preconditioners introduced in Sec-
tion 6.2.2 and analyzed in Section 6.2.3. All numerical experiments are carried out
on the CRAY Y-MP/432 vector parallel computer for the shallow water cquations
discussed in Scction 4.6 of Chapter 1. A 3-D view of the initial geopotential is dis-
played in Figure 1.6. We scale our problem again by choosing ¢o = 10°m?/s%. The
corresponding dimensionless constants may be found in Section 4.7 of Chapter 1.

In the first set of numerical experiments, we test the relative efficiencies of the
three aforementioned types of DD preconditioners. We use RILU (relaxed incom-
plete LU) factorization along with forward and back substitutions as inexact solvers
in the subdomains,

The modified rowsum preserving interface probing preconditioner MIP(0) is used
for the first two types of DD preconditioners on the interfaces. We also present
computational results corresponding to preconditioners of the third type with (¢
constructed, however, by MIP(0) instead of being equal to the preferred (g, The

presentation of these numerical results is followed by a discussion.
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The RILU [11] factorization consists of a combination or average of the ILU [151]
and the MILU [109], in which the discarded {ill-ius in the ILU factorization times a
parameter «, 0 < w < 1. are added back to the diagonal entries (see Section 6.2.3).
Obviously, w = 0 and | correspond to, respectively, ILU and MILU.

\We compute and compare different values of w and find that the optimal w in
terms of the number of iterations is in the interval (0, 0.5), depending on which type
of DD preconditioners and which iterative method (GMRES, CGS, or Bi-CGSTAB)
is used. This result is in contrast to 0.95 found in a recent work [231] for some
other computations in the original whole domain. On the other hand, in terms of
CPU time, we find that the RILU with w = 0 yields the overall best performance.
Hence, unless otherwise stated, the results presented below correspond to applying

the RILU with w = 0, i.e., the ILU factorization to our problem.

6.4.1 The Convergence Behavior

The convergence hehavior is visualized only for a mesh resolution of 80 x 75,
which corresponds to 6000 nodes and 11692 triangular elements in the whole domain.
The stopping criterion is that the final Euclidean restdual norm of (1.4), namely,
[|AL®) — fll2 be smaller than 0.1 x 167", A\ time-step size At = 1800 s is used
throughout unless otherwise stated.

First, in Figure 6.1, we display the convergence history for each of the iterative
methods, namely, GMRES, CGS and Bi-CGSTAB without preconditioning.  Iig-
ures 6.2 to 6.5 present computational results of GMRES, ('GS and Bi-CGSTAB
with preconditioners of all three types. Results in Figare 6.5 are special, as we pur-
posefully construct the matrix G by the modified rowsum preserving idea MIP(0) in
order to show some deterioration, as mentioned before, in both computational time

and number of iterations. Thus we emphasize the importance of the analysis carried
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out in Section 6.2.3, where it was pointed out that (¢ = A, should be chosen. The
computational work measured in terms of CPU seconds is reported for cach pre-
conditioned case in Table 6.2. Also included in the table are computational results
corresponding to a coarser grid of 10 x 35 and a finer grid 120 x 115, respectively.,
on the whole domain.

Table 6.2: A comparison of CPU time (number of iterations) required for solving
the geopotential linear system at the end of one hour with a half an hour time step

using GMRES. CGS and Bi-CGSTAB algorithms accelerated by three types of DD
preconditioners

Preconditioner [irst Second Third Third type

types type type type with MIP(0)

10 x 35 GMRES 0.178 (12) | 0.102 (12) | 0.088 (11) | 0.101 (12)
mesh CGS 0.199 (7) | 0.099 (6) | 0.106 (7) 0.111 (7)
resolution | Bi-CGSTAB || 0.219 (7) | 0.099 (6) | 0.092 (6) 0.111 (7)

80x75 | GMRES | 0.89(14) | 053 (15) | 047 (14) | 0.52 (15)
mesh CGS 1.08 (9) 0.51 (8) 0.50 (8) 0.59 (9)
resolution | Bi-CGSTAB || 0.97 (8) 0.51 (8) 0.50 (8) 0.58 (9)

120 x 115 |  GMRES || 256 (18) | 1.19 (19) | L1 (19) | 1.8 (19)
mesh CGS 324 (12) | 161 (11) | 136 (11) | 162 (11)
resolution | Bi-CGSTAB || 2.74 (10) | 1.63 (1) | 155 (11) | 1.60 (11)

I'rom these results, we conclude that the three non-symmetric iterative meth-
ods GMRES, CGS and Bi-CGSTAB are very competitive with cach other. GM-
RES requires the largest number of iterations to attain convergence. However., this
does not mean that GMRES is the most expensive algorithm to use since only one

matrix-vector multiplication is required for cach GMRES iteration, while two such



162

2.0

]

GMRES

o CGS

Bi—-CGSTAB

Log Euclidean residual norms

-14.0

T Y LAREREES { v \{ T r Y T v .
0 9 18 27 as 45
No. of iterations

Figure 6.1: The evolution of log,, Euclidean residual norms as a function of the
number of iterations for the iterative solution of the non-dimensionalized geopoten-
tial lincar system at the end of one hour of model integration using GMRES. CGS
and Bi-CGSTAB non-symmetric iterative linear solvers without preconditioning.
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Figure 6.2: The evolution of log,, Euclidean residual norms as a function of the
number of iterations for the iterative solution of the non-dimensionalized geopo-
tential linear system at the end of one hour using GMRES, CGS and Bi-CGSTAB
non-symimetric iterative linear solvers with a preconditioner of the first type.
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Figure 6.3: The evolution of log,, Fuclidean residual norms as a function of the
number of iterations for the iterative solution of the non-dimensionalized geopoten-
tial linear system at the end of one hour of model integration using GMRES. CGS
and Bi-CGSTAB non-symmetric iterative linear solvers with a preconditioner of the
second type,
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Figure 6.4: The evolution of log,, Euclidean residual norms as a function of the
number of iterations for the iterative solution of the non-dimensionalized geopoten-
tial linear system at the end of one hour of model integration using GMRES. CGS
and Bi-CGSTAB non-symmetric iterative linear solvers with a preconditioner of the

third type.

-10.0

Log Euclidean residual norms

-8.0

f14.0

Bi~CGSTAD

bant Bl B Bl Al Shl Shes Snaerkt St Shecdl Sl Sl Bnaedlh Sheaed

3 6 0 1
No. of iterations

>
-

[¢]

O

Figure 6.5: The evolution of log,, Fuclidean residual norms as a function of the
number of iterations for the iterative solution of the non-dimensionalized geopoten-
tial linear system at the end of one hour of model integration using GMRES, CGS
and Bi-CGSTAB non-symmetriciterative lincar solvers with a preconditioner of the
third type and with interface probing construction of (.
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operations are required for each CGS or Bi-CGSTAB iteration. However. GMRES
imposes a higher demand for storage, which may be alleviated by restarting the
procedure. often at the cost of requiring more iterations for convergence.

As has been observed for many other applications, the non-sinooth convergence
behavior of the CGS algorithm is also clearly seen in the current set of experiments.
Designed to cure this disadvantage. Bi-CGSTAB converges much more smoothly.
However, the GMRES method generates the smoothest residual convergence history.
In fact, due to its minimization property at cach iteration step, the residual norms
produced by GMRES are always decreasing, or at least non-increasing.

We observe that no sizable difference exists in terms of the number of iterations
required to attain convergence between these three types of preconditioners. Precon-
ditioners of the first type, first proposed for a symmetric linear system arising from
the discretization of some self-adjoint elliptic PDE’s, can not reduce the number
of iterations to such extent as to offset the disadvantage of two inexact subdomain
solves in cach subdomain for solving the preconditioning linear system Bp = q. As
a result, they turn out to be the most expensive for the current application. Precon-
ditioners of the second and third types behave much better in terms of CPU time
due to only one inexact subdomain solves being required in cach subdomain for the
solution of Bp = ¢q. Moreover, an approximate construction of (7 is not required on

the interfaces for the third type of DD preconditioners.

6.4.2 Sensitivities of the Three Types of DD Preconditioners to Inexact
Subdomain Solvers

In the above set of numerical experiments, we obtain the resalt that the number

of iterations required for convergence is almost the same for the three types of

preconditioners with ILU subdomain solvers and thus preconditioners of the third
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type are the computationally least expensive. A question wheih naturally arises is
whether similar conclusions will hold for the same types of preconditioners but with
more or less accurate subdomain solvers compared to ILU. This essentially requires
us to test sensitivities of these preconditioners to inexact subdomain solvers.

To test the sensitivities of the preconditioners given in (6.5), (6.13) and (6.16)
to inexact subdomain solvers. we use the idea of m-step preconditioning [1]. For
this preconditioning approach. we consider a splitting of the matrix A;; = P, — Q;
and define G; = P7'Q;. As an approximation of the subdomain matrix Aj;. we take
Bi = P(Cit GEy tofor i = 1,2,...,n. The solution of Bip; = ¢; may be casily
verified to be equivalent to m iterations of the following linear stationary iterative
scheme Ppi*! = Qipf + ¢; with initial solution p{ = 0.

The P; may be taken to be any easily invertible simple matrix as long as the spec-
tral radius p(G;) < 1. For example, P; may be chosen to be the ILU factorization,
P; = L;U;, of A;, or simply the diagonal part P, = D; of the matrix A;;. Once P; has
been chosen, I3;; often becomes a better inexact subdomain solver as m increases. in
the sense that the number of iterations to reach a prescribed convergence criterion
for solution of the original lincar system Ar = f decreases. By gradually increasing
the number m, we were able to observe the relative performance behavior of these
DD preconditioners corresponding to increasingly accurate subdomain solvers.

For the current experiment, we decided to take P, as the lower triangular part
(including the diagonal part) of the matrix A;;. This corresponds to m Gauss-Seidel
lincar stationary iterations in cach subdomain (see Section 1.5.2 of Chapter -1).
However, this choice of P; does not guarantee proper subdomain solvers for all mesh
resolutions in our case. For example, we found that underrelaxed SOR iterations

with w = 0.5 1s appropriate for an 80 x 75 mesh resolution. In Table 6.3, 6.1 and

6.5, we present results, obtained for the 10 x 35 mesh resolution, of GMRES, CGS
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and Bi-CGSTAB iterations corresponding to three types of DI preconditioners,

respectively.

Table 6.3: Numbers of GMRES iterations as a function of m using three types of
DD preconditioners

m=1llm=2lm=3{m=4{m=5>5lm=6m=10{m=20

26 15 12 11 10 10 9 3
27 15 12 11 10 10 9 3
28 15 12 11 10 10 10 10

Table 6.1: Numbers of CGS Iterations as a function of m using three types of DD
preconditioners

T;z =l{m=2{m=3{m=4d)\m=5]m=6|m="T
15 8 7 6 6 ) g}
14 8 T 6 6 5 5
16 9 6 7 6 7 6

Table 6.5: Numbers of Bi-CGSTAB Iterations as a function of m using three types
of DD preconditioners

m=lim=21m=3|m=4l|m=5tm=60

11 3 T 6 6 5

14 3 6 6 B)

-1

11 8 6 6 6 6
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From these three tables, we sce that preconditioners of the third type can ac-
celerate the convergence of three iterative methods at about the same rate as the
other two types of preconditioners, except for cases when subdomain solvers may
be considered to be exact or nearly exact. Similar observations are obtained for
the case of mesh resolutions higher than 10 x 35. Since, in practice. the inexact
subdomain solvers are far from being exact, we consider preconditioners of the third
tyvpe to be the best. When the subdomain solvers are based on the complete LU
factorizations, the solvers may be considered to be exact. Table 6.6 summarizes

results corresponding to using exact subdomain solvers.

Table 6.6: Numbers of iterations when using exact subdomain solvers

Preconditioner types First type | Second type | Third type
10 x 35 GMRES 8 8 10
mesh CGS 5 5 6
resolution | Bi-CGSTAB 5 5 6
80 x 75 GMRES 10 10 14
mesh CGS 6 6 3
resolution | Bi-CGSTAB 3 6 3

Clearly, for exact or almost exact subdomain solvers, fewer iterations are required
if the first two types of preconditioners are used. However, the gain in the number
of iterations is far from offsetting the additional computational cost required for

constructing exact or almost exact subdomain solvers,
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6.4.3 Extensions to the Cases of More Than Four Subdomains

For implementation on a large number of processors or, ambitiously, for massively
parallel processing implementation, it is very desirable for domain decomposition
algorithms to possess convergence rates that do not deteriorate as the number of
subdomains increases. Unfortunately, it is often the case, rather than the exception.
that the number of iterations will increase as the number of subdomains increases,
even though the discrete problem size is kept fixed and the stopping criterion remains
the same. for both overlapping and non-overlapping domain decomposition cases (see
numerical results in, among others. [11, 129, 131, 157, 158, 159, 191]).

In few cases, the optimal preconditioners, in the sense that the convergence
rate is independent of both the mesh size & and the typical subdomain size I, are
known (see, for example, [214]). In other cases, nearly optimal preconditioners have
been constructed with the property that the condition number of the preconditioned
matrix is proportional to (1 + log(H/h))™, m = 2 or 3 (see [73, T4] and references
cited therein). One of the most important reasons for the success of most of these
preconditioners is the introduction, aimed at enhancing communications amongst
subdomains, of a much smaller global problem corresponding to the discretization
on a coarse grid. However, we notice that these optimal or nearly optimal domain
decomposition algorithms may not be computationally the cheapest ways to obtain
solutions to specific problems. The convergence rate alone does not tell the whole
story of computational complexity.

In the following, we provide some numerical results corresponding to the con-
vergence rates of the GMRES algorithm with cach of the three types of DD pre-

conditioners for n = 2, 1,8 and 16 subdomains and for various mesh resolutions (sece

Table 6.7).
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Table 6.7: Iteration counts of the GMRES algorithm accelerated by three types of
DD preconditioners for various mesh resolutions and numbers of subdomains

Mesh Types of n=2|n=4|n=38{n=16
Resolutions | Preconditioners
First 12 12 12 13
36 x 31 Second 12 12 12 14
Third 11 11 11 11
First 5 | 15| 15| 15 |
85 x 7Y Second 15 15 16 17
Third 15 15 16 I8
First 18 18 18 19
120 x 111 Second 19 19 20 22
Third 19 19 20 23
First 21 21 21 23
150 x 143 Second 23 23 24 27
Third 24 24 25 27

We observe that the number of iterations increases only very mildly for cach
fixed-size problem as the number of subdomains increases from two to sixteen. Sim-
ilar numerical results were reported in [157. 158, 159]. Thus, it is a worthwhile
effort to implement these domain decomposition algorithins on such parallel com-
puters as CRAY (90 which has a total maximum number of sixteen processors able
to perform in parallel.

However, as pointed out in [106] (sce also Section 2.6.2 of Chapter 2 on page 36).

larger problems should be solved as more processors become available,  In other
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words, the problem size should not be fixed. but should scale with the number of
processors involved in the actual computation. We believe that more meaningful
numerical experiments consist of tests of the convergence rate as a function of the
number of subdomains while keeping the problem size fixed in each subdomain (not
the entire domain).

In the following two sets of the numerical experiments, we only focus on pre-
conditioners of the third type, since similar results were observed with the other
two types of preconditioners. The time-step size used for producing these results
(Table 6.8 and 6.9) is At = 1000 s.

We start with a two-subdomain computation with a mesh size of 70 x 65 in the
original domain. Then we refine the mesh by a factor of two in both horizontal and
vertical directions. Thus, the discrete problem size after mesh refinement is four
times large. To keep the problem size in cach subdomain unchanged. we need to
further divide each of the previous two subdomains into four picces, or equivalently,
to decompose the original domain into eight subdomains. Numerical results are
reported in Table 6.8. We comment that, in the table, the mesh is not cxactly
refined by a factor of two in the vertical direction, however close. This is due to the
fact that we want each subdomain to have exactly the same number of nodes for
the cight-subdomain domain decomposition.

Similarly., the mesh refinement by a factor of two along each grid line for a four-
subdomain domain decomposition will require sixteen subdomains in order to keep
the discrete size of each subdomain problem fixed. The comment given above for

‘Fable 6.8 applies also to ‘Table 6.9,



Table 6.8: Iteration counts: two subdomains vs. eight subdomains with a scaled
discrete problem size

Mesh Number of [terative | Number of
resolutions | subdomains | algorithm iterations
GMRES 11
70 % 65 2 CGS 6
Bi-CGSTAB 6
GMRES 19
110 x 127 S CGS I3
Bi-CGSTAB 10

Mesh Number of Iterative [ Number of
resolutions | subdomains | algorithm iterations
GMRES 1
70 x 63 1 CGS 6
Bi-CGSTAB 6
GMRES 20
110 x 127 16 CGS 13
Bi-CGSTAB i

Table 6.9: Iteration counts: four subdomains vs. sixteen subdomains with a scaled
discrete problem size
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6.5 Conclusions

o Many hybrid methods of non-overlapping domain decomposition result from
various coinbinations of linear iterative methods and DI) preconditioners (con-
sisting of subdomain solvers and interface preconditioners). When H/h is rel-
atively large, where H characterizes the subdomain length scale and h is the
mesh size, inexact subdomain solvers are to be preferred to exact ones for

saving CPU time.

e Three types of DD preconditioners were found to work reasonably well with
GMRES. CGS and Bi-CGSTAB nonsymmetric iterative methods in the con-
text of solving the shallow water equations, with the newly proposed third

type turning out to be computationally the least expensive and the first type

most expensive.

e Lor all cases, GMRES requires roughly twice as many iterations as required
by CGS or Bi-CGSTAB. However, these three algorithms were found to be
approximately cqually efficient in terms of CPU time. Note that only one
matrix-vector multiplication per iteration will drive the GMRES algorithin

to convergence, while two such multiplications have to be performed at cach

iteration for CGS and Bi-CGSTAB.

o Bi-CGSTAB algorithm was not found to converge much faster that CGS in this
particular application. However. Bi-CGSTARB converges much more smoothly
than CGS. GMRES generated the smoothest residual convergence history, due

to its minimization requireiment of the residual norm at each iteration step.

e As subdomain solvers become more accurate, preconditioners of the third type

can accelerate the convergence of GMRES, C'GS and Bi-CGSTAB at about
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the same rate as the other two types of preconditioners, except for cases when
subdomain solvers mayv be considered to be exact or nearly exact. However,
the use of exact or nearly exact subdomain solvers is not recommended since
the gain in the number of iterations far from offsets the additional computa-
tional cost for constructing them. Thus, we consider the third type of DD

preconditioners to be the best.

Increasing the number of subdomains will result in a deterioration in conver-
genee rate for most iterative domain decomposition algorithms. even though
the original problem size is fixed. When these three types of DD precondi-
tioners are extended for use with more than four subdomains, the numbers of
iterations will only slightly increase for the fixed-size problems related to the

current application.



CHAPTER 7

PARALLEL IMPLEMENTATION ISSUES AND RESULTS
7.1 Introduction

The finite element solution of PDE’s, involves the following typical computa-

tional stages

e input or preparation of the data required by the code. such as the global

numbering of the nodes, the calculation of coordinates of these nodes, ete.:

e construction and representation of the triangulation if triangular elements are

used;
e specification of the initial conditions;

e calculation of the element matrices and the corresponding force vectors for

cach time step;

e asscmbly of the element matrices and the force vectors to obtain the global

(stiffness) matrices and the force vectors for cach time step;
e the solution of the global matrix systems at each time step.

Among the aforementioned stages, the last stage, i.e.. the solution of resulting
algebraic equations, is usually the most computational expensive part of the caleu-

lations and. as a result, a sizable amount of research has been focused on developing
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cefficient and cost effective solvers for large non-linear and lincar systems of alge-
braic equations for over the last thirty years (see [188, 220, 238] and references cited
therein).

Since the solution of finite clement global matrix systems constitutes the major
workload, the parallelization of the solution process is critical. Domain decomposi-
tion techniques including Schur domain decomposition method. the modified inter-
face matrix domain decomposition algorithm and the parallel block preconditioning
techniques, as developed in previous chapters, essentially reduce the solution of a
large linear system into that of solving several disjoint smaller subsystems defined
in the subdomains that are amenable to efficient parallelization with relatively little
difficulty.

However, to achieve a high parallel efficiency, the parallelization of other stages,
especially the assembly of element matrices into a global stiffness matrix, turns out
to be equally important. The reason for this is provided by Amdahl’s law on the
theoretical speed-up for parallel computing (see Chapter 2 and [56]). Amdahl’s law
points out that even a small percentage of the total work (measured in CPU time)
not being processed in parallel will drastically degrade the parallel performance
result, namely, the sought-after speed-up, and the situation gets worse when more
physical processors are involved. For example, suppose that 20% of the computation
is not multitasked, then Amdahl’s law predicts that the best speed-up obtainable
is as low as 2.5 for four processors, 3.33 for eight processors and only 5 even if an
infinite number of processors could be invoked for the calculation. This implies that
a good speed-up due to parallelism may not be achieved unless computations related
to the finite element discretization are also efficiently parallelized.

The details of implementing the MIMDD algorithm discussed in Chapter 5 on

the CRAY Y-MP/132 vector parallel computer and speed-up results were pub-
I I I
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lished in [174], where macrotasking techniques were employed for large-granularity
domain by domain computations and microtasking techniques were exploited for
small-granularity element by element calculations.

For the rest of this chapter. we will briefly comment on the relative advantages
and disadvantages of three parallel processing software packages currently available
on the CRAY Y-MP. Then we describe a multicoloring technique for removing con-
tention delays in the parallel assembly process of the finite elements and provide
details concerning the parallel implementation of block preconditioning techniques
with the third type of domain decomposed preconditioners (see Chapter 6). Speed-

up results for several mesh resolutions are then reported.

7.2 Macrotasking, Microtasking and Autotasking on the CRAY Y-MP

Due to the fact that three possible approaches to parallelization, namely, macro-
tasking, microtasking and autotasking [56, 57], coexist on the CRAY Y-MP for paral-
lel computations, the first issue to be resolved is to decide, among these possibilities,
which parallel software to employ. Below, we provide some general comments based
both on our own as well as other rescarchers’ working experience related to multi-
tasking on the CRAY Y-MP, which we hope may serve as a guidance or reference
to other CRAY multitasking users.

The carliest implementation of multitasking ideas on CRAY computers was car-
ricd out by macrotasking techniques. Macrotasking was designed to efficiently ex-
ploit, in a dedicated computing mode. the parallelism at subroutine levels for pro-
grams which require large memory and long running time. Macrotasking is imple-
mented by explicitly inserting library calls to multitasking subroutines into the code.

However, there are several disadvantages for macrotasking which are listed below
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o

Extensive data scope analysis is required. The coding or modification from
an existing code into a macrotasked code can be expensive in both time and

human effort.

Macrotasked programs are hard to test and debug compared with microtask-
ing. The extra effort of applying conditional multitasking techniques is often

essential for isolating macrotasking errors.

. The multitasking overhead associated with macrotasking s high. In the case

of relatively small task size, parallelism may not be exploited efficiently by

macrotasking.

Microtasking is a much more flexible technique and may be viewed as an im-

provement over macrotasking. The implementation of microtasking is simply the

sertion of preprocessor directives (Fortran comments) into the code for paral-

lelism. The preprocessor will interpret these directives to the compiler and generate

the appropriate library subroutine calls. Some advantages of using microtasking are

summarized here:

Much less data scope analysis is involved for microtasking. The conversion
of an cxisting code to a microtasked code is quite straightforward and takes
much less time compared to the case of macrotasking. The converted code is

still standard Fortran.

The multitasking overhead for microtasking is very small. As a result, small
task-size (or granularity) problems, say, a set of nested loops. can be multi-

tasked quite cfficiently.
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3. Microtasking is able to perform automatic dynamic load balancing for small
granularity parallelism (do-loop level parallelisim) and hence reduces possible

synchronization delays.

1. If the data scope permits, large task-size problems may be multitasked by
either microtasking or macrotasking. However, in most cases. microtasking is
found to perform as well as or even better than macrotasking (sce also the

experimental results in [161]).

However, there are also a couple of restrictions for microtasking, which may turn

out to be disadvantageous for some applications:
1. Microtasking is not allowed in the main program.
2. Microtasking must extend to the subroutine boundaries.

Fortunately, these disadvantages nay be overcome by the combined use of micro-
tasking and autotasking techniques.
Building on the experience gathered from macrotasking and microtasking, auto-

tasking should be preferred to microtasking since (amongst other issues):

1. As its designers pointed out. autotasking combines the best aspects of micro-

tasking.

2. A considerable amount of do-loop level parallelism in the code is automatically

detected and exploited by autotasking.
3. Autotasking is allowed in the main program (not for microtasking).

1. Autotasking can exploit parallelisin at the do-loop level without extending to

subroutine boundaries (microtasking can’t).
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5. Large-granularity parallelism can also be efficiently exploited by autotask-
ing by manually building in the case/end case structure (equivalent to

process/also process/end process structure for microtasking) within a

parallel region.

6. The ATEXPERT post-processing tool [35] has been developed for accurately
predicting and graphically displaying autotasking performance in a dedicated
system, based on the execution results of a single run on an arbitrarily loaded.

non-dedicated CRI (CRAY Research Inc.) system.

However, it should be cautioned at this point that we do not exclude the possi-
bility of better exploitation of multitasking capabilities on CRAY by appropriately
applying autotasking, microtasking and macrotasking on the same code to adapt to
some particular applications. However, extensive data scoping, coding, debugging
and numerical experiments in a dedicated computing environment may be required

for this purpose.

7.3 A Multicolor Numbering Scheme for Removing Contention Delays

in the Parallel Assembly of Finite Elements

In general, the quality of parallelization on CRAY Y-MP and other shared mem-

ory parallel computers is usually determined by the following:

Level (granularity) of parallelism exploited.

o Irequency of calls to the multitasking library.

The memory contention delays.

e Load balancing.
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The noteworthy memory contention delays for the finite element computation
are due to the assembly process. However, the possibility of memory contention
delays may be removed by assembling the element properties in a particular order
according to a multicolor numbering scheme to be discussed below. Hence. a large
number of calls to the multitasking subroutine that performs locking operations is
avoided and, as a result, a considerable amount of overhead is removed.

As is well known. for the finite element discretization. the setup of local stiffness
matrices and their assembly into a single global stiffness matrix is the only part
of the calculations that requires being repeatedly carried out as the computation
proceeds in time. The efficient parallelization of this part is thus highly critical to
the overall parallel performance. For the serial computation, the element stiffness
matrices are first calculated and then immediately distributed into appropriate lo-
cations in the global stifiness matrix. The process continues element by clement.
Since cach clement makes its own independent contribution, this element by element
computation can be carried ontl concurrently as long as the simultancous alteration
to any entry in the global matrix is guarded against.

In the jargon of parallel computing, there exists a critical region in the code
segment for the aforementioned element by element calculations. A critical region
is defined as a segment of code that accesses a shared resource, e.g.. the memory.
An interprocess mechanism, namely, the lock. is required and provided by shared
memory multiprocessors for the sake of synchronization. However, the locking op-
cration introduces three adverse effects, listed below. which tend to degrade parallel

performance results:

o The computation in the eritical region is serial:
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e Other processors have to wait and stay idle while one processor is working

within the critical region:

o Invoking the lock multitasking subroutine consumes a certain amount of CPU

time, i.c., the overhead.

Within the critical region, an entry in a local stiffness matrix is added to a
corresponding entry in the global stiffness matrix and then the newly obtained
entry is inserted back into the memory space previously occupied by the entry in
the global matrix prior to modification. The operations invoived here constitute a
tiny part of the calculation and seem to be negligible. The waiting time for other
processors to enter the critical region is also very small, as argued in [165]. when the
cost of generating the element matrices is greater than that of the assembly into the
global matrix. However, the overhead introduced by ne (total number of elements)
calls (if assembled by elements) or n (total number of nodes) calls (if assembled
by nodes) to the multitasking subroutine generating the locking mechanism is not
so small, especially for fine meshes, and the combined effect of these three possible
sources causing parallel performance degradation can not he neglected.

As was pointed out in [85] (sce also some references therein), the eritical region in
the assembly process is not inherent in the element-by-clement calculations and may
be bypassed by assembling the clement matrices in a particular order. The basic
observation is that the necessity of introducing a critical region into the assembly
process is due to the possible simultaneous contributions to a common node by
more than one of its surrounding elements. The critical region may be removed if
the assembly process can be carried out in groups so that. within each group. no

two or more clements connected to a common node are able to make contributions
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Figure 7.1: Multicolor numbering of clements for a triangular finite element mesh.
Each integer stands for a unique chosen color. A node in the mesh is surrounded by
clements of different colors.
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to that node. This idea may be realized by using a multicolor numbering of the
elements to be assembled.

For the triangular linear clement mesh used in the current problem [169]. six
colors are required to guarantee that any node in the physical domain is surrounded
by elements of different colors. The ideas are well expressed by Figure 7.1. where
cach integer represents a unique color. The elements in the mesh may now be divided
into six groups. Elements of the same color comprise one group and different groups
have different colors. 'The assembly is carried out one group after the other. Within
cach group. the elements are internally disjoint and so the parallel assembly process
is carried out asynchronously. Notice that the multicoloring scheme achieves not
only the removal of critical regions. but also a sharp reduction in the number of

synchronization points from ne or n to 6 for the entire assembly process.

7.4 Implementation Details and Results

7.4.1 Parallelization of Subdomain by Subdomain and Element by Ele-
ment Calculations

The domain decomposition code corresponding to the use of the third type of
domain decomposed preconditioners was carefully tuned and tested on the four-
processor CRAY Y-MP/432 for a number of mesh resolutions. Autotasking parallel
software capabilities on the CRAY were employed exclusively for the reasons listed
in Section 7.2, although macrotasking and microtasking were exploited in out carlier
work [171].

The main computational work for those three non-symmetric iterative algo-
rithims. namely, GMRES. CGS and Bi-CGSTAB, is associated with matrix-vector

products, which are obtained through approximately solving the problem defined
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on cach subdomain. The parallelization of these tasks is carried out at subroutine
levels. Since we do not find sizable differences between the speed-up results obtained
by the aforementioned three iterative solvers. the parallel performance results to be
reported in what follows correspond to the Bi-CGSTAB iterative method.

As pointed out in Chapter 2, the load balancing is one of the most important
factors determining parallel efficiency. To ensure a good load balancing. the original
domain for our problem is divided into regular subdomains with the same numbers
of nodes. Domain decomposition offers the opportunity to carry out subdomain
by subdomain calculations, which may be parallelized at the subroutine level using
case/end case autotasking directives. This pair of directives serve as a separator
between adjacent code blocks that are concurrently executable and may only appear
in a parallel region. To this end, we need to mark the start and end of a parallel
region (including redundant and partitioned code segments) by using another set of
autotasking directives parallel/end parallel. At the beginning of this parallel
region. we have to specify two types of variables, namely, shared and private. The
former data items are known to all processors, while the latter data items are only
visible to cach processor, which makes it possible for the same subroutine to operate
on different sets of data simultancously. A typical segment of code involving the use

of case/end case directives appears as follows

cmic$ parallel shared(p,t1,t2,t3,t4,11,12,13,14,15,

cmic$+ icl,ic2,i¢3,q1,92,93,q94,
cmic$+ decoml,decom?,decom3,decond,
cmic+ local,loca2,loca3,locad,locab)
cmic$+ private(pl,i,in,,wl,w2)

cmic$+ maxcpus(4)




cmic$

10

cmic$

20

cmic$

A segment of code illustrating the use of

case/end case directives.

case
wi=timef ()
do 10 1=1,11

p1(i)=p(i)
continue
call prec(1l1,decoml,local,pl)
call prod51(15,11,p1,t1)
call prod11(11,11,p1,ql)
w2=timef ()
print*,’Wall-clock_1 ’,.001*(w2-wl)
case
vi=timef ()
do 20 1=1,12

in=1+i1cl

p1(i)=p(in)
continue
call prec(12,decom2,loca2,pl)
call prod52(15,12,p1,t2)
call prod22(12,12,pt,q2)
w2=timef ()
print*,’Wall-clock_ 2 ’,.001*(w2-wi)

case

186



30

cmic$

40

cmic$

cmic$

wi=timef ()
do 30 1=1,13

in=i+1¢2

p1(1)=p(in)
continue
call prec(13,decom3,loca3,pl)
call prod53(15,13,p1,t3)
call proed33(13,13,p1,q3)
w2=timef ()
print*,’Wall-clock_3 ’,.001%(w2-w1)
case
wistimef ()
do 40 i=1,14

in=1+1c3

p1(i)=p(in)
continue
call prec(14,decom4,locas,pl)
call prod54(15,14,p1,t4)
call prod44(14,14,pl,q4)
w2=timef ()
print*,’Wall-clock_4 ’',.001*(w2-wl)
end case

end parallel

Within the parallel region, the case/end case directives create four processes

(including an original master or parent process and three slave or child processes).
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each of which is making three consecutive subroutine calls independent of other three
coexistent processes. Note that these processes can call the same subroutine prec
simultaneously. With given shared data items. the subroutine prec will perform
the required operations and return with an array p1, the private data items. which
are stored on a separate stack for cach processor that executes the subroutine.
However. if some shared variables need to be modified within a parallel region, the
directive pair guard/end guard. an interprocess synchronization mechanism (the
lock) provided by all shared memory parallel computers with different forms, must
be invoked in order to prevent the same memory location to be accessed by more
than one process at a time.

Corresponding to the finite element discretization is the element by clement cal-
culation, which may be parallelized at the do-loop level. This is done by building the
do parallel directivesinto a parallel region confined by a parallel/end parallel
directive pair or simply nsing the do all directive. The work distribution policy for
a parallel loop is either to specify the number of chunks or to employ the stripmin-
ing technique, depending on the situation. However, the general rule is to vectorize
the innermost loop and to multitask the outer loop in a nested set of loops or to
split a single loop into inner and outer loops, and then vectorize the inner loop and
multitask the outer one. It should be emphasized that the multicoloring scheme
described in Section 7.3 avoids the possibility of entries in the global matrix be-
ing simultancously updated by several processes, as a result, no guard/end guard
directives are required in the assembly process.

In addition, many recurrence relations which appeared in the original single
domain finite element code (see [170]) are not intrinsic and have been removed. For
example, the global nodal numbers are fully determined by the local element nodal

numbers, once a particular element has been selected. Hence the relations between
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the global numbering of the nodes, local numbering of the element vertices and
element numbering can be calculated independent of the calculations made for the

previous elements.

7.4.2 Comments on the Speed-Up and Results

Before presenting the speed-up results, a word about speed-up seems necessary.
The term speed-up is sometimes misleading. Speed-up may be defined to be the
ratio of the wall clock time elapsed in a dedicated mode of computation, for com-
puting the same problem, using the best serial algorithm and the parallel algorithin.
However, the optimal serial algorithm is usually unknown, especially for modeling
a meaningful physical process. In our problem, the use of GMRES, CGS or Bi-
CGSTAB preconditioned by ILU in the original domain consumes more CPU time
than the use of the same iterative method and preconditioner treated in a domain
decomposed way. In other words, apart from the parallelization issues, considera-
tion of computational complexity alone justifies the use of domain decomposition
for some problems.

Since the best serial treatment of the present problem can not be determined.
the speed-up results reported here refer to measurements of the wall clock time in
a dedicated computing environment relative to the uni- and multi-processor imple-
mentation of the same domain decomposition algorithin (see also, among others,
(103, 132, 165]). This definition properly incorporates communication overhead and
synchronization delays and shows how well the domain-to-processor mappings are
done. However, it should be borne in mind that this definition has a serious draw-
back. Following this definition. a parallel algorithm achieving a perfect speed-up
may actually take longer time to excecute than a serial algorithm for solving the

same problem.
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We integrated the finite element model of the shallow water equations for four
different mesh resolutions, namely, 19 x 15, 34 x 27, 49 x 43 and 61 x 55 for a period of
five hours with corresponding time step sizes of At = 1800 s. 1000 s,600 s and 100 s.
respectively. The experimental results are summarized in Table 7.1. To appreciate
the speed-up result of 3.6 corresponding to the mesh resolution 61 x 55. we point
out that, by Amdahl's law. this speed-up means that 96% — 97% of the total
computational work (measured in CPU time) is parallelized on a four-processor
machine.
Table 7.1: Parallel performance results for four different mesh resolutions using

the Bi-CGSTAB algorithm preconditioned by the third type of domain decomposed
preconditioners on the four-processor CRAY Y-MP/1:32

t
1

W Mesh resolutions | 19 x 15 {34 x 27 { 49 x 43 | 64 x &

3
~

Serial seconds 1.03 6.26 35.19 108.07

Parallel seconds 0.38 2.03 10.29 29.77

Speed-up ratios 2.7 3.1 3.1 3.6

[t should also be pointed out that the automatic do-loop level parallelization
as detected and exploited by the autotasking preprocessor (FPP) does not yield a

speed-up larger than two. The reasons are the following

e automatic autotasking works best when most of the work in a code is in nested

do-loops which do not contain call statements;

e autotasking is unable to detect parallelism across subroutine boundaries.

It is thus clear that, to exploit subroutine level parallelism as offered by domain
decomposition algorithms, one has to manually insert appropriate autotasking di-

rectives into the code. In general, to achieve a high efficiency of parallelization with
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antotasking utilities, a fair amount of user assistance is still absolutely required.
while an analysis generated antomatically by FPP can serve as a reference for the
design of a parallel code.

To conclude this section, we mention that the FEUDX finite element code [169.

170} was ported to MasPar. another parallel machine architecture (see [180]).

7.5 Conclusions

¢ Among three parallel processing software packages coexistent on the CRAY Y-
MP /432, autotasking techniques seem to be the best for implementing domain
decomposition algorithms, where the number of child processes to be created
is known in advance. Autotasking is able to efficiently exploit both small and
large granularity parallelisin. Microtasking offers another good choice, but is

not as flexible as autotasking in programming.

o Autotasking, as its name suggests, can be fully automatic. However, a fair
amount of user assistance is required to achieve better performance. It is
mandatory to tell autotasking that several pieces of work (defined on different
subdomains, say) to be performed in subroutines can be carried out in parallel
by using the case/end case directive pairs. By appropriately distinguishing
and defining shared and private variables at the beginning of the parallel
region, the same subroutine may be reused and accessed simultancously by
different processes (a property known as reentrancy or multithreading). In
fact, this should be the case for a parallel algorithm in which each processing
clement performs all the operations on the partitioned data rather than the

partitioned operations on the whole set of data.
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e l'or the finite element numerical solution of PDE’s. it is important to paral-
lelize efficient]ly the assembly process in order to achieve a better speed-up
result. The critical regions in the assembly process may be removed and the
number of synchronization points drastically reduced by assembling the ele-
mental contributions in a specific order as specified by a multicolor numbering

scheme.



CHAPTER 8
SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

We have introduced the following six domain decomposition methods in the

previous chapters

the multiplicative Schwarz overlapping domain decomposition method:

the additive Schwarz overlapping domain decomposition method;

the iteration-by-subdomain nonoverlapping domain decomposition method;

the Schur nonoverlapping domain decomposition method:

the modificd interface matrix nonoverlapping domain decomnposition method;

the parallel block preconditioning techniques.

Of course, there are still other domain decomposition methods. By modifyving
one or more ingredients of these general methods, there exist almost infinitely many
variants of the so-called iterative domain decomposition algorithms. The considera-
tion of the implementation details of these domain decomposition algorithms would
add another dimension to the variety,

In this dissertation, we have first closely examined the Schur domain decompo-

sition method and its application to the finite element numerical simulation of the

193
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shallow water flow. Our motivation for studyving domain decomposition algorithms
is purely due to their potential for parallelism.

To introduce parallelism into the linear systems of algebraic equations at ecach
time step corresponding to a spatial finite element and an implicit temporal dis-
cretizations, we partitioned the whole computational domain (an approximation to
the original physical domain) into subdomains with the artificially introduced inter-
faces. After identifying two types of nodal variables. namely, internal and interfacial
variables, and numbering the global nodes in a substructured way, we are able to
arrive at a much smaller Schur complement linear system of equations involving
the interfacial variables only. Obviously, the discrete subdomain problems are triv-
ially decoupled and the internal nodal values can be determined independently of
each other once the interfacial degrees of freedom are specified by solving the Schur
complement lincar system at cach time step.

Thus, the efficient solution of the Schur complement linear system is a key issue
for the Schur domain decomposition method. A preconditioned Krylov or conjugate
gradient-like itcerative method is almost always employed for the iterative solution
of this linear system. The multiplications of the Schur complement matrix by a
vector at cach ileration step are obtained by concurrently solving all the discrete
subdomain problems. If the convergence criterion is not satisfied on the interfaces,
the domain is decomposed again and subdomain problems are solved. This may
be described as a divide and feedback process. This process immediately indicates
that the determining factors for the efficiency of the Schur domain decomposition
method are (1) the number of iterations required for achieving convergence on the
interfaces and (2) the cost of subdomain solvers. As is well known. the number of
iterations required on the interfaces can be reduced by using an appropriate interface

preconditioner.
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To construct a good interface preconditioner. we first note that. corresponding
to many clliptic PDE’s, the action of the Schur complement matrix operator is
predominantly local and, fortunately, this remains to be the case in the context
of the finite element shallow water flow modeling. This clearly suggests the use
of an interface probing preconditioner, which. being purely algebraic. possess a
wide applicability. However. we have shown that a modified version of this popular
rowsum preserving interface probing preconditioner behaves better for the current
application.

For many specific application problems. the unavailability of fast direct solvers
in the subdomains is common. To mitigate this potential disadvantage of the Schur
domain decomposition method, we propose a new algorithm, namely, the modi-
fied interface matrix domain decomposition (MIMDD) algorithm. In contrast with
the Schur domain decomposition approach, in which the numerical solution on the
interfaces is first determined by solving the Schur complement lincar system, the
MIMDD algorithin starts with an initial guess on the interfaces and then iterates
back and forth between the subdomains and the interfaces until a convergence cri-
terion is satisfied on the interfaces. Beginning from the second outer iteration step,
it becomes increasingly less expensive to obtain solutions on the subdomains and
the interfaces due to the availability of successively improved initial solutions from
the previous outer iteration. The results obtained by applying this algorithm to our
application improve upon those obtained by employing the traditional Schur domain
decomposition algorithm.

The efficiency of the MINIDD algorithm is determined by (1) how small the
spectral radius p[l,, — (g, + Kyy) 7' Cl s and (2) the amount of computational work
reuired for obtaining the multiplication of the matrix A, by a vector. Numerical

results confirm that, by using MILU. p[l,,— (A, + K,,)~'C] can be made as small as
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O(107?) without much extra computational work. Morcover, the MIMDD algorithm
with A+ K, constructed this way has good self-adaptivity to mesh refinement. On
the other hand. the availability of good initial subdomain solutions from the previous
outer iteration will also make the coarse grid correction multigrid subdomain solvers
more efficient.

The block preconditioning method. an alternative domain decomposition ap-
proach, counsists of the construction of a domain decomposed preconditioner such
that approximate solutions in the subdomains and on the interfaces can be simulta-
neously updated at the cost of only inexact subdomain solves. It should be pointed
out that both the block preconditioning and MIMDD methods abandon the idea of
obtaining the interfacial solutions first for decoupling the subdomain problems, as
in the Schur domain decomposition method.

The discrete nonsymmetric linear systems (Ax = b) at each time step of the
model integration for the geopotential and velocity fields are solved by a Krylov
or conjugate-gradient like iterative method. Here, we have employed three popular
and competitive iterative methods, namely, GMRES, CGS and Bi-CGSTAB. We
expect that these three algorithms will be more extensively studied and compared
by numerical analysts aud be widely applied to many other related computational
problems in science and engineering. Although a thorough analysis and comparison
of these three important solvers are bevond the scope of this (liést'rtatioxl, we have
essentially paid much attention to their relative efficiencies as applied to the finite
clement shallow water flow problem. Extensive conclusions have been provided at
the end of Chapter 6.

The ultimate efficiency for any Krylov iterative method is largely determined
by a preconditioner B. With this preconditioner, instead of solving Ar = b we

solve Ar = b, where A = AB™" and & = Br. for right preconditioning.  This
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preconditioner should be such that (1) the condition number of AB~! is much smaller
than that of AA: (2) the preconditioning matrix is computationally cheaper to invert
and (3) the solution of the preconditioning linear system Bp = ¢ is parallelizable.

In Chapter 6. three types of domain decomposed preconditioners have been de-
scribed in detail and applied to the parallel finite element solution of the shallow
water equations. Since domain decomposed preconditioners have good paralleliza-
tion properties, most of the further rescarch effort for this type of algorithms is
aimed at reducing computational complexity instead of achieving parallelism. The
third type of domain decomposed preconditioners proposed here turns out to be
computationally cheaper than the other two types. We also point out that, for a
linear system in which the coeflicient matrix is symmetric, corresponding to, for ex-
ample, the discretization of the self-adjoint elliptic problems, one has to use the first
type of domain decomposed preconditioners to preserve symmetry. For the non-
syminetric case, even though all three types of domain decomposed preconditioners
may be applied. it turns out that the first type of domain decomposed precondition-
ers is computationally much more expensive to use than the other two types in our
applications.

As a rule, the convergence rate of many iterative domain decomposition al-
gorithms will decrease. even though the problem size is fixed, as the number of
subdomains 1s increased. Consequently, it is important to devise algorithms whose
convergence rate has little or no dependency on the number of subdomains. Other-
wise, the increased computational complexity will partially undo the gains obtained
by parallel processing. Qur numerical results have shown that, when the number
of subdomains increases from two to sixteen, the numbers of iterations for using
these three types of domain decomposed preconditioners, as applied to the finite

clement shallow water flow problem, just mildly increase. As a result, we expeet a
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good parallelization efficiency when the codes are ported to the CRAY ('90, which
has a total number of sixteen powerful processors able to work simultancously on
solving the same problem. Of course, as more processors become available, the goal
is not to solve the problem with a fixed mesh resolution. but rather to deal with
discrete problems corresponding to much higher mesh resolutions. To minimize the
loss of gains due to parallel processing, the algorithm must be designed to be less
dependent not only on the subdomain size /I, but also on the mesh size k.

Domain decomposition offers an opportunity for carrying out subdomain by sub-
domain calculations, which can be parallelized quite cfliciently at the subroutine
level on the shared memory parallel computers or can be accommodated in separate
parallel processing elements (local processor and memory) on a distributed mem-
ory parallel computer. However, the efficient parallelization of the finite element
discretization process is also very important for ensuring a high overall efficiency
of parallelism. The multicolor numbering scheme described in Chapter 7 for the
parallel assembly of elemental contributions removes not only the critical regions
instde the assembly process, but also minimizes the number of the synchronization
points.

A possible future research direction consists in applying domain decomposition
and parallel computing techniques to the - variational data assimilation problem
in meteorology. This requires us to properly define a cost functional J consisting
of a weighted lack of fit between the model and observations. The adjoint model
techniques are used to obtain the gradient of this cost functional with respect to
the initial conditions and/or boundary conditions (see [178. 212, 213] and references
therein).

For parallel data assimilation. a parallel numerical optimization (descent) algo-

rithm is the overall framework. Domain decomposition, adjoint algorithms (par-
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allelized) and others are built into this framework to efficiently provide, at each
minimizing step. the solution of the model and its gradient (so as to form a de-
scent direction) allowing the approximation to the minimizer to be updated. This
process is carried out iteratively until convergence (i.e.. until we find an accurate
enough approximation to the minimizer). We will devise and test different domain
decomposition algorithms which can be efficiently built into this framework.

We know that, in typical domain decomposition algorithms, the amount of infor-
mation in onc subdomain (processor) which is required for computation in another
subdomain (processor) is very small compared with the amount of data residing
locally in cach subdomain (processor). This small amount of information is asso-
ciated with grid points on or near the interfaces. Morcover. in the case of a large
number of subdomains, the number of subdomains (processors) with direct data
dependencices is small compared with the total number of subdomains (processors).
Thus, domain-based decomposition algorithms potentially lead to a high ratio of
time spent on computation versus that spent on communication & synchronization
and, as a result, a high parallelization efficiency is expected for implementation on
a large number of processors or for a massively parallel processing architecture.

However, as we pointed out earlier, one of the problems left is that domain
decomposition algorithms suffer from a possible deterioration in convergence rate
as the number of subdomains increases, since the exchange of information between
remotely located subdomains is slow. If this problem is not fixed. the increased
serial complexity of the algorithm will probably undo the gain of parallel processing.
A possible way to improve scalability of domain decomposition algorithms to a
large number of processors is by introducing a global coarse grid, which serves

as a mechanism to accelerate transfer of information among subdomains. In the
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future, we shall closely investigate this type of algorithins and carry out practical
applications.

Finally, we will also try to extend and develop domain decomposition algorithms
for application to problems involving three dimensional space domains. This is a

much more challenging problem than its two dimensional counterpart.



APPENDIX A
THE FINITE ELEMENT SOLUTION OF THE SHALLOW WATER

EQUATIONS

Similar to substructuring domain decomposition methods. the finite element
method originated from matrix structural analysis. Although the terminology “finite
clement method™ was coined in 1960 by Clough [50]. the basic idea behind the
method is not new and can be traced back to the work of Courant [51] in 1943 who
used the approximation of a function in R? by continuous piccewise linear functions
on a triangulation and the principle of minimum potential energy to study the Saint
Venant torsion problem, which was explained earlier in chapter 3.

There was an explosion of research activities in the area of the finite element
method beginning approximately from the 1960s. The method was first widely
studied and systematically applied to the solution of solid mechanics problems in
the 1960s. Mainly due to the cfforts of three groups of researchers, namely, math-
ematicians, physicists and engineers, there have been rapid, although sporadic, de-
velopments and breakthroughs in the field of finite element methods. An excellent
paper which reviews the development of the finite element method up to 1930 is
available [51]. We also refer interested readers to [241] for motivations. general
principles and a good exposition of several different approaches as well as [224] for
a more recent. comprehensive review in the context of solving PDEs by the finite

clement method.
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Today the finite element method is a dominant numerical technique in solid me-
chanics, structural engineering, acronautical engineering and many others. However.
a sizable amount of research still continuzes in this area for designing and analyzing
accurate and cost effective algorithms for CFD problems, especially for compressible
flows (sce [163] for the most recent state of the art) and in the area of adaptive h-p
mesh refinement.
In this appendix we describe the finite element modeling of the 2-D shallow water
flow in a limited-area domain defined by (4.12) — (.1.46) in Chapter 1. The essential
components of a two stage Numerov-Galerkin finite element method (sce [174] and

references therein) will also be summarized.

A.1 The Finite Element Approximation

For the finite element method, instead of working directly on the originally given
PDEs (the strong statement of the problem), one derives a weak or variational form.
equivalent to the original PDEs, involving two Sobolev function spaces, namely, the
trial solution space of functions V' and the weight or test function space W. The
former is usually a function space whose member satisfies the essential boundary
conditions (in contrast with the so-called natural boundary conditions) of the given
problem. The latter is usually a function space whose member satisfies the homo-
geneous essential boundary conditions. see [123] and references therein.

As a first step in developing any finite element algorithm. one construets finite
dimensional function spaces V* and W™ which approximate V- and W, respectively.
Specifically, in the finite element method, an n-dimensional approximate trial func-

tion space is

l’"" = _q" + span{Ni..... NV} (A1)
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where the function ¢” is incorporated into 1} space to account for non-homogencous
essential boundary conditions (see [123]). An n-dimensional test function space may
be defined as

”: = span{.&'l. .'vz. e 1\7""}. (,\2)

For the Bubnov-Galerkin or simply the Galerkin finite element method employed
in this application. Ny = N, 7 = 1.2,....n. while for Petrov-Galerkin finite element
method (see [86] and references therein), Ne # N Noand N o= 1200,
are usually piecewise smooth functions with only local supports. Systems of linear
or nonlinear algebraic equations will be obtained upon applying either Galerkin or
Petrov-Galerkin formulation. The solution to the weak form of the original PDLs is
approximated by functions, which are locally smooth but globally “rough”. in the
finite dimensional finite clement space V1.

The shallow water equations model (1.42) is approximated in this application by
the Galerkin finite clement method with a piecewise linear triangular finite element
space. Since the highest derivative in cach of the shallow water equations is of order
one, the linear function space approximation will guarantee the necessary continuity
and completeness requirements (see [246]).

Suppose the problem domain Q has been partitioned into I small clements Q,.
¢ = 1,..., E, and total number of grid nodes is M,4. Each of the three dependent
variables ¢, u and v is approximated over the domain € by a lincar combination

of the basis functions Ny (r,y), m = 1.2,.... My, in the finite element space VA,

namely
Moy
PRY= Z ()N, y) (A.3)
m=1
A\'ml
U= Z (DN () (A1)

m=1
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Z m(O)Nm(x ) (A.5)

where @n (8). 1, (1), v,(f) are the unknown nodal values of . w and v respectively.
No(x,y)om = 1,..., My, are the global shape functions defined in such a way that

the following properties are satisfied:
¢ lincar in x and v;
L] .'\,'(.l'j.y_,) = (5,'1':

where ¢6;; 15 the Kronecker delta, i.c., 6;; = 1if i = ), whereas é; = 0if i # 5. In
words. Ni(r.y) takes on the value 1 at node (. y;) and 0 at all other nodes (see
Figure A1)

From the element point of view, the global shape functions can also be equiva-

lently defined in terms of the local shape functions Nf(z,y), namely,

Ni(r,y) on s
Ni(x,y) = (A.6)
0 on 20— s

where Q.’s are those triangular elements which share a common node i. Nf(z.y) is
the local element shape function defined on the clement €, only. It is lincar in r
and y and has the value unity at node ¢ and zeros at nodes j and &, where 1, j. &
arc three vertices of the triangle and are usually numbered counter-clockwise.

The Galerkin finite element approximation over the whole domain Q requires

that:
(2 it G0 G000\ Ndedy =0 (A7)
Q ()_r ()l/ or
av ()v dJdov 0p
s ‘,\' . e A8
// (d[ “or “(7!/ Jy +f“) rdy =0 )

95 O30 IS
// &é ()('w) N ()(‘w ) Nidrdy = 0 (A.9)
o\ Jl Ar dy
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where | = 1...... V.. By using Green's Theorem and taking into account the
periodic boundary conditions in the .« direction and the boundary conditions on .

the equation (A.9) can be shown to be equivalent to:

92\ L.ON ”(')\ _
//(; (E-z\,—,,u Py 9 )(11'(1_/_0 (A.10)

By substituting equations (A.3). (A.1) and (A.5) into (A.10), (A.7) and (A.8).

the continuity and momentum equations in x and ¥ directions become respectively:

Me—Kig=0 (A1)
Mi+ Kou+ Kz — Kyje =0 (A.12)
Mo+ KNy + Kggp + Kyju=0 (N.13)
where
= (4,31,*,92,---,%\/,,4)7 (A.14)
— T -
= {ug, U, ..., uyg,,) (A.15)
_ T
v—(vlvvb'“vvﬂlnd) (‘\16)
AMand Kq,.... K5 are My x M4 matrices and their typical elements are given by
the following formulas:
1”1,,, = // 1\"11\",,,(1.1'(1]/ (:\.17)
0

"nd \Y )
(Ky)im = Z // (—I—UL NN, + (—-)I—ln;. \U\m) drdy (A.18)

agy
Mg
(K2 = Z // (\,uu\L
N,
(W3)im = // .’\'1(, drdy (A.20)
) dr

(K3)im = / / TN, dedy (A21)
194

aN,,
4 N N — )(11(11/ (\\.19)
dy




(N
(Ks)im = / / N2 G dy (A.22)
0 Jdy

The definite integral [ [ (...)drdy above can be evaluated by summing the

contributions from the individual elements. For instance,

E
M =3 M, (A.23)
[3-31
where
M = / NENT dedy (A.21)
Q.

The expression for a typical entry in the ¢-th element matrix is given by (A.21).
In the finite element method. once the element matrix M€ is determined for a typical
clement. the global system matrix M can be obtained by systematically assembling
(adding) non-zero entrics of M* into appropriate entries of the matrix M. This
15 known as the assembly process or, in structural engineering, the direct stiffness
method [226]. It is much more cconomical to deal with a local element matrix
M}, o1 whose size is only 3 x 3 in this case, which contains only non-zero entries in
the matrix M¢. The assembly of Mf _,, into the matrix M is accomplished through
a well defined correspondence among three sets of numbering for the global nodes,

local nodes and clements, respectively (see [215], for example).

A.2 Time Integration

The 0 scheme (see, for example, [122]) will be used to integrate the equations
(A1), (A12) and (A.13) in time. To this end, let us introduce a parameter # such
that /5 =1, + 0At, where 0 < 0 < 1 and n = 0. 1..... we can write equation (A.11)
as

MG RIS =0 (\.25)
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where the superscript @ indicates the time-dependent nodal vectors . u. v evaluated
at tg and the 2% and 27 are, respectively,

=T T A2
2 KN (\.26)

 An+1 AN
¥ ¥

S = (1= 0)p" + 0! (A.27)

Here we take @ = 1/2 which is usually called the Crank-Nicolson scheme and use
the following second-order approximation in time to quasi-linearize the advective

terms in the shallow water equations
w2 = = (320 — (1/2)u™ ' + 0(AF) (A.23)

eV =t = (3/2)0™ — (1/2)e™ ! + O(AL?) (A.29)

The continuity equation becomes, upon substituting equations (A.26), (A.27)

(A.28) and (A.29) into (A.25),

L}

Al
M(p™! — ") = - Ra(e™ +¢") = 0 (A.30)

where

N, IN,
Jim = Z// ( luZNu\,,, 3 IUZ.NL.N,,,) drdy (A.31)
ay
By a similar treatment, the momentum equation in the x direction becomes:
At At
M@t —u™) + TI\';(U"“ +u™) + Tl\'g(cp"“ + ")
—~AtKgw" =0 (A.32)

where

N
(K2)im = Z// (MUL/\L() : Npvp ))J )(l.r(l_l/ (A.33)

The momentum equation in the y direction is:
Al AV
“l(“nﬂ}—l _ "n) + "TI\ 3(“7;4-1 + "n) + "‘.')—[\.'»(97"-'-' + /79")

ay;
+ —A;;—I\}(u”“ +u*)=0 (A3
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where

u"+l + ul} . IN, s e ONG o=
(R )i = Z / /( o v S 4 N )d.z-dy (A35)

Now if we define the following matrices

At = :)A‘TI - K, (A.36)

B = % + I, (A.37)

" = i;‘—t[ + K3 (A.33)

[2=2R¢" (A.39)

= = K" + ") = 2K 2™ 4+ 2K 0" (A.10)
= =Ks(e" + ¢") - Ky(u™' + u") - 2K 30" (A1)

then equations (A.30), (\\.32) and (A.31) become

A"Ap™ = f1 (A12)
B"Au™ = f} (A.13)
CrAvt = f) (A1)

where A" = "t —o" ) Au™ = ™ —u, Ae™ = o™ — o The three linear equa-
tions (A.12), (A.13) and (A.41), after proper boundary conditions are incorporated,
can be solved one by one at each time step.

'To conclude this section, we mention that the 0 scheme (0 = 1/2) was also found
to be appropriate in a slightly different application.

To simulate the tidal and surge flows due to sca-bed eruptions. Taylor and Davis
[223]. using Galerkin finite element method, solved the depth-averaged shallow water

equations. They investigated three time marching algorithms, namely



210

1. An Adams-Moulton multi-step predictor-corrector procedure:

[

. The finite difference trapezoidal integration (resulting in Crank-Nicolson

scheme);
3. The finite element in time.

It was found that small time steps were necessary to achieve a satisfactory accu-
racy if method (1) was employed for time marching. The method (3) was found to
be unable to handle the wave amplitude correctly and introduce spurious damping

& phase retardation. The authors concluded that scheme (2) was satisfactory.

A.3 Properties of Global Stiffness Matrices and the Data Structure

We point out a couple of important properties of the global stiffness matrices in
this section.

Although the matrix M (whose typical entries are given by (A.17) is symmietric,
K,, K2 and K3 are not symmetric, as may be confirmed from their definitions
(A31), (A.33) and (A.35). As a result, the three global stiffness matrices A", B"
and C" defined in (A.36), (A.37) and (A.38) are nonsymmetric. This means that
one of the most favorable iterative algorithms, namely, the preconditioned conjugate
gradient method (PCGS) [52] may not be applied for solving the linear systems
(A12), (AA43) and (A1) at cach time step. The nonsymmetric nature of the
global stiffness matrices in this application may. in fact. be ascribed to the presence
of advective terms ud/de and vd/dy in the original shallow water equations.

Typical of the finite element method, most of the entries in the global stiffness
matrices are zero, due to the fact that the global shape functions Ni(r,y), ¢ =

1.2...., M4, have only local supports, namely, N; = 0 outside a neighborhood of
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the node i. Thus, although the size of the linear system will be of order O(£~*). the
number of indices j such that a;; # 0is O(1) for each index i, where h is the mesh
size.

For example. the non-zero regions of two global shape functions N; and
depicted in Figure A.1 are spatially disjoint, it follows that entries (---);; or (---)j:
in the global matrices must vanish. For a given global node I, the non-zero portion of
the shape function N; overlaps the non-zero portions of at most six shape functions
associated with its neighboring nodes (see Figure -1.2). it is thus clear that there are
at most seven non-zero entries in any row of the stiffness matrix.

To save the computer storage and. at the same time. to keep the data structure
as simple as possible, we store the global stiffness matrix, say A™ in (A.36). into a
M4 x 7 two dimensional array coef, so that a maximum of seven non-zero entries
in cach row of the matrix may be accommodated. Except for diagonal entries of the
original matrix which are always stored in coef(:,7),1 = 1,2,..., My, the original
column number for any non-zero entry in coef is determined by another Mg x 6
two dimensional integer array locat. Specifically, for any given non-zero entry
coef(s, ), 1 =1,2....,Mygand [ = 1,2,...,6, we can always find its corresponding
entry (A");; in the matrix A", where j = locat(:,{). Conversely, for any given non-
zero entry (A");;, 1.5 = 1,2...., Mg, we may find a corresponding [ [ =1,2,....6.
such that j = locat(s,!). In general, there exists a one-to-one correspondence. via
an integer array locat. between non-zero entries of the original square matrix A"
and a rectangular matrix coef with only seven columns. This constitutes a great
saving of storage of up to M,y x (M4 — 7) floating-point numbers at the expense
of introducing an integer array of size M4 x 6.

Table A.l lists the contents of this two dimensional integer array locat which

is obtained by running the code for a mesh resolution of 16 x 15 with a row-wise



212
uumbering of the global nodes shown in Figure A.2. The typical sparse matrix
structure corresponding to the finite element discretization on this seven point stencil
shown in Figure A.2 is illustrated in Figure A.3, where each x represents a non-zero
entry of the matrix. However, without loss of generality. we consider a much smaller
computational domain which consists of only the first three grid lines in Figure A.2.
Hence. the size of the matrix 1s much smaller (only 45 x 43). so that the matrix
structure in Figure A3 is clearly discernible.

Since there is an extreme unbalance, especially for high resolutions, between
numbers of rows and columns in the array coef and only the innermost loop is able
to be vectorized within a group of nested loops, it is important. for the manipulation
of the array coef within a nested loops. to iterate the first index ¢ of coef(s,!).
i = 1,2,...,M.q, in the innermost loop. As an example, we consider a matrix-
vector multiplication problem y = A"r. There are two ways to do this and both

will, of course, give the correct results.

Version 1: do 10 1 = 1, n
do201=1, 6
j = locat(i,l)
if (j .eq. 0 ) goto 20
y(1) = y(i) + coef(i,1) * x(j)
20 continue
y(1) = y(1) + coef(i,7) * x(i)

10 continue

Version 2: do 101 =1, 6
do 201 =1, n

j = locat(1,1)



Table A.l: locat(:. ), 1 = 1,2...., Mygand {=1.2,.... 6. for the global numbering
shown in Figure A.2
=1 Il=2 1=3 I=4 1l=5 1I=6

1=1 2 16 15 30 0 0
1=2 | 16 17 3 0 0
1=3 2 17 18 4 0 0
= 3 18 19 5 0 0
=35 4 19 20 6 0 0
t=14 |13 28 29 15 0 0
=15 | 14 29 30 1 0 0
=16 |1 2 17 30 31 15
1= 17 |16 2 3 18 31 32
(=18 |17 3 4 19 32 33
1=2201219 205 206 221 0 0
r=221 1220 206 207 222 0 0
1 =222 1221 207 208 223 0 0
(=223 222 208 209 2280 ]
(=2211223 0 209 210 225 0 0
1 =225} 224 210 196 211 0 0




222 223 224 225 211

211 212 213 214 215 218 217 218 219 220 221
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Figure A.2: A row—wise global numbering of nodes
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Figure A.3: The sparse matrix structure corresponding to the discretization on
a seven point stencil linear triangular finite element mesh shown in Figure A2,
assuining that the computational domain consists of only the first three grid lines.
Here, cach x represents a non-zero entry in the global stiffness matrix.
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if (j .eq. 0 ) goto 20
y(1) = y(1) + coef(i,1) * x(j)
20 continue
10 continue
do 301=1,n
y(i) = y(1) + coef(1,7) * x(i)

30 continue

where n is the total number of nodes M,,.

The dependence analysis may be carried out by invoking FPP! on the CRAY
YMP. It turns out that the loop 20 in version 1 can also be vectorized, although
the vector length is very short. It is apparent that the loop 20 in version 2 can be
vectorized with a much longer vector length (equal to the number of rows in the
global stiffness matrix) and hence is much more efficient. A comparison of CPU
time between these two versions run for different mesh resolutions is provided in
Table A.2.

To conclude this section, we notice that there are many other storage schemes
for sparse matrices. For instance, three one dimensional arrays may be set up to
store a sparse matrix ([77, 111]). If the nonzero elements of a matrix are near ecach

other in every row, the so-called profile stotage is recommended ({114]).

Ywhich looks for pessibilities of vectorization and parallelization and generates a transformed

FORTRAN source code with autotasking and compiler directives in it.



o
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Table A2: A comparison of CPU time (seconds) on CRAY Y-MP/432 between two
codes which compute the multiplication of a global stiffness matrix by a vector for
several mesh resolutions

Mesh resolutions | 16 x 15 31 x 27 46 x 39 61 x 5l
Version 1 6.1 x 1077 123 x 1072} 5.0 x 107 } 8.7 x 1077
Version 2 9.3x107° | 3.2x 107 |63 x 107" | 1.2 x 1073

Mesh resolutions | 81 x 75 115 x99 | 161 x 147 | 220 x 203
Version 1 LT x107% [3.2x 1072 [ 6.3 x 1072 | 1.3 x 107!
Version 2 23x 1077 [ 43 x 1073 [ 8.9 x 1073 | 1.7 x 1072

A.4 Element Matrices

Consider a typical element Q, with nodes 7, j and k& numbered counter-clockwise.

Assume the shape function defined on this element associated with the node 1 is

Nﬂrw)=91(m+bu+cw) (A.15)
24,
where
Lo oy
1
A, = 5 I r, y; |=arcaof the c-th triangular clement Q. (A.16)
Lore g

where the constants a;, b; and ¢; are determined by the following requirement that

N{(wiyyi) = L NIy y) = N (o) = 0. Thus,

a4y = Il — TrY; (A7)
bi =y, ~ i (A.18)
€ =rIp—T, (A.19)
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Similarly, the other two local shape functions N7 and N associated with nodes

J and & can be assumed to be

e 1 -
Nj(ey) = glas + e+ cjy) (A.50)
re 1 )
Ni(r.y) = ;T((lk+bkl + ery) (A51)

where the constants a;, b;. ¢;. ax. by and ¢, are determined by equnations (A.17).
(A18) and (A.19) through cyclic permutation. The element matrices can be evalu-

ated by Sylvester’s formula

O!ld! “,'

,,'u,h}/,"‘v — S AN
//Q Ni N Ndedy = o T 2, (A.52)

The following element matrices may be obtained

21 1
M= % 2 1 (A.53)
1 1 2
b b by
e _ 1 -
1\5 = 6 b,‘ IJJ' bk ("\-;)'l)
1), b, bk

To obtain an explicit expression for the element matrix V'S, notice that f is a lincar
|

function in r and y, as a result it can be represented exactly by
[ =fiN; +f]1\rj + fieiVy {A.DH)
over each element. Consequently, we have

6f1+2f1+2fk 2fx+2f1+fk 2fi+f;+2fk
ce 4 -
Ky=% | 22+ e 246,420 Jit2f,+20 (A.56)
2fx+fj+2fl. fx+2f}+2fl; 2f.+2f,+6fl.
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e 1

[\1 = ;‘I b_,‘d,‘
bk(li
b,‘(],'

—r ]

[\2 = :;'I b,(lj
l’idk

where

g N —_— . —r
Ihe element matrix A7y is the same as K7, except that ],

(),‘(IJ
I)j(lj
bkdj
1)j(1,‘

I)J‘(lj

I)J(Ik I)k(lk

C; C; Cp
1
6 Ci €5 ¢
C; C; Ck
T [
bd,.

l
b]‘(lk +ﬂ
I)kdk
[)k(l,'

1
{l};llj +:)_l

di = 2u] + uj + up,

(l_,‘
dy
€y
t;

Cr

u; + 2uj + uj,
ui -+ uj + 2uj
207 + v+ vy
v + 2v) + vp

* T4 s
v 4 vg 4 2o

]
Cj(‘j

CrCy

¥

tions (A.60), (A.61) and (A.62) will be replaced by (ult! 4 un)/2.
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(ADT)
C,C

(‘jck (.’\.;—)S)
CrC
Cr¢;

Cre (A.59)
CrCy.

(A.60)

(A.61)

(A.62)

(A.63)

(A.61)

(A.65)

ya = 1, ).k in equa-

A.5 Truncation Error for the Single Stage Galerkin Finite Element
Method

In this section and the rest of this appendix, we try to summarize the essential

components of a two stage Numerov-Galerkin finite element method (see [169] for
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a full documentation of the method and [170] for computer implementation issues.
Key features of this approach are also presented in [17]).

The single-stage Galerkin method [38] was applied to the nonlinear advective
terms of form vVe. If we consider the advective operator

v
L W)= U ALG6
(u.v)y=u PR (\.66)

then, as was shown in [38]. we may consider a direct Galerkin approximation using
two functions

=% and =" (A.6T)
and with

E=kh and ny=1Ih (A.63)
where ki is a positive mesh length. One can show the asymptotic truncation error

(T.E.) of udv/dr is (by assuming Fourier modes)

[4n" + 8n%€ + Tn2€? — 29€7)

|T.E.] ~ =0 (A.69)
72
For £ = 5, we obtain
o 7 -
II.I‘,.I’\'%]‘ (I\IO)

A.6 Truncation Error for the Two Stage Numerov-Galerkin Finite

Element Method

In this approach one calculates the Galerkin approximation to de/dr which we

denote by Z:

L, 2, 1, | R . -
EAJ‘I +§/1J'+6/,J’_| =;II l("H,l —-"J_|) (A.T1)
then we caleulate the product
-
W= ul (A.72)
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The following formula can be obtained

.. 2. 1 | P R
g o gt gt = Gl + a2
» , - v ’, 1 ’ o d)
+ U2z + UiZin + Ui 2 + Ui Zin ) + U5 Z; (A.73)

It can be shown that this two stage Numerov-Galerkin algorithm has an asymptotic

truncation error (denoted by N.G.T.E.) of

[T.E.| N [26%) + 38297 + 2607 — 1y

(A.T1)

IN.G.T.E. 720
and if £ =y
|'T.E.| 3, _
N.GT.E] 720" (A.73)

namely, an crror at least six times smaller than (A.70) (see [169]).

A.7 Numerical Implementation of the Numerov-Galerkin Method

In our approach we combine the two-stage Galerkin method with a high-order
compact implicit difference approximation to the first derivative.

"This approximation has a truncation-error of o(h") and uses a finite-difference
stencil of 20 + 1 grid points -— at the price of solving a 20 + 1 banded matrix (See

[177, 208]). The compact Numerov Q(h®) approximation to dv/dr is given by

] Jv ( v o
105 o), o(3) (2
70 [\ dr . ar i+ ox ; or -

dv | - e
N (E) ‘_2] - m[_:)",’_'z - 321','_| + 321';‘.’.1 + 5)1',‘+2] ({\.l())

where b = Ar = Ay,
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The estimation of dv/dr necessitates solving a pentadiagonal system of the form:

36 16 1
16 36 16 1
I 16 36 16 1
1 Jdv
70 or
1 16 36 16 1
116 36 16
1 16 36
0
—-'—)l‘u — 321’1 + 32('3 + 5('4
-"'51‘] — 321'2 + 321'4 + 5('5
1
= — ATT
S1h (ATD)
—Hon, g~ ey, o+ Pon, + dvn, 4
=N, -3 — $2un, 2 + Pox, + Sy, 41
for j=1,2,...,N,.
Here we interpolate for the boundary values of ¢y and UN, 41 USIng
vo = vy — vy + vy — vy (A.T3)
Uyt = 0y, = 6,y 4 10wy — 0,1 (A.79)

while for the intermediate expression Z we have

dr
7 o= (&
' (%),

— 250y 4 1805 — 360 + 1604 — B
2+ "VJ‘+’” DoY) (A.50)
p4/]
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N
I

du
dy)
vy
31.\\'”_4 - l(il‘,\'.,-:} + :;Glr“\'u_-g - ~18U‘\'u_1 + ‘.2:')(?‘\,',J

124
+ o(hY) (A.81)

For the second stage of the Numerov-Galerkin finite element, we solve a tridiag-

onal system of the forin

| S|
1 v Zici vl el
[w_,-]r—-; et 7ot e (A.82)
| Lo | vy A vidin ey 6,7

In the second stage we interpolate the values of Zp and Zy, 4y in a way similar
to cquations (A.80) and (A.81). A pentadiagonal and a cyclic pentadiagonal ma-
trix solver (induced by the periodic boundary conditions) were developed in [171]

following {230] and generalizing [5], respectively.

A.8 Some Numerical Results

In this scction, we present some finite element solutions of the shallow water
cquations introduced in Chapter 1. The pre-selected reference geopotential g is
chosen to be 10* so that the non-dimensionalized geopotential has an order of mag-
nitude of O(1). Grammeltvedt's initial condition (see Figure A1) has been used
throughout. The contour lines of the geopotential at the end of 'th day are pre-
sented, 1= 1,2...., 10, in Figure A5 - AL All solutions are obtained with a mesh
resolution of 35 x 27 and with a time step Af = 1300 seconds or half an hour. Thus,

to get the solution corresponding to the end of ten days, 180 iterations are required.
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