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A new two-stage Numerov-Galerkin method is presented and applied, following a 
suggestion by Cullen and Morton [ 1 ] to achieve higher accuracy by combining the Galerkin 
product with a high-order compact (Numerov) difference approximation to derivatives in the 
nonlinear advection operator of the shallow-water equations. The practical applicability of the 
new method is supported by computational examples involving medium (10 days) and long- 
term (20 days) integrations of the nonlinear shallow-water equations. Small-scale noise was 
eliminated by periodical application of a Shuman filter to only one component of the velocity. 
Conservation of integral invariants is ensured by using a new augmented Lagrangian 
multiplier-penalty method in the Numerov-Galerkin method. Experiments were performed 
using the new method with differently weighted selective lumping schemes for the mass 
matrix. The new method exhibits a consistently higher accuracy than the single-stage Galerkin 
method and requires much less computational effort. A hypothesis is offered to explain the 
increased accuracy obtained by selective lumping schemes in the long-term numerical 
integrations (1 O-20 days) as compared to the consistent mass approach in Numerov-Galerkin 
schemes. 

I. INTRODUCTION 

In the last few years the application of finite-element methods to large-scale 
weather forecasting has become somewhat more extended [2-5 J. 

The three-dimensional primitive equations of motion used by nearly all operational 
forecasting models (e.g., 13, 61) include a system of nonlinear hyperbolic partial 
differential equations as well as different terms representing physical processes such 
as radiation, water-vapour, etc. This means that assessing a new numerical technique 
for this system is quite difficult, and it has become customary in developing new 
numerical methods for numerical weather prediction to study the simpler nonlinear 
shallow-water equations system instead (see Cullen [7]). One of the key issues in 
numerically solving these equations is how to treat the nonlinear advective terms 
(e.g., 111). 

Cullen [S] proposed a two-stage Galerkin method which was shown to have an 
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asymptotic error six times smaller than the usual single-stage Galerkin method in the 
limit by performing a truncation error estimate for the nonlinear term. 

Cullen and Morton [l] also showed that the two-stage Galerkin approximation to 
the nonlinear advective operator gives a better description of nonlinear processes and 
has the advantage of using a better representation of the function at all stages of the 
calculation. It was suggested in [ 1] that the best technique could be to combine the 
Galerkin product with high-order difference approximations to derivatives. 

This suggestion motivated the part of the approach in this paper where we propose 
a two-stage Numerov-Galerkin method applied to the nonlinear advective terms in 
the shallow-water equations on a limited-area domain. 

In this approach the two-stage Galerkin product is combined with a high-order 
compact (hence the name Numerov) difference approximation to the first derivative. 
The compact Numerov finite-difference approximation to the first derivative has a 
truncation error of O(h4’) and employs only a 2Z+ 1 star of grid points (see Schwartz 
and Wendroff [9]). Here we used I = 2, i.e., and O(h’) approximation, because for 
I= 1 we recover the usual two-stage Galerkin method (e.g., Cullen and Morton [ 11). 

In order to recover the higher accuracy of the method it was found necessary to 
apply a Schuman [lo] filter periodically (every 12 time-steps) to the u-component of 
velocity only. 

In this paper it was decided not to employ the truncation error estimate for the 
nonlinear term employed in [ 1,8, 111 as we are dealing with a multidimensional 
nonlinear problem and any conclusion drawn from a linear analysis could at best be 
only indicative. Moreover the problem has no analytic solution. 

In the next section we first present the salient features of the single-stage Galerkin 
finite-element model using piecewise linear triangular elements on a regular mesh. 
The finite-element construction used here is carried out only for regular grids, if 
necessary achieved by a coordinate transformation. 

In Section 3 we detail the two-stage Numerov-Galerkin (N.G.) method for the 
nonlinear advective terms, the required numerical boundary conditions and the struc- 
tural simplifications introduced in the finite-element procedure by the N.G. technique. 

As the two-stage Galerkin method does not conserve integral invariants (see 
Cullen [ 121) we apply a new a posteriori technique using an augmented Lagrangian 
nonlinearly constrained optimization approach for enforcing the conservation of 
integral invariants of the shallow-water equations (see Navon and de Villiers ] 131). 
This method is briefly exposed in Section 4. 

A selective lumping used in conjunction with the N.G. method is presented in 
Section 5. While total lumping is known to produce less accurate results [ 11, 141 than 
the consistent mass approach, selective lumping, that is, a convex combination of the 
lumped and consistent mass matrices, can either provide a controlled dissipation 
[ 15, 161 or in some instances attain a better accuracy than the consistent mass matrix 
approach [4, 171. 

In Section 6 numerical results relating to both medium-term and long-term 
integrations of the nonlinear shallow-water equations on a fairly standard test 
problem in a channel on a rotating P-plane [ 18, 191 are presented. 
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The computational efficiency of the different finite-element versions is compared 
and accuracy results for both medium-term (10 days) and long-term (20 days) 
numerical integrations are presented. 

Finally in Section 7, the numerical results are discussed and a hypothesis is offered 
to explain the higher accuracy obtained with selective lumping N.G. schemes in the 
long-term integrations. 

2. THE GALERKIN FINITE-ELEMENT MODEL 
OF THE SHALLOW-WATER EQUATIONS 

The shallow-water equations in a channel on a rotating earth can be written as 
follows: 

u,+uu,+uu,+$,-fu=o, 

v,+uu,+vv,+~,+fu=0, (1) 

41 + (du>, + (W, = 05 

O<x<L, O<v<D, t > 0, 

where u and v are the velocity components in the x and y directions, respectively;f is 
the Coriolis parameter given by the P-plane approximation 

f=S+P Y-; 
c ) 

(2) 

withf and /3 constants. 4 = gh is the geopotential, h is the depth of the fluid and g is 
the acceleration of gravity. 

Periodic boundary conditions are assumed in the x direction while rigid boundary 
conditions 

u(x, 0, t) = u(x, D, t) = 0 

are imposed in the y direction. 

(3) 

Using linear piecewise polynomials on triangular elements where over a given 
triangular element each variable is represented as a linear sum of interpolation 
function, e.g., 

where uj(t) represents the scalar nodal value of the variable u at the node j of the 
triangular element and Vj is the basis function (interpolation function) which can be 
defined by the coordinates of the nodes (see [2]). Here we use Galerkin formulation 
with the Einsteinian notation, e.g., that a repeated index implies summation with 
respect to that index. 
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The notation 

(f(x, Y>, Vi) = 111 f(x, Y) Vi dx dy = jj f(x, Y> Vi dx & 
elements global 

defines the inner product when a function is multiplied by the trial function. 
Using linear piecewise polynomials on triangular elements the resulting Galerkin 

finite-element equations can be written as (see [4, 201) 

M(qly + l -(;)-~K,(#+1+qy?)=O (4) 

for the continuity equation, where IZ is the time level (t, = n dt) and M is the mass 
matrix given by 

M= II vj vi dA (5) 
A 

and 

K, = v,v,u:f$.%4 + jj viVKuK*%L4, 
A 3Y 

(6) 

where the element (3 x 3) mass matrix is 

(5*) 

where A is the area of the triangular element. K, gives also rise to a (3 X 3) element 
matrix and only after the assembly process we obtain the global (N X N) matrices. In 
our notation we already refer to the element matrices and u* and V* are given by 

u* = g+ 112 = ;g - +/- + O@p), 

u* = g+ I/* = ;/ _ fun- 1 + O(dp) (7) 

and result from a time extrapolated Crank-Nicolson method (see [4, 21, 221). This 
method is used to quasi-linearize the nonlinear advective terms. 

After some algebra the u and u momentum equations obtained are 

M(q+ ’ - U:)+~K:(U:+‘+~:)+~(K;:’ + K;,) + AtP, = 0, (8) 

kqujn+ l- V;)=~K~(V;+‘+~;)+~(K;:~ + K;,) + ArP, = 0, (9) 
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where the matrix definition used are 

P,= jiv:v,vidA, 
II A 

n+l- K,, - av, 4;+‘--- 
8Y 

Vi dA, 

P, = 
il 

Afu;+lVKVidA (15) 

and similar definitions for Kil, K;,, respectively. 
For implementation of boundary conditions see Navon 141. 
The resulting linear systems of equations were solved iteratively using either a 

Gauss-Seidel or an S.O.R. method. 

3. THE TWO-STAGE NUMEROV-GALERKIN SCHEME 
FOR ADVECTIVE TERMS 

The two-stage Galerkin method (see ] 11) is applied to the nonlinear advective 
terms of form VVV. This involved calculating an intermediate approximation Z to the 
first derivative LJ,V (i.e., the closest piecewise linear approximation to 3,~) before 
incorporating it into the final Galerkin approximation to v &/ax. 

As shown by Cullen and Morton [ I] if Z denotes the intermedite approximation to 
8,~ we have 

%Zj-, + fZj + dZj+, = jhP(Vj+, - v,-,) (16) 

and the second and final stage where W = u c%/~x is 
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By assuming Fourier modes, then in the asymptotic limit, Cullen and Morton ( 1 1 
found that the truncation error associated with the two-stage Galerkin method is 
almost six times smaller than that of the single-stage Galerkin method applied to the 
advection operator. 

In our approach we combine the two-stage Galerkin product concept with a high- 
order compact implicit (hence the name Numerov) difference approximation to the 
first derivative a,u in the advection operator. The compact implicit finite-difference 
approximation to the first derivative has a truncation error of O(h4’) and employs a 
compact star of only 2f+ 1 grid points at the price of solving a 21+ 1 banded matrix 
system (see Schwartz and Wendroff [9], Navon and Riphagen [23]). 

As our main aim is to extract a higher accuracy from the advective operator in the 
two-stage Numerov-Galerkin approach, we found out that it was necessary to use an 
intermediate approximation of a,u of order O(h*) or I = 2 for the Schwartz-Wen- 
droff [9] symbol. 

Using I = 1 would have retrieved the usual two-stage Galerkin method of [ 11. 
The concise expression of the intermediate compact Numerov finite difference 

approximation to au/ax of order O(h8) is given by 

=A [-5Ui-*- 32Ui-l + J2Ui+I + 5Ui+,], h=Ax=Ay. (18) 

This necessitates the solution of a pentadiagonal system the matrix of which has 
the following entries for noncyclic boundary conditions 

1 
16 1 16 36 16 1 -I 70 1 36 16 0 1 \\ ‘\ 36 16 16 i ‘1 

\ ’ 
\ 

36 16 
\ \ 
\ \ 
\ 

I \ 
\ \ 

;6 ;6 

1 
ZZ- 

84h 

\ \ 

;6 

-5v, - 32v, + 32v, + 5v, 
-5v, - 3221, - 32v, + 5v, 

-5vNye4 - 32vNy+ + 32~+ + 5V, 

-%+ - 32vN+ + 32~~~ + 5VNy+ ] 

0 

Y 

I 

3 j = 1, 2,..., N P (19) 
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Here we interpolate uO and uN,+ , using 

UQ = 4u, - 4u, + 4u, - u4, 

U NY+ 1 = 4UNy - 6VNy4 + 4uN,4 - u,,J-3, 

while for the intermediate expression Z we have 

(20) 

(21) 

-25~~ + 48u, - 36u, - 16u, - 3u, 
12h + O(h4), (22) 

3u,v-4- 16uNy-3 + 36VNy-z-48VNy-~ +25uNy 
12h 

+ O(h4). (23) 

In the second stage of the Numerov-Galerkin method we have to solve a tridiagonal 
system of the form 

I 
1 

Vi =12 
uj-lzj-* + ujZj-* + uj-lZj+ 

For this second stage we need the values of Z, and ZNY+ i which we interpolate as 

Z, = (-25~ + 48u, - 36u, + 16u, - 3u4)/12h, (25) 

Z NY+I =(3UNy-3 - 16UNy-z + 36uNyeI -48u~,,+ 25uNy+l)/12hv (26) 

For the influence of these boundary approximations on the overall accuracy, see 
Gustafsson [ 241. 

A pentadiagonal solver was used for solving the system given by (19) (see Von- 
Rosenberg [ 25 ]). 

In the case of cyclic boundary conditions a cyclic pentadiagonal matrix system has 
to be solved and here we generalized an algorithm due to Ahlberg, Nielsen and Walsh 
[26]. The general shape of the cyclic pentadiagonal matrix is 

c b 
b c 
a b 

c b a 
b c b a 
a b c b a 

-- 

b” a 

XI 
x2 

xtl-2 

--- 

X,-l 

XII 

= 

d, 

d n-2 
--- 

d n-1 
4 I (27) 
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Using this type of matrix splitting let 

1 

c b a 0 
b c b a 
a b c b a 

E= ‘\,‘\,‘+, 
’ ‘\ ‘\ ‘\ \ 

‘\ ‘\ ‘\ ‘\ 
0 a b c b 

a b c 

be an (n - 2) by (n - 2) matrix and 

Then we have 

(29) 

(30) 

(31) 

(32) 

If we substitute (31), i.e., 

(33) 

in (32), we obtain 

g,TE- ‘d - g,TE-‘f, 

or 

I[; E]-g:E-lf,[[%;‘]= [d;;+g;E-ld 

(34) 

(35) 
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which finally results in 

[*;;‘]=][; f]--g:E-‘j(’ I[d;;l]-g;E-ldl. (36) 

3.1. Changes Introduced by the Numerov-Galerkin Technique to the Finite-Element 
Matrices 

Due to the Numerov-Galerkin technique the momentum equations for the u and v- 
components of velocity undergo structural changes. We will denote by Z,, the inter- 
mediate Numerov approximation representing the first-stage derivative calculation a,, 
and by Z,, the corresponding intermediate approximation to a,v and use similar 
notation for the y derivatives. 

The u-momentum equation takes the form 

((Uj”+l-Ujn) Vi, Vj) +dt[(UZ,,),*Vj, Vi) 

+ ((vzy,)j*vj, vi)] -At[(&Vj*Vj, vi)] 

(37) 

Using the matrix notation of Section 2, i.e., 

M= 
II 

vj vi aTA (38) 
A 

for the mass matrix, we obtain the following matrix equation: 

M{(uJ+‘- u;) + dt(uZ,,),* + (VZ,,),? -jJ Vj*]} = AtK,, (39) 

In a similar manner we obtain the following modified V-momentum equation: 

M(v;+l - V~)+At(VZ~“)j+(~“~‘Z,“)j+fjUy~~=dtK,,, (40) 

where we denote 

K,, = ;(K;f’ + K;,)Kjl = f(K::’ + K;,). (41) 

Compared to the single-stage Galerkin finite-element method we observe that 
Eqs. (39) and (40) result in a simplification for the momentum equations as the mass 
matrix M is calculated only once, and the solution process is simplified compared to 
the single-stage Galerkin where we have to solve 

(&I+$@) (24Jt1 - ~ uj”) = At(K,, + P, + Kfuj”). (42) 
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4. AN AUGMENTED LAGRANCIAN COMBINED PENALTY-MULTIPLIER METHOD 
FOR ENFORCING DISCRETE CONSERVATION OF INTEGRAL INVARIANTS 

It is well known that the Galerkin finite-element method has the property of 
satisfying certain conservation laws of the shallow-water equations. 

However, the two-stage Galerkin method does not conserve quadratic invariants 
(Cullen [ 121). 

Here we briefly present a new a posteriori method for enforcing conservation of 
integral invariants of the shallow-water equations, namely, potential enstrophy (Z), 
total energy (E) and total mass (H), using augmented Lagrangian methods due to 
Bertsekas [27], resulting from viewing the problem of enforcing conservation laws as 
a nonlinearly constrained optimization problem with nonlinear equality constraints 
(see Navon and de Villiers [ 131). 

It should be mentioned that strictly speaking neither 2 nor E are quadratic 
invariants so that the procedure to be outlined would be required for the Galerkin 
method also. 

We start by defining the following functional: 

(43) 

where 

L=N,Ax, D = N,, AY, Ax=Ay=h, (44) 

where (u’, 6, h7yk are the grid variables predicted by the N.G. finite-element method 
shallow-water equations solver at the nth time level and (u, v, h)& are the grid 
variables adjusted by the Augmented Lagrangian method so as to satisfy the conser- 
vation of integral invariants up to a given accuracy. 

6 and p are weights which can be chosen as in Sasaki [28 ] and for the functional f 
we adopt the same three basic principles as in [28]. 

The augmented Lagrangian takes the form 

L(x, U, r) = f(x) + UTe(x) + & (e(x)(‘, (45) 

while considering the problem 

where 

I minimize f(x) 
subject to m nonlinear equality constraints e(x) = 0, 
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In our case 

e(x) = E” -E”, 

=zn-ZO, 

=H” --Ho. 

where 

(47) 

(49) 

j=l k=l 

and E”, Z”, Ho are the initial values of the integral constraints respectively. In 
Eq. (45) U is the m-complement multiplier vector and r is the penalty parameter 
(different penalty parameters can be used for the different equality constraints). 

The basic idea of the penalty muitiplier method is to solve the nonlinearly 
constrained minimization problem by performing a sequence of unconstrained 
minimizations of the following problem: 

rnn L,(x, UK> = f(x) + $J Gei(X) + + IW2. 
i=l K 

The stopping criteria 

(52) 

with (qK} a decreasing sequence tending to zero was used. 
The updating of multipliers and penalties is done as in [27]. We used the method 

of inexact minimization of the augmented Lagrangian and a scaling of both the 
constraints and the variables. The method was only activated once one of the 
following relations were violated: 

As an illustration we give the penalty-multiplier algorithm minimizing the augmented 
Lagrangian in Eq. (5 1). 

Algorithm steps 
Preparatory step. Select an initial vector of multipliers U,, based either on prior 

knowledge or else start with the zero vector. Select penalty multiphers r6 > 0 as in 
[27] and a sequence {qK} with {‘I~)~,~ + 0. 
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Step 1. Given a multiplier vector U K, penalty parameters r-i and JJ~ find a vector 
xK satisfying 

(54) 

by solving an inexact unconstrained optimization problem. 

Step 2. If 

i = l,..., m then (55) 

Stop. Use the new corrected fields obtained from the vector xK as starting values for a 
new time-step prediction using the N.G. shallow-water equations solver. Otherwise go 
to 3. 

Step 3. Update the multiplier vector using 

u k+ 1 = U, + r; ‘e(x,). (56) 

Update penalty parameters as in [27], i.e., ri+ i E (0, &). Select qk+, > 0 s.t. 
qk+i < qk using a formula of the type 

where 0 < I < 1, e.g., 1= (0.8)k. 
Return to Step 1. 

VK = lk, (57) 

5. THE SELECTIVE LUMPING N.G. METHOD 

Full lumping of the mass matrix in a finite-element scheme is a way of obtaining a 
less expensive scheme due to the diagonalization of the mass matrix. 

In applications (many engineering problems, [ 29, .30]), where a time-dependent 
problem is solved as a way of reaching a steady state, lumping does not affect the 
accuracy and saves computer time. Accuracy of the Numerov derivatives depends on 
the correct form of the mass matrix. If the mass is lumped, the explicit finite- 
difference formula is needed. If the mass is lumped in the Galerkin product, it 
produces damping, but loses accuracy in medium term integrations (see also 
111, 141). 

However, when employing a selective lumping method which consists of a convex 
combination of the lumped and the consistent mass matrices such that 

M,,=aM,+(l -a)M,, O<a<l (58) 

where Mc and ML are the consistent and lumped mass matrices, respectively, it was 
found out that in some occurrences [4, 17, 3 1 ] selective lumping may result in a 
certain accuracy gain. In other schemes [ 15, 161 selective lumping is used as a 
selective damping and diffusion operator. 
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In this study it was decided to conduct numerical experiments in order to assess 
the influence of full lumping and selective lumping of the mass matrix on the 
medium-term and long-term accuracy of the nonlinear shallow-water equations using 
the Numerov-Galerkin technique. 

As we are using a higher-order approximation in the nonlinear advection operator, 
we could also ascertain the conclusions in [ 111 where quadratic finite elements were 
used. 

In the numerical experiments to be described we varied the selective lumping coef- 
ficient a, from a = 1 (consistent mass matrix) to a = 0 (full lumping of the mass 
matrix) by using the intermediate values of a = 0.9, 0.7, 0.5 and 0.3. 

6. NUMERICAL EXPERIMENTS WITH THE NONLINEAR 
SHALLOW-WATER EQUATIONS IN Two DIMENSIONS 

(a) To compare the computational efficiency and the accuracy of the proposed 
new Numerov-Galerkin technique with those of the single-stage Galerkin method 
(Navon [4], Navon and Muller [20]) the test problem used is the one for the 
nonlinear shallow-water equations in a channel on a rotating earth, i.e., the initial 
height field condition No. 1 used by Grammeltvedt [ 181, which has been tested by 
different researchers [ 1, 191, etc.). This initial field condition can be written as 

gh(x, y) = 4 = g I H, + H, tanh 
9tDl2-Y) 

20 

+ H, sech’ 
9(D/2 - y) 

D 
~. (59) 

The initial velocity fields were derived from the initial height field via the 
geostrophic relationship, i.e., 

ji~=-#~ or u= ‘7 $ 
( 1 

fv =#, or v= g ah 
0 
- %. 

The constants used were 

L=6000 km, g= 10ms-2 9 

D=4400 km, H,=2000 m, 

f= 10-4 s-1, HI=-220 m, 

/I= 1.5 x lo-” s-l m-‘, H, = 133 m. 

(60) 

(62) 
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The time and space increments used were 

h=dx=dy=400km, At = 1800 s, (63) 

respectively. 
All the calculations were carried out on a CYBER CDC 750. A series of numerical 

experiments including medium-range (10 days) and long-term (20 days) integrations 
of the nonlinear shallow-water were carried out. These include 

(i) The single-stage Galerkin f.e.m. (also called FESW) for medium- and 
long-term integrations. 

(ii) The Numerov-Galerkin (N.G.) method including a posteriori enforcing 
of integral invariants by the method of augmented Lagrangian nonlinear constrained 
optimization and periodic filtering of short-wave noise by a Shuman filter application 
[ 10,341 to the v-component of velocity (every 24 time-steps). 

(iii) The &human filter is the simplest filter designed to filter out short- 
wavelength components. In its simplest form it is a one-dimensional three-point 
operator given by 

where x = j Ax is the field to be smoothed and S is a constant. Applied to the 
harmonic form f = AeikX where the wave number is k = 27r/L the result is 

J;=Rf, (65) 

where R is the response function given by 

R = 1 - 2 sin*(rc Ax/L). (66) 

If 

s= f, R(f) = cos’(7c Ax/L) (67) 

which means total elimination of two gridlength waves. 
(iv) The N.G. method as above but using a varying selective lumping of the 

mass matrix using the following values of the selective lumping coefficient 

a = 1.0, a = 0.5, and a = 0.0. 

This method will be denoted N.G.S.L. (i.e., selective lumping). The case a = 1.0 
corresponds to a consistent mass matrix. 

(b) Computational eflciency. The methods FESW, N.G. and N.G.S.L. (with 
different a - s) were compared for computational efficiency by finding the run times 
in seconds per full time-step. These results are displayed in the first entry of Table I. 
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TABLE I 

Computational Efftciency of the Different Finite-Element Methods 

Method 

Single-stage Galerkin 
FESW 

NumerovGalerkin (NG) 
Consistent-mass matrix a = 1 

N.G. Method 
Selective lumping a = 0.9 

N.G. Method 
Selective lumping a = 0.7 

N.G. Method 
Selective lumping a = 0.5 

N.G. Method 
Selective lumping a = 0.3 

N.G. 
Lumped mass matrix a = 0 

Run time per 
full time step(sec) 

0.38 

0.25 

0.24 

0.22 

0.20 

0.19 

0.15 

Total run time for 20 days 
numerical integr.(sec) 

364.82 

243.679 

231.340 

213.103 

192.760 

182.727 

146.280 

The second entry of Table I displays the total run time for 20 days of numerical 
integration of the nonlinear shallow-water equations. 

The Numerov-Galerkin technique turns out to be significantly more economical of 
CPU time than the single-stage Galerkin method due to the simplifications in the 
solution/assembly process. 

When the N.G. method is combined with selective lumping of the mass matrix, 
further computational economy results as the selective lumping coefftcient a 
decreases from 1 to 0 (full lumping). This is due to the increased diagonal dominance 
of the mass matrix which speeds up the convergence of the iterative methods 
(Gauss-Seidel, S.O.R.) used for solving the linear systems of equations of the N.G. 
method. 

By surveying Table I a total economy of 40% per full-time-step is achieved by the 
Numerov-Galerkin method as compared with FESW if we take the CPU time as our 
measure. 

(c) Accuracy tests. In order to provide a basis for comparison between the 
new Numerov-Galerkin method and its selective lumping variants on one hand and 
the single-stage Galerkin (FESW) on the other hand, and in the absence of an 
analytic solution to the nonlinear shallow-water equations, a very fine grid (50 km) 
finite-difference approximation was taken to give the definitive result. 

The fine-mesh results are denoted by WE, where 

w = (24, u, (Ii)‘. (68) 
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TABLE II 

Accuracy Results for the Different Finite-Element Methods 
lJE,,II/~) W,,I(, Ax = Ay = 400 km, A/ = 1800 set 

Medium-Term Runs 

Method 
time 

(days) 

N.G. 
N.G. N.G./S.L. N.G./S.L. N.G./S.L. N.G./S.L. a=0 

F.E.S.W. Consistent a = 0.9 a =0.7 a =0.5 a = 0.3 Lumping 

1 1.06 x E-3 8.43 x E-4 
2 1.85 x E-3 1.33 x E-3 
3 2.43 x E-3 1.63 x E-3 
4 2.86 x E-3 1.82 x E-3 
5 3.20 x E-3 2.11 x E-3 
6 3.38 x E-3 2.30 x E-3 
7 3.34 x E-3 2.13 x E-3 
8 3.45 x E-3 2.00 x E-3 
9 3.33 x E-3 2.03 x E-3 

10 3.16 x E-3 2.10 x E-3 

8.42 x E-4 8.50 x E-4 
1.36 x E-3 1.44 x E-3 
1.72 x E-3 1.83 x E-3 
1.88 x E-3 2.00 x E-3 
2.15xE-3 2.19xE-3 
2.34 x E-3 2.33 x E-3 
2.15 x E-3 2.13 x E-3 
2.02 x E-3 2.01 x E-3 
2.06 x E-3 2.11 x E-3 
2.07 x E-3 2.09 x E-3 

9.01 x E-4 
1.49 x E-3 
1.94 x E-3 
2.11 x E-3 
2.24 x E-3 
2.33 x E-3 
2.13 x E-3 
2.05 x E-3 
2.19 x E-3 
2.10 x E-3 

9.42 x E-4 9.63 x E-4 
1.58 x E-3 1.64 x E-3 
2.03 x E-3 2.15 x E-3 
2.25 x E-3 2.41 x E-3 
2.35 x E-3 2.50 x E-3 
2.35 x E-3 2.42 x E-3 
2.14 x E-3 2.17 x E-3 
2.09 x E-3 2.14 x E-3 
2.25 x E-3 2.33 x E-3 
2.17 x E-3 2.26 x E-3 

Representing the FESW/SSG and the Numerov-Galerkin finite-element methods 
by W,, and WNG, respectively, the error as in [ 191 is given by 

E FE = wFE - wEX (69) 

and the relative error by (see Gustafsson [ 191, Fairweather and Navon [32]) 

liEFEll relative error = ,, w,,,, , (70) 

where the norm ]] ]( is defined as follows: 
Define a Hilbert space H by considering all vector functions of the form (68). 

Wjk = Wj,N,tk, vj,o = vj,N, = 0. I 

The inner produce of two vectors a and /I is defined by 

(71) 

(72) 

and the norm by 

lla/12 = (a, a). (73) 

The relative errors for both medium-range (10 days) and long-term (10-20 days) 
are displayed in Tables II and III, respectively, for the following finite-element 
methods: FESW, N.G. (consistent), N.G.S.L. (a = 0.9), N.G.S.L. (a = 0.7), N.G.S.L 
(a=OS), N.G.S.L. (a =0.3) and N.G. (a=O) (full lumping). 
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TABLE III 

Accuracy Results for the Different Finite-Element Methods 
IIEApll/ll WExII, Ax = Ay = 400 km, At = 1800 set 

Long-Term Runs 

Method 
time 

(days) 

N.G. 
N.G. N.G./S.L. N.G./S.L. N.G./S.L. N.G./S.L. a=0 

F.E.S.W. Consistent cl = 0.9 n=O.l n=0.5 cl = 0.3 Lumping 

11 3.20 x E-3 
12 3.22 x E-3 
13 3.06 x E-3 
14 3.08 x E-3 
15 3.11 x E-3 
16 3.33 x E-3 
17 3.59 x E-3 
18 3.65 x E-3 
19 3.56 x E-3 
20 3.49 x E-3 

2.34 x E-3 2.26 x E-3 
2.41 x E-3 2.35 x E-3 
2.30 x E-3 2.28 x E-3 
2.40 x E-3 2.38 x E-3 
2.58 x E-3 2.51 X E-3 
2.79 x E-3 2.81 X E-3 
2.97 x E-3 3.01 x E-3 
3.00 x E-3 3.03 x E-3 
2.93 x E-3 2.99 X E-3 
2.87 x E-3 3.03 x E-3 

2.18 x E-3 
2.28 x E-3 
2.20 x E-3 
2.31 x E-3 
2.45 x E-3 
2.62 x E-3 
2.86 x E-3 
2.91 x E-3 
2.81 x E-3 
2.82 x E-3 

2.13 x E-3 2.14 x E-3 2.21 x E-3 
2.17 x E-3 2.12 x E-3 2.14 x E-3 
2. IO x E-3 2.07 x E-3 2.06 x E-3 
2.19 x E-3 2.11 x E-3 2.10 x E-3 
2.27 x E-3 2.17 x E-3 2.13 x E-3 
2.42 x E-3 2.29 x E-3 2.20 x E-3 
2.67 x E-3 2.50 x E-3 2.32 x E-3 
2.78 x E-3 2.62 x E-3 2.46 x E-3 
2.79 x E-3 2.61 x E-3 2.55 x E-3 
2.80 = E-3 2.72 x E-3 2.62 x E-3 

(d) Conservation of integral invariants using the method of augmented 
Lagmngian. In Figs. l-6 we display the time variation of the three integral 
invariants of total mass (H), total energy (E) and potential enstrophy (Z) of the 
shallow-water equations as functions of their initial values using either the augmented 
Lagrangian method with combined penalty and multipliers or the penalties only. 

In Figs. 1 and 2 we display the time variation of the integral invariants for the 
N.G. (consistent) case with penalty and multipliers or penalties only, respectively, for 
medium-term integrations (10 days). Figures 3 and 4 display the same results for the 
case N.G.S.L. (a = 0.5). Figures 5 and 6 for N.G. full lumping case (a = 0.0). In 
Figs. 7-9 we display the long-term time variation (up to 20 days) of the three integral 
invariants of the shallow-water equations as functions of their initial values-using 
only the combined multiplier penalties augmented Lagrangian method. This is done 
for the cases N.G. (cz = l), N.G.S.L. (a = 0.5) and N.G. (a = O.O), respectively. 

(e) Results of the numerical integrations. In Fig. 10 we display the initial 
distribution of the height field depicted by isopleths drawn every 50 m. 

In Fig. I I we display a 20-day forecast of the height-field using the single-stage 
Galerkin (FESW) method, while in Figs. 12-15 we display a 20-day forecast of the 
height using the consistent Numerov-Galerkin method, N.G.S.L. (a = 0.9), N.G.S.L. 
(a = 0.5) and the lumped version of the Numerov-Galerkin method, respectively. 
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MULTIPLIERS + PENALTIES 

I I I I I I I I I 

0 00 2 40 4 80 7 20 990 12-W 14 40 16 90 19 20 21 60 2400 

TIME IN HOURS (xlOco’) 

FIG. 1. Time variation of total mass (H), total energy (E) and potential enstrophy (Z) as ratios of 
their initial values with combined penalty-multiplier nonlinearly constrained optimization using the 
Numerov-Galerkin finite-element model. (a = 1) Inflection points correspond to adjustment times. 

PENALTIES ONLY 

1009 

1006 - 

000 240 4.90 720 960 12 00 14 40 1690 lo20 21 60 94 00 

TIME IN HOURS (xIO*~‘) 

FIG. 2. Same as Fig. I but using a quadratic penalty method. 
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MULTIPLIERS + PENALTIES 

I I I I I I I I I 

0 00 240 4 80 7 20 960 I2 00 I4 40 16 so IS 20 21 00 2400 

TIME IN HOURS (KIO+~‘) 

FIG. 3. Time variation of total mass (H), total energy (E) and potential enstrophy (2) as ratios of 
their values using the combined penalty-multiplier method (Numerov-Galerkin selective 
lumping/N.G./S.L. with a = 0.5). 

PENALTIES ONLY 

1009 

9 91 
000 240 480 7.20 9 60 12 00 14 40 isso 19 20 21 60 24 00 

TIME IN HOURS Cx lO*O’) 

FIG. 4. Same as Fig. 3 but using a quadratic penalty method. 
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MULTIPLIERS + PENALTIES 

‘Ornrn 

9 91 I I I I I I I I I 

0 00 2 40 4 80 7 20 9 60 12 00 14 40 16 80 19 20 21 60 2400 

TIME IN HOURS (xIO+~‘) 

FIG. 5. Time variation of total mass (H), total energy (E) and potential enstrophy (Z) as ratios of 
their initial values using the combined penalty-multiplier method (N.G./S.L. with a = 0, i.e., total 
lumping case). 

PENALTIES ONLY 
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L 

I I I 6 1 I I I 1 

2 40 4 80 7.20 9 60 12 00 14 40 SSO 19 20 21 50 24 00 

TIME IN HOURS (x 10*“‘) 

FIG. 6. Same as Fig. 11 but using a quadratic penalty method. 
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ALPHA . I .O MULTIPLIERS + PENALTIES 

0 00 4 80 9 60 14 40 1920 24 00 2s 80 33 60 38 40 43 20 48 00 

TIME IN HOURS (xIO-~‘) 

FIG. 7. Long-term (20 days) time variation of total mass (H), total energy (E) and potential 
enstrophy (Z) as ratios of their initial values using the combined penalty multiplier method and the 
consistent N.G. f.e.m. (a = 1). 

ALPHA * 0 5 MULTIPLIERS + PENALTIES 

1 1 I I I I I I I 

0 00 4 so 960 1440 19 20 24 00 2880 33 60 38 40 4120 4800 

TIME IN HOURS (xIO-~‘I 

FIG. 8. Same as Fig. 13, but with the N.G./S.L. method using a = 0.5. 



I. M. NAVON 

ALPHA = 0 0 MULTIPLIERS + PENALTlES 

1 

H 

I I I I I I I I I 

0 00 4 80 9 60 14.40 19 20 2400 28 80 33 60 38 40 43 20 4800 

TIME IN HOURS (x10-0’) 

FIG. 9. Same as Fig. 13, but with the N.G./S.L. method using cr = 0.0, i.e., the case of full lumping 
of the mass matrix. 

L 
- -2200 

I I ,I I I I I,,,, I,,_ 

FIG. 10. The initial distribution of the height field depicted by isopleths drans at 50-m intervals. 
dx=&=4OOkm, A?= 1800s. 
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FIG. 11. A 20-day forecast of the height field using the single-stage Galerkin finite-element method. 
Ax = Ay = 400 km, At = 1800 s. 

FIG. 12. A 20-day forecast of the height field using the two-stage Numerov-Galerkin f.e.m. with a 
consistent mass matrix (a = 1). 
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FIG. 13. A 20 day forecast of the height field using the two-stage N.G./S.L. f.e.m. with selective 
lumping coefficient a = 0.9. 

FIG. 14. A 20.day forecast of the height field using the two-stage N.G./S.L. f.e.m. with selective 
lumping coefficient cf = 0.5. 
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FIG. 15. A 20-day forecast of the height field using the two-stage Numerov-Galerkin f.e.m. method 
with a full lumping of the mass matrix (a = 0). 

7. DISCUSSION OF NUMERICAL RESULTS AND CONCLUSIONS 

The Numerov-Galerkin scheme is computationally more efficient than the single- 
stage Galerkin (FESW). Its selective lumping variants result in a considerable saving 
of CPU time. 

The numerical experiments confirm that there is a considerable and consistent 
improvement in accuracy when using the Numerov-Galerkin method for solving the 
nonlinear shallow-water equations. The improvement is quite considerable both for 
medium-range (up to 10 days) and for long-range experiments (10 days to 20 days 
numerical integration) and is about 30% in the average in the relative-error norm. 

As far as the selective lumping and full-lumping versions of the Numerov-Galerkin 
method are concerned, their accuracy is consistently lower than that of the consistent- 
mass Numerov-Galerkin method for the medium-range numerical integrations (up to 
10 days). This confirms results due to [II, 141. 

However, for the long-range runs (10-20 days) there is a marqued tendency for 
different selective lumping versions of the Numerov-Galerkin method including the 
full lumping method to have a better accuracy than the consistent Numerov-Galerkin 
method. This improvement varies between 10% and 20%. After day 13 the best 
accuracy is attained by the fully lumped (a = 0) version of the Numerov-Galerkin 
method. It is the author’s conjecture that this improvement in accuracy is due to the 
lumping operator acting as a dissipative operator filtering out short-wave noise for 
long-term runs. 
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In this sense the Numerov-Galerkin method, due to the high-order compact 
approximation of the first derivative, behaves like the first-order wave equation using 
either quadratic or Hermite cubic elements, i.e., it contains an accurate solution with 
an additional spurious wave [ 11, 331. The growth of the noise caused by this spurious 
wave is well controlled for medium-range integrations of the nonlinear shallow-water 
equations by the periodic application of a Schuman filter to the v-component of 
velocity. 

The numerical results for long-term integrations point out that the periodic 
application of the Schuman filter is not sufficient but that the use of the lumping 
operator takes care of the additional short-wave noise accumulated. 

The augmented Lagrangian combined penalty-multiplier method copes efficiently 
with the task of enforcing the integral constraints. The method has to be applied 
every 12-15 time-steps on the first days of the integration and it is practically not 
required at all in long-term integrations (10-20 days). As such it is very economical 
in CPU time. 

It appears that by using the Numerov-Galerkin technique with linear elements on 
a regular grid one is extracting a higher-order accuracy, when using it in conjunction 
with an augmented Lagrangian method for enforcing conservation of integral 
invariants of the nonlinear shallow-water equations and with a periodic application of 
a Shuman filter for the v-component of velocity. As such this method is .recom- 
mended for treating the nonlinear advective terms when using the finite-element 
Galerkin algorithm for solving the nonlinear shallow-water equations in 
meteorological applications. 
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