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Abstract

Recent advances in variational and optimization methods applied to increasingly com-

plex numerical weather prediction models with larger numbers of degrees of freedom mandate

to take a perspective view of past and recent developments in this field, and present a view

of the state of art in the field.

Variational methods attempt to achieve a best fit between data and model subject to

some ‘a priori’ criteria – in view of resolving the undeterminancy problem between the size

of the model and the respective number of data required for its satisfactory solution.

This review paper presents in a synthesized way the combined views of the authors as

to the state of the art of variational and optimization methods in meteorology.

Issues discussed include topics of variational analysis, variational initialization, optimal

control techniques, variational methods applied for numerical purposes and constrained ad-

justment, and finally how some of the variational and optimization methods discussed in the

review relate to each other.
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1. Introduction

In the last few years due to a constant increase in the need for more precise forecasting

and nowcasting, several important developments have taken place in Meteorology directed

mainly in two different directions:

a) Modelling at either large scale or at smaller scales. Recently, many models have been

developed including an ever increasing number of physical processes and parametrization

of subgrid phenomena.

b) Data: New sources of data such as satellite data, radar, profilers, and other remote

sensing devices have led to an abundance of widely distributed data. However, a common

characteristic of these data is to be heterogeneous either in their space or time density

or in their quality.

Therefore, a cardinal problem is how to link together the model and the data. This

problem induces several questions:

i) How to retrieve meteorological fields from sparse and/or noisy data in such a way that

the retrieved fields are in agreement with the general behaviour of the atmosphere?

(Data Analysis)

ii) How to insert pointwise data in a numerical forecasting model? This information is con-

tinuous in time, but localized in space (satellite data for instance)? (Data assimilation

problem)

iii) How to validate or calibrate a model (or to invalidate it) from observational data? The

dual question in this case being how to validate (invalidate) observed data when the

behaviour of the atmosphere is predicted by a numerical weather prediction model.

For these questions a global approach can be defined by using a variational formalism.

1.1. Variational Methods in Meteorology: A Perspective

There are two main approaches employed when modeling a system described by a state

variable, X. The first approach consists of finding a set of equations F such that X is the

unique solution of the state equation

F (X) = 0. (1)
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In most cases system F must have as many equations as X has components in order

to possess a unique solution – this is the problem of closure. In meteorology this problem

has often been solved by using various artifacts such as adding supplementary equations.

The second approach to the problem of closure is the variational one consisting in finding

X as the solution of a problem of optimization i.e.by finding the extremum of some known

functional J . Such an approach was proposed in theoretical mechanics some 245 years ago

by Euler (1744, 1764) and by Lagrange (1760a, 1760b).

In the domain of numerical analysis Sobolev or Galerkin type methods are also based

upon variational principles (Ritz (1908), Galerkin (1915)).

In meteorology, using the most general terms, we assume the state of the atmosphere

to be described by a set of equations G(X) = 0.

If this system possesses fewer equations than unknowns, the system is said to be non-

closed. However, one can still close it by introducing a variational approach.

If Xobs is an observation of a meteorological field, we will choose from among all the

solutions of the system G(X) = 0 the solution closest to the observation Xobs. The resulting

solution will be the optimal solution. In this manner a connection is established between the

data and the observations.

In meteorology, the first application of variational methods has been pioneered by Sasaki

(1955, 1958). Washington and Duquet (1963), Stephens (1966, 1968) and Sasaki (1969,

1970a, 1970b, 1970c) have given a great impetus towards the development of variational

methods in meteorology.

In a series of basic papers Sasaki (1969, 1970a, 1970b, 1970c) generalized the application

of variational methods in meteorology to include time variations and dynamical equations

in order to filter high-frequency noise and to obtain dynamically acceptable initial values in

data void areas.

In all these approaches, the Euler-Lagrange equations were used to calculate the optimal

X.

Numerous other works applying these ideas appeared in the meteorological literature

during the 1970’s using the variational formulation. These works will be surveyed and

classified in the later sections of this review. In parallel with the introduction of variational
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methods in meteorology, starting in the 1960’s and 1970’s, mathematicians in coordination

with other scientific disciplines have achieved significant advances in optimization theory and

optimal control, both from the theoretical viewpoint as well as from the computational one.

In particular significant advances have been achieved in the development of optimization

algorithms (Gill, et al. (1981), Fletcher (1980a, 1980b), Powell (1981), Bertsekas (1982),

Lugenberger (1974) to cite but a few).

Optimal control methods have been introduced by Pontryagin, et al. (1960), and they

have been generalized for systems governed by partial differential equations (Lions (1968)).

The application of an optimal control theory to meteorological problems has for the first

time supplied the correct framework for a unified approach to analysis, data assimilation and

initialization for meteorological problems.

Other techniques strongly related to variational and optimization theory, such as op-

timum interpolation, Kalman-Bucy filtering (Ghil, et al. (1981), smoothing splines Wahba

(1975, 1981) Krieging, generalized cross-validation (GCV) Wahba and Wandelberger (1980)

(for a unified approach see Lorenc (1986)) have also emerged during the last 10 years.

1.2. Variational Methods in Meteorology: The Optimization Theory View Point

Numerical weather prediction is based on the integration of a dynamic system of partial

differential equations modeling the behavior of the atmosphere.

From a mathematical view point this approach is equivalent to the classical Cauchy

problem. Therefore discrete initial conditions describing the state of the atmosphere have

to be provided prior to the integration.

In order to retrieve a complete description of the atmosphere one can add information

to the raw data using one of the following families of several methods:

a) Perform a simple interpolation, i.e., no information is added to the data. This procedure

is purely algorithmic.

b) Add as information the statistical structure of the fields i.e., use an optimal interpo-

lation type method. Unfortunately this information is not always available or may be

inadequate for instance as is the case with a paroxysmal event.
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c) A third way is the variational method. Variational methods are based on the fact that a

given meteorological observation has not an intrinsic credibility. The same measurement

of wind, to give just an example, may be used to study the flow around a hill, or may

be inserted in a mesoscale model, or may be used in a global model of atmospheric

circulation. According to the particular framework where the data will be used, variable

trust will be attributed to the same data.

Variational methods try to achieve a best fit, with respect to some ‘a priori’ criterion,

of data to a model by placing the data into the most adequate framework where it should

be used, and permits us to link the data and the model.

In the first part of the paper we will show how variational methods can be defined and

which are the ingredients necessary to build a variational method, all this in the perspective of

the surveyed accumulated work. Then we will show how to solve related variational problems

in the framework of a systematic classification of the reviewed work. This classification will

permit us to review different variational methods as well as the context in which they were

performed.

The last section will be devoted to future developments and potential applications of

variational methods in meteorology.

2. Ingredients of a Variational Method

2.1. Definition of a Variational Method

In the most condensed way a variational method may be defined as a search, amongst

all the possible solutions of a model, of the solution closest to a given observation. Therefore

a variational method will be defined by the following ingredients:

i) An atmospheric variable X – describing the state of the atmosphere.

ii) A model which may be mathematically written as:

B
dX

dt
+ A(X) = 0 (2)

where B is either the null-operator for a steady state model, or the identity operator

for a dynamical model. A is a linear or non-linear operator.
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We suppose that system (1) is not closed by which we mean that in order to obtain an

unique solution to (1) some additional information has to be provided.

iii) U – a control variable. U may be comprised of the initial conditions, boundary condi-

tions, or both, the vector X itself or a part of it. Once U is defined – a unique solution

X(U) of (2) will be associated with it.

The vector control variable U must belong to some set of admissible control Uad. The

definition of Uad may include physical information which can be stated in the form of

inequalities.

iv) J , a cost function measuring the difference between a solution of (1) associated with U

and the observations Xobs.

v) An observation Xobs of the meteorological fields.

A variational problem is determined in terms of these last five items and it can be

stated as problem (P) i.e.:

(P) Determine U∗ which belongs to Uad and minimizes the cost function J .

The second stage of the solution of the variational problem will be to determine, or

at least to approximate U∗ (and therefore the optimal associated state of the atmo-

sphere X(U∗).

In order to achieve this, we first have to set up an optimality condition and then to

perform an algorithm for solving problem (P).

2.1.1. The optimality Condition

A general optimality condition is given by the variational inequality (see Lions (1968))

(∇J(U∗), V − U∗) ≥ 0 for all V belonging to Uad, (3)

where ∇J is the gradient of the functional J with respect to the variable U .

In the case where Uad has the structure of a linear space, variational inequality (3) is

reduced to the equality

∇J(U∗) = 0 (4)
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2.1.2. The Algorithm of Solution

As stated above – variational problems are problems of optimization with or without

constraints. There exist standard procedures (Le Dimet and Talagrand (1986), Navon and

Legler (1987)) to solve them.

A common requirement of these procedures is the need to explicitly supply the gradient

of J with respect to U to the code.

Moreover, the basic problem to be solved is always a problem of unconstrained mini-

mization for which the method of conjugate gradient may be used (see Navon and Legler

(1987)).

2.1.3. Variational methods: for which purposes?

The first applications of variational methods were for objective analysis of meteorolog-

ical fields, i.e.to retrieve fields from pointwise distributed data in space. In most of the

important meteorological situations the temporal evolution of the fields is crucial, therefore,

some attempts were carried out towards extending variational analysis to dynamic analysis.

Introducing sparsity of data in time using variational tools has led to 4-D data assimila-

tion for numerical weather prediction models. To perform a forecast a meteorological model

requires an initial condition. This initial condition must be as close as possible to the obser-

vations while remaining compatible with the model. The problem of initialization may be

stated as a variational problem and solved in this way.

A general formalism of variational problems has to deal with observations but these

observations may not necessarily be physical ones. For instance they may result out of a

numerical model (output of a numerical model). Furthermore, the constraints imposed upon

the analysis may have no physical origin and could only have been introduced for numerical

purposes.

Many applications were carried out in similar situations as mentioned above resulting

in a global approach of variational methods, such as for instance enforcing conservation

of integral invariants in numerical models (Navon (1981), Navon and de Villiers (1983)), or

design of discretization schemes (Sasaki (1976)). A major difficulty for the classical approach

to variational methods for meteorologically significant problems, in particular for those where
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dynamics play a prominent part, is the fact that the size of the discrete problem to be solved

is prohibitive.

A way to circumvent this difficulty is to introduce optimal control methods permitting

a significant reduction of the problem size. These techniques, upon which we will expand in

a later section, introduce the adjoint of the numerical model. Knowledge of the adjoint of

the model turns out to be particularly useful, because it can be applied towards a sensitivity

analysis (Hall and Cacuci (1982, 1984)) or for environmental studies such as the estimation

of the impact of industrial pollution upon the environment (see Marchuck (1982)).

In this review paper we will present the most important contributions concerning appli-

cations of variational methods using the general formalism of mathematical programming.

3. Variational Analysis

Basically, the problem of retrieving meteorological fields X from observations X̃, in such

a way that X verify some model:

F (X) = 0 (5)

and are as close as possible, in the sense of a given functional J , to the observations X̃, is a

problem of optimization with constraints.

Sasaki (1970) in historical paper has introduced two formalisms:

a) The weak constraint formalism consists in minimizing without constraint the functional

J defined by

J1(X) = J(X) + K‖F (X)‖2. (6)

It is easily seen that for large values of K, F (X) has to be small for minimizing J1,

therefore, for a specified value of K, constraint (5) is only approximately verified. In what

follows K is a generic constant used as a coefficient of a weak constraint. This is justified by

the fact that equation (5) is not a perfect representation for the atmosphere and therefore

should not be satisfied with a greater precision than its own accuracy.

The optimal condition, which in the Euler-Lagrange equation gives the optimal analyzed

field X∗, is the solution of the equation

∇J1(X
∗) = ∇J(X∗) + 2K F ′(X∗) ·X∗ = 0. (7)
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In this equation ∇J1(respectively ∇J) is the gradient of J1(respectively ∇J1) with respect

to X, while F ′ is the Jacobian matrix of F . No standard method exists for solving (7). As

such a method of solution has to be chosen in agreement with the particular expressions

for J and F . In the majority of cases, and even always when F is non-linear, an iterative

algorithm has to be carried out.

b) The strong constraint formalism imposes upon the optimally analysed field X∗ to exactly

verify equation (5) (in fact only up to discretization and round-off errors). To implement

this condition the Lagrangian L(X, Λ) is introduced, given by

L(X, Λ) = J(X) + (F (X), Λ) (8)

where Λ, the Lagrange multiplier, has the same dimension as F . The Euler-Lagrange

optimality condition, gives X∗ and Λ∗ and may be written as

∂L

∂X
(X∗, Λ∗) = 0 (9)

∂L

∂Λ
(X∗, Λ∗) = 0 (10)

As before, no standard method exists for solving system (5), and in the majority of

cases, X∗ is eliminated between (9) and (10) leading to a unique system for Λ∗. X∗ is then

computed using equation (10).

Therefore, a variational analysis is defined by different choices of the cost function J of

the model F , and by the method of resolution. We shall now briefly survey the main choices

for these principal ingredients.

3.1. Choices of the Cost Function J

The prime objective of J is to measure the proximity between an observation and a

solution of the model. So J must have the property of a norm. Variational methods are based

upon the computation of the gradient, therefore, the functional J has to be differentiable,

which is easily implementable as most of the time J is the square of a norm. If for instance

wind and geopotential fields are observed, the functional J assumes the form

J(u, v, φ) =
∑

i

∑

j

α(i, j) (u(i, j)− ũ(i.j))2 + β(i, j) (v(i, j)− ṽ(i, j))2

+ γ(i, j)
(
φ(i, j)− φ̃(i, j)

)2
(11)
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where u, v are the wind components, φ is the geopotential, the summation is extended on

the whole domain, and α, β, and γ are weights. These weights have a dual purpose:

i) make J a non-dimensional quantity

ii) reflect the confidence we have in the quality of the observed data.

Several choices are possible for these coefficients. One of the most often used weights is

the Gauss precision moduli, which are defined as the reciprocal of twice the variance of the

errors of observation for the respective observed elements.

Sasaki (1971) studied a theoretical interpretation of anisotropically weighted smoothing

on the basis of numerical variational analysis. The results he obtained suggest that the

weights for the upstream and downstream observations should be of the same magnitude

and as much as three times larger than the respective weight for the crosswind direction.

This work is also related to the anisotropic weighting factors for Cressman objective analysis

scheme (Endlich and Mancuso (1968)).

In almost all analysis applications these weights are taken to be constant, except in

the vertical coordinate. Another criterion for choosing the weight functions is to render

the numerical methods used to solve the optimality system, convergent. If the problem of

analysis is stated as a problem of mathematical programming then the standard codes of

unconstrained optimization include an automatic scaling of the variables.

The cost function may also include terms which act as filters in time or in space (see

Sasaki (1970b)). For a given analyzed field ϕ, the addition of a term in the form

K

(
∂2ϕ

dx2 +
∂2ϕ

dy2

)
(12)

will tend to smooth the curvature of the ϕ-field. Wahba and Wandelberger (1980) used a

functional in the form

Jm(φ) =
∑

α1+α2+α3+α4=m

m!

α1!α2!α3!α4

∫ ∫ ∫ ∫ (
∂m(ϕ)

∂xα1∂yα2∂pα3∂tα4

)
dx dy dp dt. (13)

where x, y are space variables for the analysis of a field ϕ, where p the atmospheric pressure

is used as the vertical coordinate, m is an integer to be determined, and the coefficients are

given in such a way that an explicit representation for the minimizer can be found.
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Sasaki (1970a) also used a so called timewise localized formalism with one of the con-

straints assuming the form:

K

(
∂ϕ

dt

)2
(14)

where the local time derivative is usually replaced by the other terms of a conservation law.

This term acts as a penalty term and allows only a slowly varying evolution of the field.

This approximation is valid only for quasisteady state events.

If more statistical information is available it may be inserted in the weight function to

enhance the static consistency of the fields X. Such a term may have the form (Lorenc

(1986)):

K(ϕ− ϕc)C
−1(ϕ− ϕc) (15)

where ϕc is a climatological value for the variables ϕ and C is the covariance matrix for ϕ.

A classical method of mathematical programming for solving the familiar problem of

constrained optimization given by

min J(X) = 0 (16)

subject to the equality constraints:

F (X) = 0 (17)

is to introduce the penalized functional:

Jε(X) = J(X) +
1

ε
‖F (X)‖2 (18)

and to minimize Jε(X) without constraint giving the optimal solution X∗
ε . Here ε represents

a sequence of real numbers used as penalty parameters and tending to zero. It is very easy

to see the similarity of this approach with Sasaki’s weak constraint. With some additional

hypothesis it can be shown that X∗
ε tends to X∗, solution of the constraint problem at the

limit. Let us make three remarks:

a) With the weak constraint formalism only one step of a penalty method is performed.

Therefore, the dependence of the solution of the weak constraint method upon the

coefficient K cannot be exhibited. This dependence is more easily shown using a penalty

term and different values of ε.

b) In the weak constraint formulation the constraint does not have to be exactly satis-

fied. Also, it is not possible to control to what extent the value of the deviation of the
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constraint at the final stage from zero is due to physical or numerical reasons. Theo-

retically, for penalty type methods at the optimum, the constraint is exactly satisfied.

Nevertheless, the method of optimization without constraint which has to be used to

solve the minimization problem needs to specify some stopping criteria which permit

control to the satisfaction of the constraints. Choices of the constants used in these

stopping criteria have to be carried out based on physical considerations.

c) A well known fact is that for small values of ε, i.e.for values of the variable close to the

optimum, the method of unconstrained optimization may turn out to be ill-conditioned,

leading to serious numerical problems. A way to deal with this difficulty is to introduce

the Augmented Lagrangian approach for the problem of optimization with constraints.

This is done in Navon and de Villiers (1983) and in Le Dimet and Segot (1986). These

methods used a so called Augmented Lagrangian L defined by:

L(X, Λ) = J(X) +
1

ε
‖F (X)‖2 + (Λ, F (X)) (19)

where the vector Λ is the Lagrange multiplier of the constraint F . In Sasaki’s termi-

nology F is considered both as a weak constraint and a strong one. Standard methods

(Bertsekas (1975, 1982), Fortin and Glowinski (1983)) exist for solving this problem.

A major advantage of this method is its ability to prevent numerical instabilities. The

gradient of the Augmented Lagrangian has to be computed for both variables, but this

task does not need more computation and/or storage than either the penalty or the

duality methods.

3.2. Choices of Models

In variational analysis, models are used as constraints to fit the analysis to the data. Of

course, the quality of the analysis depends upon the quality of the model which is used for

the adjustment. A wrong model cannot give a good analysis. Therefore, during the practical

realization of a variational method, the quality of the model, has to be kept in mind.

Applications of variational analysis were conducted for a multitude of case studies. Some

operational uses have been done by Lewis (1972) for the upper air analysis on the Pacific

Ocean and also by Seaman, et al. (1977) for the analysis in the Australian Region.

Variational methods are particularly well adapted for events with sparse data and ir-

regular fields. Many studies were carried out on squall lines, for instance by Charba and
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Sasaki (1981), who use a gravity current model for studying a squall line. Sasaki and Lewis

(1970), Lewis (1972) used a variational formalism for the analysis of squall line and severe

storms. Sheets (1973) has developed a variational optimization technique for an analysis

scheme and applied it to the high portion of a hurricane, as well as to study the presumed

effect of seeding on the hurricane.

Many applications have been performed using the divergence free constraint (Sherman

(1978)) and especially for environmental studies (Wilkins (1971), McCrakenet al. (1978)).

See also O’Brien(1970).

Soliz and Fein (1980) have developed a so called Pattern Conserving Technique (PCT)

which is used to obtain 3 dimensional grid fields of wind, temperature and height.

Variational methods have never been implemented using an operational model as a con-

straint. The main reason for this is the lack of systematic approach for the algorithmic side

of the variational method. For each problem an adequate numerical method was designed. A

major contribution was the mathematical programming formulation of variational methods

which consist of considering the problem in its algorithmic perspective where standard and

high performance codes of optimization can be used.

More and more data are available from remote sensors, being provided mainly by radars

or by satellites. Classical meteorological fields such as wind, temperature, and humidity

are not directly measured by remote sensing but they can be estimated using mathematical

inversion methods in combination with empirical laws for measured quantities such as reflec-

tivity for radar or spectral bands for satellites. As such these data may be of poor accuracy.

Another common property of remote sensors is to provide data with very heterogeneous

resolution, for instance radars give information only in regions having reflectivity.

Interpolation has no sense in this context, statistical methods cannot be carried out in

the absence of elementary information data for statistics. Therefore, variational methods

are well suited for this type of data because they impose upon the retrieved fields a physical

consistency through the model equations which are used as constraints.

Ray et al. (1980), and Ziegler (1986) studied air flow in convective storms using Doppler

radar observations. In their application, a variational analysis simultaneously imposes two
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kinematic boundary conditions and the mass continuity equation on Doppler velocities to

derive the three-dimensional thunderstorm air motion.

The analysis fields are obtained by minimizing

E =

∫ ∫ {∫ [
α2(u− ũ)2 + β2(v − ṽ)2

]
dz + Λ

∫
ρ

(
∂u

∂x
+

∂v

∂y

)
dz − C

}
dx dy (20)

where ũ, ṽ are the observations, and u, v are the final fields, ρ the air density, α2 and β2 are

Gauss precision moduli, and Λ a Lagrange multiplier.

The adjustment requires the integrated density weighted horizontal divergence from the

surface to a height Zt to be a constant defined by

C =

∫ Zt

0
ρ

{
∂u

∂x
+

∂v

∂y

}
dz = −

∫ Zt

0

∂ρw

∂z
dz (21)

Testud and Chong (1983) and Chong et al. (1983) also use a variational procedure

to retrieve data from Doppler radar observations. In a first step, the retrieved fields are

computed in such a way that they minimize the distance to the observation and verify some

regularity condition (finite curvature for the retrieved fields). In a second step, (Chong et

al. (1983)), the error in the retrieved 3-dimensional wind field due to temporal variation is

minimized.

In satellite meteorology, variational methods were used by Ghil and Mosebach (1978)

for asynoptic data assimilation. Hoffman (1982, 1984) removed ambiguity from Seasat-A

satellite scatterometer by choosing the alias closest to the analyzed field. The application of

his method was illustrated for a limited region in the North Atlantic. The method involved

direct minimization of a functional. His analysis uses both satellite and conventional data

applied to the study of a storm. Cram and Kaplan (1985) developed a variational method to

assimilate VAS temperature and moisture gradient information into a mesoscale model. The

constraint they used is to match the VAS data gradient and the model first guess absolute

value. The functional which is minimized is given by

J =

∫ ∫ [
A(v − ṽ)2 + B

(
∂v

∂x
− ∂v̂

∂x

)2
+ C

(
∂v

∂y
− ∂v̂

∂y

)2
]

dx dy. (22)

Here ṽ is the model first guess variable, v is the model adjusted variable, while v̂ is the VAS

data variable. A, B, and C are matrices of weights. A is defined at each grid point where
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VAS data were analyzed and set to zero elsewhere, while B and C are defined between grid

points and set to zero whenever VAS data is not defined at both surrounding grid points.

VAS data together with geopotential derived from rawinsondes (RAOB) are analyzed

by Lewis et al. (1983). Two methods are developed. The first incorporates the statistics of

RAOB-derived potential vorticity into the VAS vorticity analysis by making a least square

adjustment with the constraint to have the first and second moments identical to the RAOB

analysis. The second method implements a mutual least square adjustment to RAOB and

VAS vorticity with the constraint being that forecast and hindcast of potential vorticity to

the time midway between the analyses are equal.

Sasaki and Goerss (1982) developed a method for analyzing and assimilating data into a

baroclinic primitive equation model. The model is discretized using a staggered grid system

with centered space and time differences. At each synoptic time a variational procedure is

performed to combine the newly acquired upper air and surface observations with the first

guess fields. The functional which is minimized is given by

J =

∫ ∫ ∫ {
A(φ− φ̂)2 + B

(
1

R
· ∂φ

∂π
− T̂

)2
+ Cu(u− û)2 + Cv(v − v̂)2

d
(
∇φ−∇φ̃

)2
+ e

(
∇2φ−∇2φ̃

)
+ `(ζ − ζ̂) + g(D − D̃)2

+h

(
1

a cos θ
· ∂φ

∂λ
− fv

)2
+ i

(
1

a
· ∂φ

∂θ
+ fu

)}
dλ dθ dπ

(23)

here θ and λ are spherical coordinates, π the vertical coordinate, f is the coriolis parameter,

A, B, Cu, and Cv are three dimensional weight matrices. φ̃, ũ, and ṽ are first guess field values

while the observations are given by φ̂, û, and v̂. The weights d, e, `, g, h, and i are constant

on the domain. Therefore, the resulting analysis will adjust at best the observation with the

constraint of having the same horizontal gradient, Laplacian, vorticity and divergence as the

first guess field. When considered as penalty terms, the two last terms in equation (23) will

enforce the geostrophic equilibrium between analyzed fields. The quality of the adjustment

to the geostrophic equilibrium will depend upon the relative values of the coefficients of the

cost function.
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3.3. Analysis of Dynamic Data

We assume that a model of the atmosphere is given by the differential equation

dX

dt
= F (X), 0 ≤ t ≤ T. (24)

and let Xobs(t) be an observation of the atmospheric fields during the same period of time

[0, T ]. There are several ways to endow the analyzed fields with dynamical consistency.

The first method is the time-wise localized formalism in Sasaki’s terminology. It consists

of considering that at any moment the fields are only slowly evolving, i.e.dX
dt has to be small.

At a given moment, the optimal analysis will be the closest to the observation, subject to

the weak constraint that dX
dt remains small, therefore, the time derivatives are introduced as

penalty terms in the cost function. J , the cost function, will be defined as:

J(X) =

∫ (
(X −Xobs)

2 + C

(
dX

dt

)2
)

dΩ (25)

where C is the penalty coefficient.

Some remaining questions are:

a) What is the dependence of the optimal analysis upon the choice of constant C?

b) If dX
dt has to be small, then C has to be a large value, therefore, causing the numerical

solution to be ill-conditioned.

c) How to link together two successive analyses? Relative values of dX
dt at times T and

T + ∆t, could be different, leading to numerical noise in the analysis.

d) The norms, which are chosen to measure the proximity between the analysis and the

observation and to impose the constraints, are of the L2 type, therefore, permitting

localized high values for the constraints. This situation may arise in limited area analysis

if the boundary terms are not carefully discretized.

A way to deal with these difficulties would be to introduce (24) as a full constraint and

to use the Augmented Lagrangian formulation:

L (X(t), Λ(t), ε) =

∫ T

0

∫

Ω
(X(t)−Xobs(t))

2 + ε

(
dX

dt
− F (X)

)2

+

(
Λ,

dX

dt
− F (X)

)
dΩ dt

(26)
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where ε is a penalty coefficient tending to zero, Λ is a Lagrange multiplier function of time

and space and Ω is the spatial domain of interest.

As pointed out above, the optimal analyses X∗ associated with the optimal Lagrange

multipliers are solutions of the system

∂L(X∗, Λ∗)
∂X

= 0

∂L(X∗, Λ∗)
∂Λ

= 0

(27)

which can be solved by using Bertsekas’ type of Augmented Lagrangian algorithm (Bertsekas

(1982), Navon and de Villiers (1983)).

System (25) has to be discretized together with equation (24) using a time differencing

scheme. The dimension of system (27) to be solved is equal to the dimension of X multiplied

by the number of time-steps contained in the time interval [0, T ]. For non-trivial problems

we will obtain problems of very high dimensionality which may not be practical even for

present large mainframe computers.

A method for imposing dynamical consistency to the analyzed fields has been proposed

by Thompson (1969): the observations of the geostrophic vorticity at two successive obser-

vation times are adjusted at these two times subject to the constraint that they satisfy the

barotropic vorticity equation. This method has been extended and applied by Lewis (1980)

for the adjustment of vorticity at the level of non-divergence. Analyses were performed on

the hemispheric scale in such a way that more than one disturbance center can be identified

and that the region encompasses both rich and sparse data areas. The results show that

time continuity, as well as the order of magnitude of vorticity adjustment are improved by

this technique. This technique can be applied for the more data-void regions and can be

patched with observations from a neighboring time.

Lewis and Bloom (1978) described a method for coupling two observations in time

by using the forecast equations of horizontal momentum as dynamical constraints. The

technique can be extended, always working on pairs of either observations or analyzed fields

to enforce the dynamical consistency of the analysis. The scheme is tested on a squall

line case, using the hourly surface observations from the Aviation network as data. The

results of this study show that the build up of the convergence zone is better depicted by

the variationally adjusted patterns and the correlation between surface convergence and the
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radar echo is enforced. differences between observed and analyzed fields are of the order

of m sec−1. The same approach is used by Bloom (1983) for the analysis of mesoscale

rawinsonde data, the dynamical constraint being a set of forecast equations of horizontal

momentum. This type of analysis permits computing the vertical velocity, which is shown

to be more consistent with the weather events that occurred during the unconstrained case

study.

3.4. Discretized Variational Analysis

To obtain the solution of a variational problem, a discretization has to be carried out

on the constraint and on the cost function. In many papers, the Euler-Lagrange equations

are written in continuous form and only then discretized. It has been pointed out by many

authors that to discretize a variational problem and then to write the Euler-Lagrange equa-

tions of the discrete problem is not equivalent to writing first the Euler-Lagrange equations

and then discretizing them. If the model, used as a constraint, has a non-linear term, then

the Euler-Lagrange equations will have non-standard boundary conditions, which have to

be simplified in order to solve the system of optimality. In many papers, simplifications

applied on the boundary terms have no physical justification. Therefore, it is simpler to

write the Euler-Lagrange equations, or to compute the gradient of the cost function on the

discrete problem. Nevertheless, the boundary terms have to be carefully discretized in order

to impose consistency between the discrete problem and the continuous one.

In many applications the discretizations were carried out using a finite difference ap-

proximation scheme in space. Some finite element discretizations were performed in several

cases for studying wind field adjustment over complex terrains (Tuerpe, Gresho and Sani

(1978)). Racher and Roset (1985) carried out a three-dimensional analysis of wind field

over Hawaii, using a constraint of free divergence. Le Dimet and Segot (1987) proposed

an algorithm for the adjustment of the 500 mb wind field. Their method implemented an

Augmented Lagrangian algorithm discretized with the finite-element method using the ob-

servation stations as nodes of the finite elements. An advantage of the finite element method

is that it does not necessitate a preliminary interpolation of the fields. A shortcoming of

the finite element method is its higher computational cost, when compared to the finite

difference discretization method.
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3.5. Inequality Constraints

The general theory of optimization permits to introduce inequality constraints in the

variational formalism. Real physical situations have to be simulated using inequality con-

straints. Sasaki and Goerss (1980) employed such a method for the adjustment of absolutely

unstable atmospheric layers. The vertical temperature profile is adjusted in such a way

that the vertical gradient of temperature is larger than some given value. The numerical

method used for solving this problem introduce the so called slack variables. Modern theory

of mathematical programming (Gill, Murray, and Wright (1981)) provides a wealth of math-

ematical tools for working with inequality constraints. In our opinion, important progress

can be achieved by using this type of constraints with adequate mathematic tools such as

the Augmented-Lagrangian method (see Bertsekas (1982), Navon and de Villiers (1983)).

As a partial conclusion, one can say that variational methods for the analysis of static

fields are well suited for many meteorological situations, and by bringing the information

contained in the physics of the atmosphere to the data they permit a coherent retrieval of

meteorological fields. A synoptic view of various research works using variational methods

is presented in Table 1.

4. Variational Initialization

The aim of initialization in meteorology is to prepare objectively analysed gridpoint data

with a minimum of spurious high-frequency inertia-gravity noise while retaining accuracy of

the forecasts for the meteorological scales of interest in the model.

Early variational initialization applied “dynamic” constraints such as the balance equa-

tion, hydrostatic relation or geostrophic balance (see Barker, Haltiner and Sasaki (1977),

Haltiner, Sasaki, and Barker (1975), Haltiner and Barker (1976), and Stephens (1970)).

Lamb-waves were eliminated by enforcing as strong constraint the vanishing of the

integrated mass divergence (Barker et al. (1977)).

Typically the cost function for the balance equation constraint takes the form

I =

∫ ∫ [
α

(
φ− φ̃

)2
+ β

(
∇Ψ + k × Ṽ

)2
+ 2λM

]
ds, (28)
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where Ψ is the stream function to be determined, α and β are confidence weights, φ is the

geopotential, J is the Jacobian operator, λ is a Lagrange multiplier, ds is an area element on

the sphere, and V is the velocity field, while the tilde ()̃ denotes objectively analyzed fields.

M = 0 is the equality constraint of the vanishing of the non-linear balance equation.

M(φ, Ψ)− f∇2Ψ +∇f · ∇Ψ + 2J (UΨ, VΨ)−∇2φ = 0 (29)

In this approach a mutual adjustment of the wind and mass fields is achieved while

attempting to satisfy exactly or approximately the classical non-linear balance equation

constraint. More recently with the advent of more general balance relationships such as

the non-linear normal mode initialization (N.M.I.), variational initialization procedures have

been put forward attempting to achieve an adjusted state that

a) is on a presumed slow manifold,

b) fits the good data (high accuracy or high confidence data) as well as possible and fits

poor data (low confidence data) less exactly.

Daley (1978) proposed a variational formalism for the constrained normal mode initial-

ization of the shallow water equations and posed it as the minimization of the functional

I =

∫ ∫

z

[
(V0 − Vc)

2 Wv + (φ0 − φc)
2 Wφ

]
dA (30)

where
∫ ∫

dA is an integral over the atmosphere, V0 and φ0 indicated the observed values

of velocity and geopotential fields, Vc and φc the values after constrained initialization, and

Wv, Wφ the confidence weights.

In the variational formulation, Daley (1978), minimizes (30) subject to the constraint

that the final state lies on the “slow” manifold. This constraint is approximated by requiring

the satisfaction of the Machenhauer NMI balance condition.

Z=
Rz(Zc, Yc)

2ΩiΛz
(31)

where Yc and Zc are the projections of the Rossby and gravity modes respectively, after ad-

justment has taken place, and Λz are the high frequencies. The later constraint is applied to

the functional (31) by means of Lagrange’s multipliers and the augmented functional is then

minimized, leading to a set of Euler-Lagrange equations. One can show that unconstrained
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N.M.I. initialization is a special case of constrained initialization using a particular choice of

confidence weights Wφ and Wv.

The Daley (1978) procedure was iterative, because, once the rotational Rossby modes

are changed by the Euler-Lagrange equations the gravitational manifold is no longer in

balance. One has to iterate the procedure, replacing the gravitational manifold projection

with the balance condition for the current rotational manifold projection.

Tribbia (1982a, 1982b) generalized the Daley approach by reducing the minimization to

a series of linear least-square problems through an asymptotic expansion. He also allowed for

longitude/latitude variable weights for a simple barotropic model. Using variational N.M.I.

for four-dimensional data assimilation (Daley and Puri (1980)) noticed that the problem of

minimization becomes difficult once the weights have full spatial variability.

Puri (1982) used constrained non-linear N.M.I. in an attempt to minimize mass loss in

the ANMRC (Australian Numerical Meteorology Research Center) data assimilation scheme.

Algorithmically his procedure followed the Daley (1978) approach and only the specification

of weights was determined following the relative importance given to a particular field.

Phillips (1981) pointed out that large-scale meteorological analysis programs should

concentrate on analyzing slow mode fields and to this purpose, observations must have their

fast mode fields subtracted from them before they are used in the analysis.

Bourke and McGregor (1983) applied a variational constraint method involving con-

strained minimization of the changes in surface pressure while satisfying balance conditions

of a non-linear vertical mode initialization scheme for a limited area baroclinic primitive

equations prediction model. The variational constraint was introduced in order to prevent

any changes in surface pressure occurring during initialization.

A pressure maintaining scheme formulated as a variational Euler-Lagrange problem has

also been tested by Bourke and McGregor (1983).

A variational normal mode initialization using the variational formalism of Daley (1978)

was employed by Puri (1983) with variable weights as a function of latitude. He then applied

this scheme to a multi-level model by treating each vertical mode independently. Different

weights were specified for each vertical mode.
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It was found that unless the spatial variation of the weights is artificially simple, the

solution of the variational problem is difficult for a model with a realistic number of degrees

of freedom. This is because while the initialization itself is performed in normal mode space,

the variation of the weights is carried out in physical space.

Temperton (1984) applied normal mode initialization to the European Center for

Medium Range WeatherForecasting (ECMWF) multi-level grid point model minimizing an

integral of the changes made by the initialization to the analyzed mass and wind fields,

suitably weighted to control relative magnitudes of the adjustment to these fields.

The 3-D variational problem takes the form

Iv =

∫ +π
2

−π
2

∫ 2π

0

∫ 1

0
Wv

[
(∆u)2 + (∆v)2

]
dp dλ cos θ dθ (32)

where ∆u and ∆v are changes made to the u and v fields and Wv is the confidence weight

for the analyzed wind.

If the vertical modes have been chosen to be orthogonal then the variational integral for

each vertical model can be expressed as

I(l) =

∫ +π
2

−π
2

∫ 2π

0

{
Wv

[
(∆u)2l + (∆v)2l

]

+(gD)−1
l Wh

(
∆P

)2
l

}
dλ cos θ dθ

(33)

where Dl is the equivalent depth of the vertical model l, and where ∆u and ∆v are changes

made to the vertical normal mode coefficients and ∆P is the change made to the vertical

normal mode coefficient of the auxilliary variable P .

Temperton (1984) has shown that the problem of minimizing the cost functional can be

reduced to a linear least squares problem solved in a very efficient way. Temperton (1984)

tried different weight combinations for Wv and Wλ as well as assessing the impact on a

subsequent 5 days forecast of both unconstrained non-linear N. M. I. as well as variational

N. M. I. with different Wλ and Wv confidence weights. The forecast results turned out to

be extremely similar and all rather successful in predicting major changes over 5 days.

In a later paper Temperton (1985) presented the concept of a variational implicit non-

linear N.M.I. which can considerably simplify the application of variational constraints to the

initialization procedure. The implicit N.M.I. method proposed by Temperton (1985, 1988)
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allows the performance of non-linear N.M.I. without explicitly knowing the normal modes

at all.

Tseng (1985) presented a classical variational initialization where the linear balance

equation was used as a constraint to adjust the mass and wind fields simultaneously while

the determination of confidence weights is done by the formulas

α =
2(

σ2
u + σ2

v

) , β =
1

σ2
ϕ

(34)

where

σ2
u =

(
u− ũ2

)2
, σ2

v =
(
v − ṽ2

)2
, σ2

ϕ =
(
ϕ− ϕ̃2

)2

where ũ, ṽ are the observed horizontal wind components and ϕ̃ is the observed geopotential,

and the overbar represents the average over all grid points.

A variational initialization procedure based on the bounded derivative method has been

proposed by Navon and Semazzi (1986, 1987). It concerns the application of the bounded

derivative method for initializing the exterior vertical mode of the GLAS barotropic model

(Takacs, 1986). The minimization of a cost functional including full variability of weights as

a function of longitude and latitude is carried out using an Augmented Lagrangian method

(Navon and de Villiers (1983)). The cost functional of the constrained bounded derivative

initialization includes as constraints the bounded derivative method height and divergence

constraints (see Kasahara (1982), Semazzi and Navon (1986)).

5. Optimal Control Techniques

5.1. General Results

Optimal control methods for distributed systems have been extensively studied and

applied in many areas such as mechanics, economics, engineering, oceanography, etc.

Due to the fact that the formalism of optimal control problems includes the minimization

of a functional, the cost function, they are variational methods and as such their numerical

solution requires the computation of the gradient of the cost functional with respect to the

state variable.

In many cases, the cost function is only an implicit function of the state variable which

may be an initial condition or a boundary condition. Therefore, more sophisticated mathe-

matical techniques must be used for estimating the gradient. One such particular method,
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the adjoint model technique, was specially developed for this purpose. A difficulty of this

approach is the necessity to write well-posed problems and to carefully specify the functional

framework of the variational problem.

We assume that the state of the atmosphere is described by a variable X belonging to

some Hilbert space H (of finite or infinite dimension) and by a model written as

F (X) = 0 (35)

We suppose that X may be split into two parts, Y and U , each part belonging to the

Hilbert spaces Y and U , respectively.

Therefore, (35) may be written as

F (Y, U) = 0 (36)

where U is the control variable, chosen in such a way that for each given U , Eq. (36) has a

unique solution Y (U).

In this way we may define G by

G : Y → U

and for each U belonging to U . Then

G(Y ) = U (37)

has a unique solution in Y .

Furthermore, we will assume that for each Y belonging to Y , ∂F
∂Y (Y ) is an isomorphism

from Y to U .

Therefore, it is possible to define an inverse function Φ such that:

Φ : U → Y
U → Φ(U) = Y

verifying
Φ(G(Y )) = Y

Φ′(U) =

(
∂F

∂Y
(Φ(U)

)−1 (38)
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Another Hilbert space has to be defined: the space of observations Θ in which an

observation Zobs is given. As pointed out, the observation is not necessarily a physical one,

and it is not supposed to verify the equations of the model.

Let C be a linear operator from the space of the state variable to the space of observa-

tions; for each value of the control U we associate a state of the atmosphere Y (U) and an

observation

Z(U) = CY (U). (39)

The cost function J(U) is a measure of the distance between the state associated to the

control U and the observation. It is defined by:

J(U) =
1

2
‖CY (U)− Zobs‖2Θ (40)

Therefore, the problem is to determine the optimal control variable U∗ defined by

J(U∗) = min

U

J(U). (41)

From a theoretical viewpoint, the system of optimality giving U∗ is dependent upon the

gradient of J with respect to U .

From a numerical viewpoint, U∗ may be estimated by an iterative method starting from

a first given U0. In the same way, the numerical implementation of the iterative method

requires the computation of the gradient of J with respect to U .

For deriving the gradient, a systematic method is the following:

i) Let V be some variable belonging to U ; then the directional derivative of J in direction

V will verify

J ′(U, V ) = ∇J(U) · V =
(
C ′(Y ) · V · C(Y )− Zobs

)
Θ

=
〈
C ′(Y )V, ΛΘ (C(Y )− Zobs)

〉
Θ′,Θ

(42)

where ΛΘ is the canonical isomorphism between Θ and its dual space Θ′, and 〈·, ·〉
denotes the duality between Hilbert spaces.

ii) Let R be a linear operator from Y to U , we define its dual operator to be the operator

R∗ from U ′ to Y ′ defined by

〈
R · Y , U ′

〉
U =

〈
Y, R∗ · U ′〉Y (43)
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Using the dual operator of C ′ in (42) gives

∇J(U) · V =
〈
V, C ′(Y )∗Λ0 (C(Y )− Zobs)

〉
U ,U ′ (44)

iii) Let us now define the adjoint system by
(

∂F

∂Y

)∗
P = −C ′(Y )∗ΛH (CY (U)− Zobs) (45)

Then

∇J(U) · V =

〈
V,

(
∂F

∂Y

)∗
· P

〉

U ,U ′
(46)

∇J(Y ) · V =

〈
∂F

∂Y
· V, P

〉

Y,Y ′
(47)

J is a functional defined on the space U , so its gradient belongs to the dual space

U ′. Theoretically, it is always possible to identify a Hilbert space to its dual. However, in

practical problems there exist inclusion relations between the spaces used here, and when a

space has been identified to its dual, it is no longer possible to identify subspaces with their

duals.

In the practical phase of optimal control methods we were always operating in finite-

dimensional spaces where no such problems exist.

Therefore Eq. (47) permits us to compute the gradient of J , applied to the direction V

by:

1) determining P , the adjoint variable, as the solution of the adjoint system (46).

2) applying Eq. (47).

From this abstract situation let us extract two more practical examples enabling us to

see how the gradient is computed. For an initial condition problem we will consider the case

where the control variable is the initial condition, while for a boundary value problem we

will see how to compute the gradient when the control variable is the value on the boundary.

5.2. Control of the Initial Condition

After a spatial discretization, we will assume that the state of the atmosphere, modelled

by a vector Θ is verifying for the time interval [0, T ] the equation:

dΘ(t)

dt
= H(Θ(t)) (48)
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where Θ(t) belongs to a finite dimensional space.

With an initial condition Θ(0) = µ, Eq. (48) has a unique solution Θ(µ, t).

For the sake of simplicity, we will assume that a continuous observation Θ̃, in time, is

given on the time interval [0, T ]. The distance between a solution of (48) and the observation

is defined by

J(µ) =
1

2

∫ T

0

∥∥∥Θ(µ, t)− Θ̃(t)
∥∥∥

2
dt (49)

where ‖ · ‖ is the Euclidian norm in finite dimensional space. With respect to the general

theory developed above the space of the state variable is the same as the space of the

observations. In practice, the observations are pointwise in both space and in time, therefore,

Dirac’s measures have to be introduced in the definition of J .

The derivation of the gradient of J with respect to µ is obtained as follows:

Let ν be some element belonging to the space of the initial conditions. The directional

derivative of Θ in direction ν is defined by

Θ̂(µ, ν) = lim
α→0

Θ[(µ + α), t]−Θ(µ, t)

α
(50)

where Θ̂(µ, ν) is the solution of the differential system:

dΘ̂(µ, ν)

dt
=

∂H

∂Θ
[Θ(µ, t)] · Θ̂(µ, ν)

Θ̂(0) = ν

(51)

obtained by writing (48) with initial condition µ, then with initial condition µαν and by

letting the scalar α tend to zero. In (51) the expression ∂H
∂Θ denotes the Jacobian of H.

the directional derivative of J in direction ν is obtained by taking the derivative of (49)

leading to:

J ′(µ, ν) =

∫ T

0

(
Θ̂(µ, ν, t), Θ(µ, t)− Θ̃(t)

)
dt (52)

Let ψ be the dual variable to Θ, ψ is defined as the solution of the adjoint system to

(48) given by

dψ

dt
(µ, t) +

[
∂H

∂Θ
Θ(µ, t)

]T

· ψ(µ, t) =
(
Θ(µ, t)− Θ̃(t)

)

ψ(T ) = 0

(53)
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Let us write the scalar product of (52) with Θ̂, then by integrating from 0 to T , we

obtain:

J ′(µ, ν) =

∫ T

0

(
dψ

dt
+

[
∂H

∂Θ
Θ(µ, t)

]T

· ψ(µ, t), Θ̂(µ, ν, t)

)
dt (54)

The time derivative in (53) is integrated by parts and then by using (51) we obtain:

J ′(µ, ν) = ∇J(µ) · ν = ψ(µ, 0) · ν (55)

Therefore, the gradient of J is obtained as the value at time zero of the dual variable.

The backward integration of the adjoint system from T to 0 permits us to estimate the

gradient of the cost functional and to perform a descent-type method.

An important remark for potential applications of control methods is the fact that with a

different cost function only the right hand side of (53) has to be changed. The main difficulty

encountered for programming optimal control methods is to write the left hand side of (53).

This one is independent of the cost function and is intrinsic for a given model. Once it

has been written and derived it can be used for other purposes such as data assimilation,

initialization, sensitivity analysis, etc.

5.3. Control of the Boundary

For the sake of simplicity, we will suppose that on a domain Ω, of boundary Γ, some

field is verifying the Laplace equation

∆U = f (56)

Together with a boundary condition U/Γ = V , (56) has a unique solution, U(V ).

Let T be a set of points belonging to Ω, where some observations Ũ of U are performed.

T = {Z1, Z2, . . . , ZN} (57)

The cost function is defined by

J(V ) =
1

2

N∑

i=1

(
U (V, Zi)− Ũ (Zi)

)2
(58)
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the directional derivative U of U in a direction H is the solution of

∆U(H) = 0

U(H)/Γ = H
(59)

and the directional derivative of J verifies

J ′(V, H) =
N∑

i=1

(
U (Zi) , U (V, Zi)− Ũ (Zi)

)2
. (60)

The adjoint system to (58) is introduced with P the dual variable to U .

∆P =
N∑

i=1
U (V, Zi)− Ũ (Zi)

P/Γ = 0

(61)

As above (61) is multiplied by U (H, Zi) integrated on Ω, and after an integration by

parts we find

∇J(V ) =
∂P

∂n
/Γ (62)

∂P
∂n is the normal derivative of P on the boundary Γ. The estimation of the gradient for

carrying out a descent-method requires the estimation of the gradient of J , which is obtained

by solving the adjoint system (61).

Let us point out that this case is especially simple due to the fact that the Laplacian

operator is self-adjoint. Therefore, a Laplace’s equation solver may be used to solve both

the direct and the adjoint problem.

This problem could have been solved using a classical variational formalism, for instance

with a weak constraint formalism we would have to minimize the functional

J(U) =
1

2

∑(
U (Zi)− Ũ (Zi)

)2
+

1

C

∫

Ω
(∆U − f)2 dy. (63)

The Euler-Lagrange equation for (63) is a fourth order partial differential equation

with complicated boundary conditions. From a numerical viewpoint the size of the discrete

problem associated with (63) is equal to the number of grid points in the discrete point of

view domain Ω.
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By comparison, for the optimal control approach the dimension of the problem to be

solved is only equal to the number of points on the discrete boundary. In this way we have

obtained a significant reduction of the size of the problem.

5.4. Optimal Control Methods in Meteorology

Optimal control methods using the initial condition as control variables have been used

by Lewis and Derber (1985) employing a forecast model in the form

∂q

∂t
+ J(ψ, q) + β

∂ψ

∂x
= 0 (64)

where q is the partial differential operator

q =

(
∇2 +

∂

∂p
· f2

0
σ
· ∂

∂p

)
ψ, (65)

ψ is the geostrophic stream function, β the meridional variation of the Coriolis parameter,

and J is the Jacobian operator.

The cost function chosen is in the form

J =
P∑

p=1

N∑

n=1

(
ψ

(
tp

)− ψ̃
(
tp

))2
(66)

with ψ̃ representing the analyses created from a primitive equation model.

The model is discretized in five levels on a 23 × 28 Lambert conformal grid with a

resolution of 135.2 km at the standard latitudes. The analyses of the primitive equation

model were inserted over two intervals, the first, a six hour interval and the second a complete

twelve hour interval of the analysis period. The numerical results show (Derber (1987)) that

the convergence rate is a function of the length of the assimilation period rather than a

function of the density of data.

Courtier (1986) used the shallow water equations to test data assimilation with optimal

control. The shallow water equations in this application were written with vorticity ξ and

divergence η variables, assuming the form

∂ξ

∂t
= J

(
ξ + f, ∆−1ξ

)
−∇ ·

(
(ξ + f)∇∆−1ξ

)
−∆Φ−∆K (67)

∂η

∂t
= J

(
ξ + f, δ−1η

)
+∇ ·

(
(ξ + f)∇∆−1ξ

)
− δΦ−∆K (68)

∂Φ

∂t
= J

(
Φ, ∆−1ξ

)
−∆ ·

(
Φ∇∆−1η

)
(69)

and K =
1

2

(
∇∆−1ξ · ∇∆−1ξ +∇∆−1η + 2J, ∆−1η

)
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where J is the Jacobian operator.

The cost function J used is in the form

J = a · Jh + Jv (70)

Jh and Jv are the sums of the squares of the difference between the observed values and

the model values. The discretization in space is performed using spherical harmonics with

triangular truncation at order 21. The time integration of the discrete scheme has been car-

ried out with a semi-implicit leapfrog scheme. The assimilation experiments were performed

with wind and geopotential at 500 mb for a period of 24 hours. The numerical results show

a good ability of these methods to retrieve dynamical fields from observations.

For a small scale model, methods of optimal control have been used by Le Dimet and

Nouailler (1985). The model which is used corresponds to the study of a squall line on a

60km× 60km area. With u, v, w being the components of the wind speed and p being the

atmospheric pressure, the model is written

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂w

∂z
− fv + ρ−1

0
∂p

∂y
+ CD|U |U = 0 (71)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu + ρ−1

0
∂p

∂y
+ CD|U |v = 0 (72)

∂p

∂t
+ Cx

∂p

∂x
+ Cy

∂p

∂y
+ k · divU = 0 (73)

where CD is a drag coefficient, |U | =
(
u2 + v2)1/2

, Cx and Cy are advective velocities of

the squall line estimated from radar observations. Terms of vertical transport have been

evaluated from the observations of a network of 18 stations measuring at the ground the

wind and the atmospheric pressure stations every 30 seconds for some stations and every

2minutes 30 seconds for the others. Spatial discretization has been performed using a finite

difference scheme with a 3 km gridsize in both directions. The time integration scheme was

a leapfrog scheme. The numerical results were obtained by carrying out a method of opti-

mization without constraint, intermediate between the conjugate gradient and quasi-Newton

method (Lemarechal (1980), Lemarechal and Servigne (1984)), based on the Buckley-Lenir

(1983,1985) method. The descent procedure exhibits a fast decrease of the cost function in

the first few iterations, then becoming slower for the subsequent iterations. This is a com-

mon feature to all optimization methods which have been applied to minimize the gradient

of the cost functional with respect to the initial conditions.
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A main advantage of optimal control methods is to retrieve meteorological fields in

conformity with the dynamics of the atmosphere modelled by a system of partial differential

equations. Of course if the model used is not filtered (i.e.a primitive equations model), then

the optimal solution may include gravity waves, especially if the data are noisy or contain

some undue oscillation.

There are several ways to prevent the development of gravity waves in the optimal

solution for the 4-D data assimilation problem.

The first method (Courtier (1985)) is to add to the cost function a penalty term.

For instance if the model is written as

dX

dt
= F (X) (74)

with initial condition X(0) = U , where X represents the meteorological variables. Then the

cost function may be written as:

J(U) =

∫ T

0
‖X(U, t)−Xobs(t)‖2 dt +

1

ε

∫ T

0

∥∥∥∥
dX(U, t)

dt

∥∥∥∥
2
dt (75)

This transformation of the cost function may add only slightly to the computational

cost, but nevertheless it has two main inconveniences:

a) using a L2 norm does not prevent very fast and timewise localized variations of the

term.

b) the optimal solution depends upon the value chosen for ε.

The questions to be answered are:

1) based on which physical considerations should ε be chosen?

2) to what extend is the optimal trajectory sensitive to the solution?

An alternative method is to use a regularization-penalization method (Le Dimet, Sasaki,

and White (1982)). the amplitude of the fast movement is supposed to be limited by some

given constant H. In the formalization of the control problem, we introduce the following

constraint on the state, requiring it to verify the following inequality

∥∥∥∥
dX

dt
(U, t)

∥∥∥∥
2
≤ H (76)
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Therefore, (76) constitutes a pointwise constraint on the trajectory. The numerical

solution of this problem of control with constraints is obtained by solving a sequence of

unconstrained control problems with the cost function given by

J(U) =
1

2

∫ T

0
‖X(U, t)−Xobs‖2 dt +

1

ε

∫ T

0
g

(∥∥∥∥
dX(U)

dt

∥∥∥∥
)

dt (77)

where g is a function defined by

g : RI → RI

g(Y ) = 0 if |Y | ≤ H

=
1

2
(Y −H)2 if |Y | ≥ H.

(78)

Using such methods may prevent the need to perform a more sophisticated initialization,

but more numerical experiments have to be carried out in order to evaluate the performance

of these techniques for real data.

From the experience already accumulated using optimal control methods applied to

meteorological problems it can be concluded:

i) In few iterations the retrieved fields are coherent with respect to the data.

ii) The numerical procedures are very sensitive to the quality of the gradient, therefore, the

adjoint system has to be very carefully written and derived. For every operation done

on the direct system, the respective adjoint must be carried out on the adjoint system.

Writing the adjoint of a system is a costly operation but it can be made more profitable

if it is used in conjunction with other studies such as that of sensitivity analysis or evaluation

of unknown coefficients i.e.parameter estimation.

5.5. Application of Sensitivity Analysis

In the above section the cost function has been presented as a measure of the difference

between the solution of a model and the observations.

This interpretation can be extended to any cost function which would be the scalar

response of the model to an external forcing, modelled in the cost function. The only

restriction imposed, bears on the derivability of the cost function. The adjoint model is the

same, and only the right hand side has to be changed for performing these studies.
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This method has been applied by Hall, Cacuci and Schlesinger (1982) for the shallow

water equations.

In a similar way, the adjoint of an atmospheric model is extensively used by Marchuck

(1982) for environmental studies and especially for estimating the impact of industrial plants

on the environment.

Some optimal control methods have also been used in oceanography (see for instance

Reinhart (1985)). In his application, the boundary condition is the control variable and the

method is applied for determining the optimal location of sensors.

5.6. Application for Parameter Identification

Many meteorological models contain numerical parameters which cannot be directly

measured and are empirically estimated such as turbulent diffusion coefficients, drag-

coefficients, etc. In the large majority of cases they represent subgrid effects and are, there-

fore, estimated and parameterized based on numerical considerations rather than on physical

ones.

A way to properly estimate these parameters is to use them as control variables in a

procedure of analysis. If the model may be written as

dX

dt
(U,K) = F (X, K)

X(0) = 0

(79)

where K is some unknown and steady state coefficient. The cost function may then be

defined by

J(U,K) =
∥∥∥X(U,K)− X̃

∥∥∥
2

(80)

where X̃ is the observation.

As above, the gradient of J with respect to U and K will be computed by using the

adjoint system to (80). Such a method has been used by Lamb, Chen, and Seinfeld (1975)

for estimating coefficients of diffusion and by Le Dimet (1981) for the computation of a

drag-coefficient in a two-dimensional model.
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6. Variational Methods Applied for Numerical Purposes

Variational methods have been used mainly for static and dynamic situations in me-

teorology. Another use for variational methods resulting in a global approach was the ‘a

posteriori’ enforcement of integral invariants in numerical models.

Such methods were first proposed by Sasaki (1975, 1976, 1977) and Bayliss and Isaacson

(1975), Isaacson (1977), and Isaacson et al. (1979). Independently Sasaki (1976) proposed

a functional of the form

J =
∑[

α (u− ũ)2 + α (v − ṽ)2 + β
(
h− h̃

)2
]

+ λE

{∑[(
h

2

)
·
(
u2 + v2

)
+

(g

2

)
h2

]
− T 0

} (81)

where u and v are the x and y components of the velocity, h is the elevation of free water

surface measured from the mean height, α and β are weights while T 0 is the total energy at

time t = 0, λE is a Lagrange multiplier, constant with respect to time, but possibly variable

in time. ũ, ṽ, and h̃ are the values predicted for the (N + 1)th time-step using a numerical

weather prediction finite-difference discrete model.

Sasaki (1976) applied his method for the non-linear shallow-water equations on a rotat-

ing plane by solving iteratively the resulting Euler-Lagrange equations and obtained satis-

factory numerical results. We will describe his method in ample detail in another subsection.

Bayliss and Isaacson (1975) proposed independently a method making it possible to modify

any given finite-difference scheme so as to ensure exact conservation of integral invariants.

In their approach, Bayliss and Isaacson (1975) linearized the constraints about the predicted

values.

The essence of their theoretical framework can be described as follows:

Assume we have an initial boundary value partial differential equation problem for the

vector u

ut = B(u) (82)

and that the solution u to (82) satisfies K integral invariants

gk(u) = 0 k = 1, 2, . . . , K. (83)
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If we discretize the integral invariant constraints we obtain

GK

[
Un

ij

]
= 0 k = 1, 2, . . . , K (84)

where Un
ij is a net function defined at the grid points (xi, yj , tn) and Un

ij = U(xi, yj , tn)

approximates U(xi, yj , tn).

At time tn+1, the difference operator solving for the vector u (for instance u = (u, v, φ)T

for the shallow-water equations) has the form

W (n + 1)− C [W (n),W (n− 1), . . . ,Wn − s)] = CW (n) (85)

where W (n) is a net function at time tn.

We wish to modify the finite-difference scheme (85) in such a way as to produce a

grid function U(n + 1) which will satisfy (84) – the discrete approximation of the integral

invariants (83).

In other words, a corrective net function V (n + 1) is to be found such that

U(n + 1) = CU(n) + V (n + 1)

Gk [U(n + 1)] = 0 k = 1, 2, . . . , K

min ‖V (n + 1)‖
(86)

and such that the norm of the perturbation V (n + 1) is as small as possible

i.e.min ‖V (n + 1)‖. The determination of V (n + 1) is a calculus problem of finding a net

function that satisfied K simultaneous non-linear equations (86) and is of minimum norm

(Isaacson (1977)).

Bayliss and Isaacson (1975) proposed to solve (86) by linearizing the discrete invariants

Gk [U(n + 1)] about the predicted value CU(n) which can be written as

GK [U(n + 1)] = GK [CU(n) + V (n + 1)]

≈ GK [CU(n) + gradGK · V (n + 1)]

= GK [CU(n)] +
∂GK

∂U(n + 1)

∣∣∣∣
U(n+1)=CU(n)≡LK(V (n+1))

· V (n + 1)

(87)

For a full implementation of the method, see Kalnay et al. (1977) and Navon (1987).

6.1. The Constraint-Restoration Method
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Miele et al. (1968, 1969) proposed a constraint restoration method based on a least-

square change of the coordinates in the state vector.

Their method assumes at the start that the vector x

x
(
ũn

11 . . . ũn
NxNy

, ṽn
11 . . . ṽn

NxNy
, h̃n

11, . . . h̃
n
NxNy

)T
(88)

at the time n∆t is in the vicinity of the optimal point x∗ which satisfies exactly K discrete

equality constraints given by

φ (x∗) = 0 (89)

where

φ(x) =




φ1(x)
...

φK(x)


 K ≤ 3NxNy = N (90)

where N is the number of components of the vector x.

If x̃ is a varied point related to the minimal point x by

x̃ = x + δx (91)

where δx is a perturbation of x. By using quasi-linearization, Eq. (89) is approximated by

φ(x) + AT (x)δx = 0 (92)

where A is the (N ×K) matrix

A(x) =




∂φ1

∂x1
. . . ∂φK

∂x1
...

. . .
...

∂φ1

∂xN
. . . ∂φK

∂xN


 (93)

where the j-th column is the gradient of the integral constraint φj with respect to the vector

x.

If the vector x is an approximation to the desired solution, we wish to restore the K

constraints (89) while causing the least change in the vector x components.

This means we wish to minimize the function

J =
1

2
δxT δx (94)

subject to the linearized constraint (92).
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Using standard methods of theory of maxima and minima, the fundamental solution of

this problem is given by

F − 1

2
δT xδx + λT

[
φ(x + AT (x)δx

]
(95)

where λ is a K component Lagrange multiplier vector to be determined.

The optimum change δx is obtained when the gradient of F with respect to δx vanishes,

i.e.

δx = −A(x)λ. (96)

Using Eqs. (95) and (96) we obtain an explicit expression for the Lagrange multiplier

vector

λ = B−1(x)φ(x) (97)

where

B(x) = AT (x)φ(x) (a K ×K matrix). (98)

so that

δxopt = A(x)B−1(x)φ(x) (99)

For a practical implementation of the method see Navon (1987), Miele et al. (1968,

1969, 1971).

The Bayliss-Isaacson algorithm and the constraint restoration method have been proven

to be equivalent (Navon (1987b)), however, these methods of ‘a posteriori’ enforcing of in-

tegral constraints do not exactly replicate the Arakawa (1966), and Arakawa and Lamb

(1977,1981) ‘a priori’ methods as shown in a study by Takacs (1988). While successfully

conserving total energy and potential enstrophy, these methods seem to require the formu-

lation of an additional constraint of mean wave number conservation (yet to be formulated)

without which they introduce distortion in the energy spectra transfers as evidenced in the

experiments with NASA/GLA shallow-water equations model (Takacs (1986, 1988)).

6.2. Other Approaches for Enforcing ‘a posteriori’ Conservation of Integral In-

variants

Sasaki (1975, 1976, 1977) proposed a variational approach for enforcing ‘a posteriori’

integral invariants in a finite-difference model for an initial-value problem which consisted of

a model of the shallow-water gravity waves on a rotating plane.
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For the shallow-water equations an energy conservation law was written in a finite-

difference analog as

TE =
∑(

h

2

)
·
(
u2 + v2

)
+

(g

2

)
· h2 = T 0

where u and v are the 2 components of velocity, h is the depth of the fluid, T 0 is the value

of the total energy TE at time t = 0.

If h̃, ũ, and ṽ are the values predicted for the (n + 1)th time level by using a set of

finite-difference equations discretizing the shallow-water equations, the variational problem

can be formulated in terms of a cost functional as

J =
∑[

α̃ (u− ũ)2 + α̃ (v − ṽ)2 + β̃
(
h− h̃

)2
]

+ λE

{∑[(
h

2

)
·
(
u2 + v2

)
+

(g

2

)
· h2

]
− T 0

} (100)

where the relative weights α̃ and β̃ are chosen so as to make the fractional adjustment of

variables proportional to the fractional magnitude of the truncation errors in the predicted

variables.

The stationary value of the functional results from setting its first variation to zero.

The resulting Euler-Lagrange equations are

2α̃ (u− ũ) + λE · hu = 0

2α̃ (v − ṽ) + λE · hv = 0

2β̃
(
h− h̃

)
+ λE

[(
u2 + v2)

2

]
+ λE · gh = 0

and
∑ [(

h

2

)
·
(
u2 + v2

)
+

(g

2

)
· h2 − T 0

]
= 0.

(101)

The numerical solutions of u, v, h, and λE are obtained using an iterative technique.

Navon (1981) used an extension of Sasaki’s approach to enforce conservation of potential

enstrophy and mass in a long-term integration of two ADI finite-difference approximations

of the non-linear shallow-water equations on a limited-area domain on a rotating β-plane.

The Sasaki method was compared to the Bayliss-Isaacson method and the Bayliss-Isaacson

method was found to be more robust and less demanding of CPU time. The filtering tech-

nique of Kalnay-Rivas et al. (1977, 1979) using GLAS fourth order global atmospheric model

was also considered.
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6.3. The Augmented-Lagrangian Method

Another novel approach was proposed by Navon and de Villiers (1983) consisting of

applying an Augmented-Lagrangian method for enforcing conservation of integral invariants.

Using a similar functional as Sasaki (1976)

f =

Nx∑

j=1

Ny∑

k=1

[
α̃ (u− ũ)2 + α̃ (v − ṽ)2 + β̃

(
h− h̃

)2
]

ij

Nxδx = L

Ny∆y = D

(102)

where L and D are respective dimensions of the rectangular domain, we define an

Augmented-Lagrangian function L by

L (x, u, r) = f(x) + uT e(x) +
1

2r
|e(x)|2 (103)

where

x =
(
ũn

11 . . . ũn
NxNy

, ṽn
11 . . . ṽn

NxNy
, h̃n

11 . . . h̃n
NxNy

)T
(104)

subject to equality constraints

e (x) = 0 (105)

where e (X) is a vector of three non-linear quantities given by

e(x) =

{
En − E0

Zn − Z0

Hn −H0
(106)

where

En =
1

2

Nx∑

j=1

Ny∑

k=1

[
h̃

(
u2 + v2

)
+ gh̃2

]n

jk
∆x ∆y

Zn =
1

2

Nx∑

j=1

Ny∑

k=1

[ ∂ṽn

∂x − ∂ũn

∂y + f

h̃

]2

jk

Hn =

Nx∑

j=1

Ny∑

k=1

h̃jk∆x ∆y

(107)

where Dn, Zn, and Hn are the values of the discrete integral invariants of total energy,

potential enstrophy, and mass at time tn = n∆t while E0, Z0, and H0 are correspond-

ing values of the same integral invariants at time t = 0, and u = (u1 . . . um) is an m-

component Lagrange multiplier vector, while r is a penalty parameter. The basic idea of
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the Augmented-Lagrangian method is to solve the constrained minimization problem by

transforming this problem into a sequence of unconstrained minimizations of the following

Augmented-Lagrangian

min Lrk (x, uk) = f (x) +
n∑

i=1
ui

kei (x) +
1

2rk
|e (x)|2 (108)

The theory is explained in Bertsekas (1975, 1982) and is expressed in the following proposi-

tion:

Proposition (Bertsekas (1975))

For k = 0, 1, . . . , let xk be a global minimum of the problem

min Lrk

(
x, uk

)
(109)

subject to

x ∈ RI n

where |uk| is bounded and 0 < rk+1 < rk for all k and rk → 0.

Then every limit point of the sequence {xk} is a global minimum of f subject to the

equality constraints e (x) = 0. The method consists in a sequence of unconstrained min-

imizations of the augmented-Lagrangians Lrk (x, uk). Given a multiplier vector uk and a

penalty parameter rk we minimize Lrk (x, uk) over RI n and obtain a vector xk. The variable

uk, the vector of Lagrange multipliers and the penalty parameters are held fixed during

the minimization and then updated prior to the next unconstrained minimization for which

powerful conjugate-gradient methods are used (see Navon and Legler (1987)).

The algorithm is typically terminated at a point xr where

|∇xLrk (xk, uk)| ≤ εk (110)

or

εi (xk) < ε′k i = 1, . . . ,m (111)

where εk and ε′k are small positive scalars.

One can use an inexact minimization by demanding only a moderate accuracy in the first

unconstrained minimizations of the Augmented-Lagrangian and increasing the accuracy at

42



later iterations by using a preselected decreasing sequence {ηk}, tending to zero. In practice

a schematic Augmented-Lagrangian algorithm proceeds as follows:

a) Select initial vector of Lagrange multipliers u0 based on either prior knowledge or start

with a null vector in absence of such knowledge.

Select penalty parameters ri
0 > 0 and a decreasing sequence {ηk} with η0 ≥ 0.

Step 1: Given a multiplier vector uk, penalty parameter ri
k and ηk, find a vector xk

satisfying

‖∇kLrk (xk, uk)‖ ≤ {ηk}
∥∥e

(
xk

)∥∥ (112)

by using a conjugate-gradient method to solve the inexact unconstrained minimization job.

Step 2:

If |εi (xk)| < εi i = 1, . . . , m Stop.

Otherwise, proceed to Step 3.

Step 3: update the multiplier vector using

ηk+1 = ηk + r−1
k · ε (

xk

)
. (114)

Update and select penalty parameters ri
k+1 ∈

(
0, r1

k

)
(see Navon and de Villiers (1983)).

Select ηk+1 ≥ 0 following a formula of the type

ηk = (`)k 0 < ` < 1 (115)

and return to Step 1.

Three to four cycles were generally required to obtain satisfactory results.

6.4. Other Variational Methods

Similar approaches were used by Schneider (1984) to answer to problem of the effect of

horizontal eddy momentum fluxes on the equilibrium zonal mean motions. Specifically, one

minimizes various globally integrated quantities such as ZKE, the zonal kinetic energy, or

ZKE + ZAPE, where ZAPE is the zonal available potential energy for any distribution

of horizontal eddy momentum fluxes, (i.e.all possible distributions of u′v′) and specified

thermal forcing.
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A two-level model of the zonally averaged steady state response to the heat and mo-

mentum sources was used. The variational problem was to find the minimum (or minima)

of I where

I =

∫ y1

y0

F

(
y, v,

∂v

∂y
,
∂2v

∂y2

)
dy (116)

over all functions v(y) that satisfy the boundary conditions

v (y0) = v (y1) 6= 0 (117)

subject to an integral constraint

∫ y1

y0

G

(
y, v,

∂v

∂y
,
∂2v

∂y2

)
dy = 0. (118)

Using calculus of variations and defining

H = F + γG (119)

where γ is a constant, the extrema of I subject to the constraints results as a solution of the

Euler-Lagrange equation
d2

dy2 ·
∂H

∂ (v′′) −
d

dy
· ∂H
∂ (v′) = 0 (120)

where primes denote differentiation with respect to y and H satisfies boundary conditions

∂H
∂ (v′′) = 0 (121)

at y0 and y1.

γ is chosen so that the solution to (116) and (117) satisfies the integral constraint.

Reddy (1982) proposed a penalty function method for finite-element models of fluid

flow.

He considers the general variational problem of finding a minimum of the functional

I(u) =

∫

Ω
F

(
x, y, u, ux, uy

)
dx dy (122)

in a Hilbert space H, subject to the constraint

G(u) = 0 (123)
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where G in general is a non-linear operator fromH, into some Hilbert spaceH2. The solution

u belongs to a subspace of H1.

Usually the problem is solved by the Lagrange multiplier method which seeks stationary

values (u, λ) of the modified functional

L(u, λ) = I(u) +

∫

Ω
λG(u)dx dy (124)

on the product space HL = H1 ×H2, where λ is the Lagrange multiplier.

The penalty function method reduces problems of conditional or constrained minimiza-

tion to problems without constraints by introducing a penalty for the infringement of the

constraints. Instead of solving the original problem, one minimizes the augmented functional

Ju(u) = I(u) +
1

2
αη ‖G(u)‖2H2

(125)

on the whole of the space H for some penalty parameter αn > 0. ‖·‖H2
is the norm in H2.

A theorem due to Polyak (1971) guarantees the existence of the solution to the penalty

problem. Reddy (1981) goes to show that in finite-element models of the Navier-Stokes

equations, the type of numerical quadrature is crucial (for the penalty terms) for the success

of the penalty method for incompressible fluid flow (see also Reddy (1981)).

Sasaki and Reddy (1980) used a variant of Sasaki’s (1976) variational adjustment to

compare stability and accuracy of some numerical models of two-dimensional circulation as

well as to study the conservation of the mean-kinetic energy and enstrophy for long term

integrations.

They found out that the variational adjustment has not improved the RMS error and

in some cases made it worse, but enables the scheme to avoid computational instability.

6.5. Constrained Adjustment to Control Lamb External Gravity Waves

In many meteorological applications one is often interested in suppressing external grav-

ity waves by modifying the observed wind field in such a way that the vertical motions at

the lowest level of a three-dimensional baroclinic model vanish.

An alternative way is to regard this adjustment as a variational adjustment of the

horizontal wind field in a pressure coordinate system (x, y, p) so that the pressure tendency
dps

dt is zero everywhere, where ps is the pressure surface.
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The continuity equation in pressure coordinates is given by

∂u

∂x
+

∂v

∂y
+

∂w

∂p
= 0 (126)

Integrating this equation from the top to the bottom of the atmosphere and assuming

the vertical velocity w = 0 at both end points, we obtain (see Ramamurthy and Carr (1987))

∫ ps

0

(
∂u

∂x
+

∂v

∂y

)
dp = 0 (127)

The use of this equation as a strong constraint will ensure that

dps

dt
= 0 (128)

i.e., using the continuity equation as a strong constraint will enable us to suppress the

Lamb waves which can be viewed as noise in a meteorological model and which moreover

impose very stringent computational stability constraints on the allowable time-step ∆t. The

Augmented-Lagrangian functional, L, for which the stationary value is to be found for this

problem is:

L =

∫

x

∫

y

∫

p

[
(u− ũ)2 + (v − ṽ)2

]
dx dy dp

∫

x

∫

y

[
λ

∫ ps

0

(
∂u

∂x
+

∂v

∂y

)
dp

]
dx dy

+
1

2

∫

x

∫

y

[
C

(∫ ps

0

(
∂u

∂x
+

∂v

∂Y

))]2
dx dy

(129)

where C is a penalty term and λ is the vector of Lagrange multiplier. The same inexact

minimization of the Augmented-Lagrangian of Bertsekas (1982) is applied using a conju-

gate gradient method of Shanno and Phua (1986) for the unconstrained minimization. For

computational details see Navon, Phua, and Ramamurthy (1987).

6.6. Direct Minimization Techniques

Application of direct minimization techniques to objectively analyze meteorological

fields was used by Hoffman (1984), Legler, Navon, and O’Brien (1988), and Navon and

Legler (1987) which applied the method for objective analysis of wind stress over the Indian

Ocean. Ramamurthy and Navon (1988) applied a direct minimization technique to varia-

tional blending of GFFE level II-b fields obtained from a high-resolution objective analysis

scheme over the Indian Ocean basin with the ECMWF level III-b gridded analyses.
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The underlying idea was to enhance ECMWF global analyses with enriched regional

analyses in such a way as to retain the large-scale information from a global data assimilation

system and, at the same time, add detailed information on small scale waves in the limited

area of interest.

The functional F to be minimized is expressed as:

F =
1

L2ρ
∑
x

∑
y

∑
p

[
(u− uFR)2 + (v − vFR)2

]

+
1

L2γ
∑
x

∑
y

∑
p

[
(u− uECMWF)2 + (v − vECMWF)2

]

+ L2Γ
∑
x

∑
y

∑
p

∣∣∣∣
[
∇2 (u− uECMWF)

]2
+

[
∇2 (v − vECMWF)

]2
∣∣∣∣

+ β
∑
x

∑
y

∑
p

[∇ · (v − vFR)]2

+ α
∑
x

∑
y

∑
p

[k · ∇X (v − vFR)]2

(130)

where the subscripts FR and ECMWF stand for FGGE level II-b and ECMWF level III-

b analyses respectively, w and v are the eastward and northward components of the wind

respectively, while the coefficients ρ, γ, π, β, and α are weights which control how closely

the direct minimization fits each constraint, while L is a convenient length scale allowing

the bracketed expressions in the direct minimization functional to be of the same order of

magnitude, thus facilitating the unconstrained minimization procedure.

Thacker, Eppel, and Hauser (1986) used a finite-element advective transport compu-

tational scheme where they enforced constraints of non-negativity and conservation using a

variational multiplier method.

Using the conservation constraint the upwind scheme employed allowed Courant num-

bers larger than unity. This approach enabled the authors to derive a method of minimizing

truncation error and connect it to a finite-difference scheme. The results might, however,

suffer from the same problems as exposed in Navon (1987b) and Takacs (1988).

7. Connections Between the Variational and Optimization Method with Other

Analysis Methods for Numerical Weather Prediction

The numerical weather prediction (NWP) analysis problem is underdeterminate when

one uses observational data alone and in order to resolve the indeterminnancy one has to
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resort to four-dimensional data assimilation and use prior information to resolve the inde-

terminancy. One can formulate it by saying that the order of the NWP model Nx versus

the observations alone is Nx >> Ny. Various methods of analysis related to the problem of

determining the most adequate initial conditions for a numerical weather prediction model

have been put forward by different researchers for the objective analysis of meteorological

data.

When expressed in terms of multi-dimensional probability distribution functions (Kimel-

dorf and Wahba (1971), Wahba (1978, 1982), Ikawa (1984a, 1984b, 1984c), Pedder (1986),

Lorenc (1986), Hollingsworth (1986), Schlatter (1988)) most of the analysis methods for

NWP can be shown to be related to the variational approach as well as related to each

other.

While each method requires the design of different computationally efficient algorithms,

the fact that the methods are related through a general matrix expression whose minimum

is sought in order to maximize a probability density function gives us a better insight into

the nature of the analysis problem. In the following subsections we will briefly survey some

of the connections between variational techniques, optimal interpolation, generalized cross-

validation and smoothing splines, the Kalman-Bucy filter and universal Krieging and adjoint

model data assimilation.

7.1. The Probability Distribution Function Formulation

A new view of statistical objective analysis using Bayesian probabilities, stimulated by

the work of Phillips (1982), Lorenc (1981), and Wahba (1982) was proposed independently

by Ikawa (1984a, 1984b, 1984c) and Purser (1984).

Lorenc (1986) synthesized their views in a theoretical review paper which tied to-

gether the major meteorological analysis methods and constitutes an up to date reference.

Hollingsworth (1986) and Schlatter (1988) have also provided reviews in which statistical

objective analysis figures prominently.

The very general formulas for analysis which allow intercomparison between the different

analysis methods all start from the basic question: What is the multi-dimensional minimum

variance (maximum likelihood) of a particular atmospheric state xp defined as a grid of

a numerical weather prediction model given the numerical forecast data yp and a set of
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observations y0. The state estimator is in balance with a linear constraint and the NWP

forecast data is also assumed to be in exact balance with the linear constraint.

Using Lorenc’s (1986) formulation and the Bayes theorem which states the conditional

probability of an event H occurring, given that event B is known to have occurred

P (A/B) ∼ P (B/A)P (A) (131)

Pz(x) ∼
{∫

P0 (y1 − y0) Pf (y1 −Kn(x)) dy1

}
Pb (x− xb) (132)

(Using the common assumption that PDF’s are multi-dimensional Gaussian functions.)

For the minimum variance Lorenc (1986) shows that we minimize the expression

J = {y0 −Kn(x)}T (O + F )−1 {y0 −Kn(x)}+ (x + xb)
T B−1 (x− xb) (133)

where B, O, and F are covariance matrices for

xb − xt, y0 − yt

the background, observation, and forecast errors

y = Kn(t)

given by

B =
〈
(xb − xt) (xb − xt)

T
〉

O =
〈
(y0 − yt) (y0 − yt)

T
〉

F =
〈
(yt −Kn (xt)) (yt −Kn (xt))

T
〉

(134)

If one denotes by K the matrix of partial derivatives of Kn with respect to the components

on x then

Kn (x + dx) = Kn(x) + Kdx (135)

and that xa which minimizes J in (133) is given by

O = KT (O + F )−1 {y0 −Kn (xa)}+ B−1 (xb − xa) (136)

This system can be solved iteratively to allow for nonlinearity in Kn, or if linearization of

Kn is valid on the entire range of x, one can obtain (Lorenc (1986))

xa − xb +
{{

BKT (O + F )−1 (K + I)−1 BKT (O + F )−1
}

y0 −Kn (xb)
}

(137)
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7.2. Duality Between Optimum Interpolation and Variational Objective Analysis

The first work in this domain was the work of Kimeldorf and Wahba (1970, 1971),

Wahba (1978).

In terms of a univariate variable on the sphere if L(P ) at a point P of a sphere represents

the height minus the global average height at a given reference level and we have observations

yi, i = 1, . . . , n with zero mean independent measurement errors, εi, with common variance

σ2 = Eε2i , i.e.,

yi = h (Pi) + ε (138)

Using results from multivariate analysis

E (h(P )|y1, . . . , yn) = [R (P, P1) , . . . , R (P, Pn)] (Rn + nλI)−1




y1
...

yn


 = hλ(P ). (139)

Using that

Eh(P )h(Q) = bR(P, Q) (140)

where bR(P,Q) is a prior covariance.

In (139) λ = σ2

nb , while Rn is an n×n matrix with entries R
(
Pi, Pj

)
in the ijth location.

If λ = 0 then h0(P ) interpolates to the observed data exactly, i.e.,

h0 (Pi) = yi (141)

while for λ > 0, hλ(P ) implies a smoothing of the data.

Wahba (1982) points out that λ controls the amount of smoothing and hλ(P ) evaluated

at grid points can be viewed as the optimum interpolant of Gandin (1965) if all available

observations are used simultaneously.

The Duality Theorem (Kimeldorf and Wahba, (1970, 1971), Wahba (1978)) then states

that for every covariance R(P,Q) satisfying
∫ ∫

R2(P,Q)dP dQ < ∞ (142)

there is a variational problem for which hλ(P ) is the solution. It is: find h in a certain

reproducing kernel Hilbert Space HR so as to minimize

1

n

n∑

i=1
(yi − h (Pi))

2 + λJ (h) (143)
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where J (h) is the square norm of h in HR.

Using the Mercer-Hilbert-Schmidt expansion of the covariance R(P, Q), Craven and

Wahba (1979), and Wahba and Wandelberger (1980) show that

J (h) =
∑

`,s

h2
`,s

λ`,s
(144)

where R(P,Q) =
∑

`,s λ`,sy`,s(P )y`,s(Q) and where
∫

R(P, Q)y`,s(Q)dQ = λ`,sy`,s(P ),

where y`,s, the eigenfunctions of R are spherical harmonics and λ`,s are eigenvalues of R,

and

h`,s =

∫
h(P )y`,s(P )dP. (147)

A detailed investigation of the relationship between variational analysis (Sasaki (1970a,

1970b, 1970c)) and the multivariate O/I algorithm has been carried out by Ikawa (1984a,

1984b, 1984c).

Ikawa (1984b, 1984c) shows that the slow-mode covariance matrix used in O/I has the

same filtering properties as the variational method, i.e., that a covariance matrix consis-

tent with the linear constraint operates as a filter without the explicit imposition of linear

constraints as done in the variational objective analysis.

The work of Ikawa confirms the Phillips (1982) analysis about the completeness of mul-

tivariate O/I, i.e., that no more useful information can be extracted from data by performing

a variational analysis with balance constraints which constitute slow-mode constraints. This

in short was an equivalence result between a slow-mode O/I and the variational analysis.

Wahba (1982) also discussed the possibility of including O/I and normal mode initialization

balance constraints into one step in the framework of an “optimal” variational formulation

which will have a bandwidth parameter λ, an error balancing parameter w which will control

the relative weight to be given to forecast data and observational data and one partitioning

parameter δ, governing the relative energy in the “signal” assigned to fast and slow modes.

These parameters are supposed to be chosen by generalized cross validation (Wahba

and Wandeberger (1980)).

Lorenc (1986) generalized further the analysis problem to pose it as the minimization of

a penalty function comprising terms depending on the distance of analysis from data as well
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as the distance of the analysis from prior information weighted by the relative accuracy of

each term. One can use the property of L2 norms by which any number of weak constraints

can be combined into a single L2 penalty.

However, the most complete proof of the equivalence relies on the work of Wahba and

Wandelberger (1980) and Wahba (1982c) and references therein. To illustrate the ideas of

their work one can take a vector of variables of interest x̂ = (x̂1, x̂2, . . . , x̂n)T . Assume

zi = x̂i + εi (148)

is observed for i = 1, . . . , n, where εi are independent Gaussian random variables with zero

mean and variance σ2.

If xi have a prior Gaussian distribution with

Ex̂i = 0 (149)

and

Ex̂ix̂j = σij (150)

with E being the mathematical expectation, and if one defines by Σ the matrix with en-

tries σij(the covariance matrix), the conditional (Bayesian) expectation Ex̂ of x̂, given the

observation data z = (z1, . . . , zn)T is

Ex̂ = Σ
(
Σ + σ2I

)−1
z (151)

but Ex̂ is also the solution of the minimization problem: Find x to minimize

1

n

n∑

i=1
(x̂izi)

2 + λJ (x̂) (152)

where

J (x̂) = x̂T Σ−1x̂ and λ = σ2
n. (153)

In general J assumes the form

J =

∫ ∫ [(
∂2x̂

∂x2

)
+ 2

(
∂2x̂

∂x∂y

)2
+

(
∂2x̂

∂y2

)2]
dx dy. (154)

As discussed previously for spherical harmonics

J (x̂) =

∫ ∫
(∆mx̂)2 dP (155)
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For instance (Wahba(1982)), given observed wind data (Ui, Vi) at a point Pi, i = 1, 2, . . . , n

one can estimate vorticity and divergence as follows

Ψ(P ) =
L∑

`=1

∑̀

s=−`

a`,sy`,s(P ), Φ(P ) =
L∑

`=1

∑̀

s=−`

b`,sy`,s(P ) (156)

where y`,s are the spherical harmonics.

Then for given δ and λ one can find coefficients a`,s, b`,s to minimize

1

n

n∑

i=1

(
−1

a

∂Ψ

∂Φ′i
(Pi) +

1

a cos Φ′i
∂Φ

∂x
(Pi)− ui

)2

+
1

n

n∑

i=1

(
1

a cos Φi

∂Ψ

∂x′ (Pi) +
1

a

∂Φ

∂Φ′i
(Pi)− vi

)2
+ λ

(
J1(Ψ) +

1

δ
J2(Φ)

) (157)

where

J1(Ψ) =
L∑

`=1

a2
`,s/λ

(1)
`,s , J2(Ψ) =

L∑

`=1

b2`,s/λ
(2)
`,s (158)

Here λ can be viewed as a bandwidth parameter, δ as a signal partitioning parameter and

λ
(1)
`,s and λ

(2)
`,s are weights adapted from collected data sets.

7.3. Smoothing Splines, Generalized Cross-Validation and Variational Analysis

Reinsch (1967) considered the following estimation problem which led to the smoothing

spline interpolation method.

Given n discrete observations

xj = x
(
tj

)
+ zj (159)

where xj can be considered as observation data at position tj and zj a random normal error

with zero mean and variance σ2
j , estimate x(t) as a linear function of xj , i.e.,

x̂(t) =
n∑

j=1
wjxj (160)

Reinsch (1967) avoids the problems of both stochastic and deterministic models which require

specification of a parametric model by seeking instead a solution of x̂(t) satisfying smooth

interpolation requirements, but which does not involve specifying a parametric model for

either x(t) or for a stationary covariance function v(τ).
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This method involves finding the solution for x̂(t) which minimizes a functional J given

by

J =
1

Ny

Ny∑

i=1
wj (y (ti)− g (ti))

2 + λ

∫
Js(g)dt (161)

or in Reinsch (1967) notation

J = λ

∫

Γ

[
∂2x̂(t)

∂t2

]2
dt +

1

Ny
Σwj

[
(x̂− x)

σ

]2
− δ2 + γ2 (162)

where the Js term is a penalty on smoothness with reference to the integral of squared cur-

vature over the domain Γ. If the smoothness is related to the mth derivative of x̂(t),
dm(x̂(t))

dtm ,

this leads to the polynomial splines of order 2m− 1.

For prescribed values of m and λ the variational problem has a unique analytic solution

given by

x̂(t) = Φ′(t)α +
n∑

j=1
βjK

(
∆Sj,`

)
(163)

where Φ represents a vector of polynomials complete to order (m−1), α is an associated vector

of parameters, βj are parameters associated with K
(
∆Sj,`

)
where ∆Sj,` is the distance in

Euclidean d-space between tj and t`

t = (t1, . . . , td) (164)

with d the dimension of d-dimensional Euclidean space and

K
(
∆Sj,`

)
=

(
∆Sk,`

)2
log

(
∆Sk,`

)
(165)

(see Pedder (1986), Thiebeaux and Pedder (1987)).

Solution of (162) can be viewed as a generalized spline, as the piecewise continuous

(solution) property of x̂(t) is similar to univariate splines. Wahba and Wandelberger (1980)

generalized this notion to seek the solution of the problem: find Φ in a suitable space x to

minimize

1

Ny

n∑

i=1

[
Φ (xi, yi)− Φ̃i

]2
+ λ

∫ +∞

−∞

∫ +∞

−∞

m∑

ν=1

(
m
ν

)(
∂mΦ

∂xν∂m−ν

)
dx dy (166)

which was obtained by Duchon (1976) and studied by Meinguet (1979) and Wahba (1979a,

1979b).
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In frequency space it can be shown that λ controls the half-power point of the filter and

m the steepness of the roll-off.

7.4. Equivalence of Best-Fit Trajectory to Kalman Filtering

This method uses the representation of the cost functional proposed by Thacker (1986),

where the new observations x̂n and forecast ẑn at time tn have error-covariance matrices Rn

and Mn, respectively, giving an estimate of the state

xn = ẑn + βn (x̂n − zn) (167)

βn = Mn [Mn + Rn]−1 (168)

which is a weighted average of the new data with the forecast with weights proportional to

the inverse of the respective error covariance matrices

P−1
n = M−1

n + R−1
n . (169)

If we use the best fit dynamic trajectory, i.e., finding the best trajectory passing as near as

possible to the asynoptic data, while minimizing a cost function measuring the misfit of the

dynamics to the data,

F =
N∑

n=3
(xn − x̂n)T R−1

n

(
xn − xT

n

)
+

N∑

n=1

(
fn − f̂n

)
Q−1

n

(
fn − f̂n

)
(170)

where fn represent forcing terms and x̂n are the state observations with weights proportional

to inverse error covariance matrices. Optimal xn and fn are obtained by minimizing cost

function subject to the strong constraint of satisfying the model’s dynamics. If the dynamics

(forecast equations) are represented by a linear model

xn =Anxn−1 + fn (171)

c =
∑n

N=0 (xn − x̂n)T R−1
n (xn − x̂n)

+
∑n

N=1

(
xn − Anxn−1 − f̂n

)T
R̂−1

n (xn − Anxn−1 − fn)

(172)

If one wishes to pose the problem as an Augmented-Lagrange problem, i.e.,

L = C +
N∑

n=1
ΛT

n [xn − Anxn−1 − fn] (173)

where L is the Augmented-Lagrangian, C is Eq. (171) and if one requires the gradient of L

with respect to each Λn and xn to vanish, one obtains the same equation as in the adjoint
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approach (Le Dimet and Talagrand (1986)), as the Lagrange multipliers can be shown to be

identical to the adjoint variables.

To show that the Kalman filtering method produces the same result when the two

methods use the same information for xn as the best fit dynamical trajectory approach,

Thacker (1986) designs a sequential algorithm to solve for x1 as a function of Λ2 and of the

data at the first two time levels.

As mentioned previously the big disadvantage of the Kalman-Bucy filtering technique

is the requirement for the calculation of the error-covariance matrix at each time-step. This

in general requires a computational effort equivalent to that required by the full numerical

weather prediction system multiplied by twice the number of degrees of freedom of the full

system which for present day 3-dimensional models is computationally premature.

7.5. Splines and Universal Krieging

In mining practice, one problem is to find the best possible estimator of the mean grade

of a mined block taking into account the assay values of the different samples available either

inside or outside the block to be estimated. Krieging (following the basic regression procedure

of D. G. Kriege (1951)) is a procedure of selecting within a given class of possible estimator,

the estimator with a minimum estimation variance, i.e., the estimator, leading to a minimum

variance of the resulting estimation error. The method is amply described by Matheron

(1963, 1970, 1981), Riccardo (1974), and Journel (1977). This minimum variance estimate

of deviations from a trend field can be a low-order polynomial obtained by minimizing the

variance best fit to the observational data.

For a random variable Z(X) with covariance

〈Z(X)Z(Y )〉 = E {Z(X)Z(Y )} = σxy (174)

The minimum distance

E
{

[Z (X0)− Z∗]2
}

(175)

is the called minimum estimation variance.

The Krieging estimator is

Z∗ = λ0 +
∑
α

λαZ (Xα) (176)
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If the expectation is neither stationary not know, but of a known linear combination of

L known functions f`(X), ` = 1, . . . , L

E {Z(X)} = m(X) =
∑

`

A`f`(X) (177)

where the L parameters A` are unknown, we define ν(X), the nonstationary expectation as

a trend or drift.

In Universal Krieging (UK) the unbiasedness of the linear estimator λαZ (Xα) restricts

it to a linear manifold defined by the L conditions on the weights

∑
α

λαf` (Xα) = f` (X0) for ` = 1, . . . , L (178)

and the Krieging estimator Z∗KL is the element of the linear manifold nearest to the unknown

Z (X0) (Journel (1977)), and the weights λα of Z∗KL must satisfy

∑
α

λαf` (Xα) = f` (X0) (179)

and

‖Z (X0)− λαZα‖ = d2 = min. (180)

The second requirement amounts to minimizing the expression

L = d2 −
∑

`

2µ`

∑
λαf` (Xα) (181)

where µ`, ` = 1, . . . , L are Lagrange multipliers.

If we denote by

σαβ =
〈
Z (Xα) , Z

(
Xβ

)〉
= E

{
Z (Xα) Z

(
Xβ

)}
(182)

the non-centered variance, the minimum of L is obtained by setting to zero the partial

derivatives of Q with respect to the unknown weights λα

∂L
∂λα

= 0 α = 1, . . . , u (183)

with

d2 = σX0X0
− 2λασαX0

+ λαλβσαβ . (184)
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One can show (Matheron (1970, 1981)) that the universal Krieging solution minimizing

estimation error variance E
{[

Z (X0)− Z∗KL

]2}
can be written as

Ẑ (X0) = m(X) + ν′(X) (ν + D)−1 (Z −m(X)) (185)

where m(X) is the estimated drift component, ν′(X) is a vector of “station-to-gridpoint”

covariances of the form

λασαX0
(186)

(see Pedder (1986)) while (ν + D) is the observation covariance matrix where D is a diagonal

matrix of observation error covariance of the form

σX0X0
(187)

As shown by Matheron (1981) and Pedder (1986) the generalized spline approach solution

takes a similar form to that of the universal Krieging.

Thus, the minimum variance estimate of deviations from a trend field is shown to be

equivalent to the use of polynomial splines in the Reinsch (1971) smoothing spline approach

using the “thin-plate” solution obtained by Duchon (1976).

8. Conclusion

In recent years, variational methods have experienced a large expansion in their use.

This is due in our opinion to their ability to be very flexible, as well as to their ability to be

adapted to various physical frameworks.

Furthermore, many significant developments have been carried out by the mathematical

community in what concerns the development of efficient optimization methods. It is clearly

evident by now that these methods may be extended without difficulty to meteorological

cases of interest.

A large amount of research work has also been carried out especially for creating a link

with stochastic techniques of the Kalman-Bucy filter type as well as to obtain well adapted

optimization algorithms (Ghil, et al. (1981), Navon and Legler (1987)).

Variational methods are not merely a computational trick, but they constitute another

way to conceive meteorological modelling by working on both the data and the model.
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