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APPLICATION OF AUGMENTED-LAGRANGIAN METHODS IN METEOROLOGY: COMPARISON OF

,	 DIFFERENT CONJUGATE-GRADIENT CODES FOR LARGE-SCALE MINIMIZATION

I. M. Navon

ABSTRACT

A Lagrange multiplier method using techniques developed by Bertsekas (1982)
was applied to solving the problem of enforcing simultaneous conservation of
the nonlinear integral invariants of the shallow water equations on a limited
area domain.

This application of nonlinear constrained optimization is of the large
dimensional type and the conjugate gradient method was found to be the only
computationally viable method for the unconstrained minimization. In this
study several conjugate-gradient codes were tested and compared for increasing
accuracy requirements. Robustness and computational efficiency were our
principal criteria.

1. THE AUGUMENTED LAGRANGIAN ALGORITHM

We consider the problem

minimize f(x)	 (1)

subject to xe R m and h(x) = 0

h:Rm ; Rm

The augumented Lagrangian function is

L(x,a,c) = f(x) + XTh(x) + (1/2c)ih(X)12 	 (2)

where c is a penalty parameter and a a multiplier vector.

The augmented Lagrangian algorithm is an iteration involving a series of
unconstrained minimization problems (see Gill, Murray and Wright, 1982; Bertsekas,
1982) of an n-dimensional differentiable function, Lagrange multiplier P;timates
and penalty term updates where the primary purpose of the penalty term 43 to

s	 make X* an unconstrained minimum.

E.
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2. THE MODEL ALGORITHM

We briefly describe an iteration of the Augumented Lagrangian method. The
following are assumed to be available: an initial selection of the constraint
functions; an initial-estimate of the Lagrange-multipliers-ao; a penalty
parameter c, a positive integer K serving as upper bound on the number of
unconstrained minimizations to be performed and an initial point XD.
Set k 4 o and perform the following steps:

AL1. (Check termination criteria). If Xk satifies optimality conditions,
the algorithm terminates with Xk as the solution. If k > K, the algorithm,
terminates with a failure.

AL2. (Minimize the augmented Lagrangi,^ function). With Xk as starting
point execute a procedure (using a conjugate-_Yradient code) to solve the sub-
problem:

t
Minimize L( X,Xk,c)	 (3)

xe Rm

Let Xk+1 denote the best approximation to the solution of (3).
âI

AL3. (Update the multipler estimate). If appropriate, modify specifica-
tion of h. Compute ak+l, an updated estimate of the Lagrange multipliers.

AL4. (Increase the penalty parameter if necessary). Increase c if the
constraint violations at Xk+1 have not decreased sufficiently from those at

Xk'
AL5. (Update the iteration count). Set k 	 k+1 and go back to AL1.

P	

i

3. COMPARISON OF CONJUGATE-GRADIENT (C=G) METHODS
_ 	 I

a

C-G methods form a class of minimization algorithms that generate directions
of minimum search without requiring the storage of a matrix. These methods are 	 ry.
essential when the Hessian matrix is too large or too dense.

In our case we had 2000 variables, (X = ( X 1, X2,. ,X2000))•

a) The Fletcher-Reeves (1964) C-G Algorithm
r

We solve the problem

	

Minimize f(X)	 X (Xi ...... Xm)	 (4)t<	 _	 _

f	 xe Rm
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AL1. Compute go = -of(Xo)
	

( 5 )	 ±;
Set do = -go

then for k = 1,2,3......m

Set Xk+1 = Xk + ak dk
	

(6)

Where ak is obtained via a line search procedure f(Xk + ak dk) 	 min f(Xk +	 1

a dk).	 a

3. Compute

gk+1 = of ( Xk+l)	 (7)

(4) generate dk+1 by:

t
dk+l	 -gk+1 + Skdk	 (8)	 f

E

= of X TWhere s	 9f Xk	 ( k+1)	 ( k+1)	 T

----	 - gk+1 gk+l/gkTgk	 (9)

of (Xk)T vf(Xk)

b) The Polak-Ribiere (1969) Algorithm

The algorithm is totally identical in its steps to the Fletcher-Reeves
algorithm except that Ok is calculated as

a	 sk	 (gk+1	 gk )T gk+1	 (vf(Xk+1) - v f ( X0) vf(Xk+l)

9k 9k	 vf(Xk)T vf(Xk)	
1

For the Fletcher-Reeves and Polak-Ribiere algorithms we used the Numerical
Algorithms Group (NAG) subroutine E04DBF with its associated service routines.

" c)	 The Powell Conjugate Gradient Method with Restarts

This method based on the work of Beale (1972) and Powell	 (1977) allows us
to restart after a C-G cycle with a computed direction dt - rather than starting
with the steepest gradient - gt.

I?,

In order to ensure that the successive directions are conjugate, the
following recurrence relation is used for a cycle of n directions for k = 0,

- 1...,n-1

dk+1	 = -gk+l + sk dk +' Ykdt (10)
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known as the restart direction and is the last direction of the previous
icle along which a linear search was made. Powell (1977) uses the Beale
^ts every n steps or whenever

T
I9k+1gkl > 0.2 II 9 k +1Ii 2 	 (11)

i

which checks that the direction dk is "sufficiently downhill."

We also check that

-1.2 IIg k II 2 < dk g k < -.08 IIgkII2	 (12)

If this requirement is not satisfied, a new cycle commences with dk - 1 as the
restart direction and with dk re-computed from (8). For the Powell method we
used the ZXCGR subroutine of the IMSL library with slight modifications.

d) The Shanno C-G Method Viewed as a Memoryless Quasi-Newton Method

Quasi-Newton Method

Different authors	 Shanno (1978), Shanno and Phua (1980), Perry (1976),
have found an analogy between the Quasi-Newton method of the form

Xk+1 = Xk + dkdk

(13)

k	 k f (X k)

where Dk is a positive definite matrix approximating the Hessian, and between
the C-G method if we compute Dk by updating the identity matrix with a limited
number of Quasi-Newton corrections.

Although the direction of search, dk, is equivalent to the product of a
matrix and a vector, the matrix is never stored explicitly. Rather, only the

r,

	

	 vectors defining the updates are retained. Shanno (1978) used such a "memoryless 
Quasi-Newton (Q-N) method combined with Bealerestarts and Powell's restart
criteria,

For the Shanno method we used the Shanno and Phu ( routine CONMIN supplied
to us b Prof. Shanno which allows one either a BFGS Bro den-Fletcher-Goldfarb 

4	 Shanno) Q-N variable metric algorithm or a Beale restarted C-G algorithm.
i1

`.	 4. NUMERICAL RESULTS f
s	 '

j
A program (METHODS) comparing the 4 C-G algorithms for a-meteorological
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problem (see Navon and De-Villiers (1983)) with 2000 variables, for increasing
accuracy requirements	 'rements wa y developed (available now on YFIMN machine at NASA/GLAS^

^ ~ !

	

	 and the different methods were compared for computational efficiency, number of 
iterations and number of function calls.°

/	 Our accuracy criteria was
^	 .

|^g (X)|( 2 ^ oa	 (14)
.	 !,
(	 ^ Accuracy s a = 10 -3

`

`

Method Iter IFUN CPU
No. of C-G cycles No. of Function (Sec)

evaluations

Fletcher-Reeves	 2 25 0.11

Polak-Ribiere	 2 25 0.10

Powell	 2 25 0.09

Shanno	 2 25 0.09

Function value at minimum .6047 x 10-5

Accuracy ea = 10-5

Fletcher-Reeves	 4 81 0.17

Powell	 3 64 0.14

Shanno	 4 81 0.17

Function value at minimum .4211 x 10-5

Accuracy ea = 10-

Fletcher-Reeves	 11	 523 0.44

Powell	 8	 379 0.34

Shanno	 8	 324 0.36

VUFC.tion value at minimum	 .4187 x 10-5

'

^

,

^



Fletcher-Reeves
	

Failed

Polak-Ribiere
	

Failed

Powell
	

16
	

986
	

0.65

Shanno
	

12
	

625
	

0.51

Function value at minimum = .41.8549 x 10-5

Accuracy E a = 10- 1 (double precision)

Powell	 19	 1542	 0.96

Shanno	 12	 676	 I	 0.58

Function value at minimum = 48154561 x 10-5

1	 L_ _--

5. CONCLUSIONS

For this large dimensional problem and for moderate accuracy (10-5) all
the 4 C-G algorithms performed well, with the Powell and Shanno C-G algorithms
being slightly faster. For higher accuracy requirements both the Fletcher-
Reeves and the Polak-Ribiere algorithms fail to converge for the upper limit of

J

^yI

^i
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Method
	

Iter
	

IFUN
	

CPU
No. of C-G cycles
	

No. of Function
	

(Sec)
evaluations

Accuracy c a = 10-9 (double precision)

44

y
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C-G cycles (25) and only the Powell and Shanno algorithms continue to perform
with an increased advantage for the Shanno algorithm as the accuracy require -

ments increase to 10- 9 or 10- 11 .	 i

1	 ll
These methods were tested on the problem of enforcing conservation of 	 I

nonlinear integral invariants of the shallow water equations using both a finite
_	 difference model (Navon and de-Villiers, 1983) or a finite element model (Navon,

1983). We intend to test the same methods for constrained nonlinear normal
s' mode initialization.
F
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PREDICTABILITY EXPERIMENTS USING A LOW ORDER EMPIRICALLY

CORRECTED DYNAMICAL MODEL

S. Schubert

1. INTRODUCTION

Y.

It is generally accepted that day to day weather variations possess a finite
range of predictability estimated to be approximately two weeks (e.g. Lorenz,
1965). However, considerable observational evidence points'to the existence of
a number of low frequency flow regimes which are potentially predictable beyond

R

	

	 this limit. These include blocking events and teleconnection patterns such as
those described in Wallace and Gutzler (1981). The present study addresses the
problem of the predictability of such modes by employing a highly simplified 	

r

dynamical model projected onto the modes of interest. These modes are computed
from an empirical orthogonal function (EOF) analysis of 10-day averaged anoma-
lies .(deviations from the mean seasonal cycle) of the 500 mb stream function
for the winters of 1967-76. The first three EOF's are associated with an r
index cycle and some of the teleconnection patterns. The fourth and ninth are

K	 related to North Pacific and North Altantic blocking, respectively. Details
of the calculations and mode structures may be found in Schubert (1983)

t	 (hereafter S83).
K	 I^

i^
2. THE EOF ANOMALY MODEL

k

The model is equivalent barotropic and includes crude representations of
the effects of friction and orography. A long wave correction term is not
included due to the filtering effect of the EOF expansion (see S83). The model
is formulated as a prognostic equation for the anomalies where the mean flow
acts as an inhomogeneous forcing. In its final form, the model is written as a
system of prognostic equations for the EOF coefficients or principal components
(PC's) (see S83 for details) as

r	 Az =	 D(z)z + (1+e)Gz + YFz

	

tendency	 nonlinear	 beta	 orography
interaction	 (Y)

+	 Rz - K Az +	 z*

mean/anomaly friction inhomogenous
interaction	 forcing

Here z(t) is the vector of principal components and e, Y and K-are constants

which are fit to the data to provide the best representation of the observed PC
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