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NUMERICAL EXPERIENCE WITH LIMITED-MEMORY
QUASI-NEWTON AND TRUNCATED NEWTON METHODS*
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Abstract. Computational experience with several limited-memory quasi-Newton and trun-
cated Newton methods for unconstrained nonlinear optimization is described. Comparative tests
were conducted on a well-known test library [J. J. Mor, B. S. Garbow, and K. E. Hillstrom, ACM
Trans. Math. Software, 7 (1981), pp. 17-41], on several synthetic problems allowing control of the
clustering of eigenvalues in the Hessian spectrum, and on some large-scale problems in oceanography
and meteorology. The results indicate that among the tested limited-memory quasi-Newton methods,
the L-BFGS method [D. C. Liu and J. Nocedal, Math. Programming, 45 (1989), pp. 503-528] has the
best overall performance for the problems examined. The numerical performance of two truncated
Newton methods, differing in the inner-loop solution for the search vector, is competitive with that
of L-BFGS.
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cluster functions, large-scale unconstrained minimization
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1. Introduction. Limited-memory quasi-Newton (LMQN) and truncated New-
ton (TN) methods represent two classes of algorithms that are attractive for large-scale
problems because of their modest storage requirements. They use a low and adjustable
amount of storage and require the function and gradient values at each iteration. Pre-
conditioning of the Newton equations may be used for both algorithms. In this case,
additional function information (e.g., a sparse approximation to the Hessian) may
also be required at each iteration. LMQN methods can be viewed as extensions of
conjugate-gradient (CG) methods in which the addition of some modest storage serves
to accelerate the convergence rate. TN methods attempt to retain the rapid conver-
gence rate of classical Newton methods while economizing storage and computational
requirements so as to become feasible for large-scale applications. They can be par-
ticularly powerful when structure information of the objective function is exploited

LMQN originated from the works of Nazareth [21] and Perry [25], [26] and were
further extended by Shanno [31], [32] resulting in the CONMIN code of Shanno and
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Phua [33]. Many researchers, including Buckley [1], Nazareth [22], Nocedal [23], Gill
and Murray [8], and Nash [15]-[17], studied these methods. Gill and Murray pro-
posed an LMQN method with preconditioning whose code has recently been imple-
mented in routine E04DGF of the NAG library [14]. Buckley and ienir [3], [4] pro-
posed a variable-storage CG algorithm. The method becomes the usual Shanno-Phua
LMQN when the available storage is minimal. Their method was implemented in code
BBVSCG, recently updated and improved by Buckley [2]. Morerecently, the L-BFGS
method of Liu and Nocedal [12] based on the limited-memory BFGS method described
by Nocedal [23] was developed. L-BFGS is available as routine VA05AD of the Hat-
well software library. Two TN methods proposed by Nash [15]-[17] and by Schlick
and Fogelson [29] have also been made available by the authors for distribution. Here
the codes were tested on the variational data assimilation problems in meteorology.

Several large-scale unconstrained minimization algorithms have been previously
compared. Navon and Legler [19] compared a number of different CG methods for
problems in meteorology and concluded that the Shanno-Phua [33] LMQN algorithm
was the most adequate for their test problems. The studies of Gilbert and Lemar6chal
[7] and of Liu and Nocedal [12] indicated that the L-BFGS method is among the
best LMQN methods available to date. Nash and Nocedal [18] compared the L-BFGS
method with the TN method of Nash [15]-[17] on 53 problems of dimensions 102 to 10a.
Their results suggested that performance is correlated with the degree of nonlinearity
of the objective function: for quadratic and approximately quadratic problems the TN
algorithm outperformed L-BFGS, whereas for most of the highly nonlinear problems
L-BFGS performed better.

The aim of this paper is to compare and analyze the performance of several
LMQN methods. The most representative LMQN method is then compared with TN
methods for large-scale problems in meteorology. We focus on various implementation
details, such as step-size searches, stopping criteria, and other practical computational
features. In 2 we briefly review the tested LMQN methods. The relationships of the
different methods to one another are discussed along with practical implementation
details. TN methods are briefly described in 3. In 4 we describe the various test
problems used in the Mor, Garbow, and Hillstrom [13] package, the synthetic cluster
problem, and some real-life large-scale problems ( 104 variables) from oceanography
and meteorology. Discussion of the performance of the different LMQN methods
and some general observations are presented in 5. In 6 the performance of TN
methods for the optimal control problems in meteorology is presented. Summary and
conclusions are presented in 7.

2. LMQN algorithms. The behavior of CG algorithms with inexact line
searches may depart considerably from theoretical expectations. For this reason, meth-
ods such as LMQN compute a descent direction but impose much milder restrictions
on the accepted step length.

LMQN algorithms have the following basic structure for minimizing J(x), x
TN:

1) Choose an initial guess x0 and a positive definite initial approximation to the
inverse Hessian matrix H0 (which may be chosen as the identity matrix).

2) Compute

and set

go g(xo) VJ(x0),

(2.2) do -H0g0.
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3) For k 0, 1,..., set

(2.3) Xk+l Xk + okdk

where ak is the step size (see below).
4) Compute

(2.4) gk+l TJ(xk+l).

5) Check for restarts (discussed below).
6) Generate a new search direction dk+l by setting

(2.5) dk+ :--Hk+lgk+.

7) Check for convergence: If

(2.6)

stop, where e 10-5. Otherwise, continue from step 3.
LMQN methods combine the advantages of the CG low storage requirement with

the computational efficiency of the quasi-Newton (Q-N) method. They avoid storage
of the approximate Hessian matrix by building several rank-one or rank-two matrix
updates. In practice, the BFGS update formula [12], [24] forms an approximate inverse
Hessian from H0 and k pairs of vectors (q, pi), where qi gi+l-gi and pi Xi+l-Xi
for i > 0. Since H0 is generally taken to be the identity matrix or some other
diagonal matrix, the pairs (qi, pi) are stored instead of Hk, and nkgk is computed by
a recursive algorithm. All the LMQN methods presented below fit into this conceptual
framework. They differ only in the selection of the vector couples (qi, pi), the choice
of H0, the method for computing nkgk, the line-search implementation, and the
handling of restarts.

2.1. CONMIN. The LMQN method of Shanno and Phua [33] is a two-step
LMQN-like CG method that incorporates Beale restarts. Only seven vectors of storage
are necessary.

Step sizes are obtained by using Davidon’s [5] cubic interpolation method to
satisfy the following Wolfe [34] conditions:

(2.7) J(xk + akdk) <_ J(xk)+/’(kgkTdk,

(2.s) VJ(xk +
gTdk

where/3’ 0.0001 and/ 0.9.
The following restart criterion is used:

(2.9) TIg+xgkl > o.211g+ll

The new search direction dk+l, defined by (2.5), is obtained by setting
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If a restart is satisfied, (2.5) is changed to

(2.11) dk+l --Itikgk+l,

where

(2.12) /:/k 7t (I-- ptqtT +qtptT qtTqt PiPiT) PiPiT

Here the subscript t represents the last step of the previous cycle for which a line
search was made. The parameter Vt pTqt/qTqt is obtained by minimizing the
condition number H-1Ht+l [33].

The Shanno and Phua method implemented in CONMIN uses two couples of vec-
tors q and p to build its current approximation of the Hessian matrix. The advantage
of CONMIN is that it generates descent directions automatically without requiring
exact line searches as long as (qk, Pk) are positive at each iteration. This can be
ensured by satisfying the second Wolfe condition (2.8) in the line search. However,
CONMIN cannot take advantage of additional storage that might be available.

2.2. E04DGF. The Gill and Murray nonlinear unconstrained minimization al-
gorithm is a two-step LMQN method with preconditioning and restarts. The amount
of working storage required by this method is 12N real words of working space.

The step size is determined as follows. Let (aJ, j 1, 2,..., define a sequence
of points that tend in the limit to a local minimizer of the cost function along the
direction dk. This sequence may be computed by means of a safeguarded polynomial
interpolation algorithm. A choice of the initial step length is the one suggested by
Davidon [5]:

(2.13) aO (--2(Jkl Jest)/gdk if-2(Jk- Jest)/gdk <_ 1,
if--2(Jk Jest)/gdk > 1.

Here Jest represents an estimate of the cost function at the solution point. Let t be
the first index of this sequence that satisfies

(2.14) TIVJ(x + atdk)Tdkl <_ --rigk dk, 0 <_ ] <_ 1.

The method finds the smallest nonnegative integer r such that

1
(2.15) Jk J(xk + 2-ratdk) >_ --2-rat#g’dk, 0

_
#

_ ,
and then sets ak s-rat.

A restart is required if one of the Powell restart criteria (2.9) or the condition

(2.16) T d 2-1.2llgk+lll _< gk+l k+l

__
-0.8llgk+llle

is satisfied [27].
The new search direction is generated by (2.5), where Hk+l is calculated by the

following two-step BFGS formula:

1
(Ulqp" + pq’U1)+ qTpk q,p(2.17) U2 U- q,p----- 1 + pp
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1 I qTU2q )1 (U2qp" + pkqkTU2)+ q,p 1 + qp pp(2.18) Hk+l U2 qp
If a restart is indicated, the following self-scaling update method [31], [32] is used
instead of U2:

where 7 qtTpt/qtTUlqt and U1 is a diagonal preconditioning matrix rather than
the identity matrix.

2.3. L-BFGS. The LMQN algorithm L-BFGS [12] was chosen as one of the
candidate minimization techniques to be tested since it accommodates variable stor-
age, which is crucial in practice for large-scale minimization problems. The method
abandons the restart procedure. The update formula generates matrices by using in-
formation from the last m Q-N iterations, where m is the number of Q-N updates
supplied by the user (generally, 3 <_ m <_ 7). After 2Nm storage locations are ex-
hausted, the Q-N matrix is updated by replacing the oldest information by the newest
information. Thus the Q-N approximation of the inverse Hessian matrix is continu-
ously updated.

In the line search a unit step length is always tried first, and only if it does
not satisfy the Wolfe condition is a cubic interpolation performed. This ensures that
L-BFGS resembles the (full-memory) BFGS method as much as possible while being
as economical as possible for large-scale problems, for which the quadratic termination
properties are generally not very meaningful.

Hk+l of (2.5) is obtained by the following procedure. Let rh min{k,m- 1}.
Then update H0 h + 1 times by using the vector pairs (U, P)=k-k, where Pk
Xk+l xk, qk gk+l gk, and

+ PkPkP.

Here Pk 1/(q’pk), Vk I- PkqkP, and I is the identity matrix.
Two options for the above procedure are offered in the code. One performs a more

accurate line search by using a small value for/ in (2.8) (e.g., f 10-2 or 10-3);
this is advantageous when the function and gradient evaluations are inexpensive. The
other uses simple scaling to reduce the number of iterations. In general it is preferable
to replace H0 of (2.20) by I-I as one proceeds, so that H0 incorporates more up-to-date
information according to one of the following:

MI: H H0 (no scaling).
M2" H 7oH0, 70 q0Tp0/llq0112 (only initial scaling).

TM3: H 7Ho, 7 qk Pk/llqkll 2"
Since Liu and Nocedal [12] reported that M3 is the most effective scaling, we use

it in all our numerical experiments.
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2.4. BBVSCG. BBVSCG implements the LMQN method of Buckley and Lenir
and may be viewed as an extension of the Shanno and Phua method. Extra storage
space can be accommodated.

The method begins by performing the BFGS Q-N update algorithm. When all
available storage is exhausted, the current BFGS approximation to the inverse Hes-
sian matrix is retained as a preconditioning matrix. The method then continues by
performing preconditioned memoryless Q-N steps, equivalent to the preconditioned
CG method with exact line searches. The memoryless Q-N steps are then repeated
until the criterion of Powell [27] indicates that a restart is required. At that time all
the BFGS corrections are discarded and a new approximation to the preconditioning
matrix begins.

For the line search, when k _< m, a step size of ( 1 is tried. A line search
using cubic interpolation is applied only if the new point does not satisfy pTqk > 0.

Td dTFor k m, a -g / Hd. At least one quadratic interpolation is performed
before cz is accepted.

The search direction is calculated by d+ -Hg instead of by 2.5, where
H is obtained as follows.

(i) If k 1, use a scaled Q-N BFGS formula:

(2.21) H1 0
O0qkP" +PkqkTO0(p,qk+ 1 + q’O0q)PP’p,qP’q

where O0 is defined as Oo (w0/v0)H0, wo p0Tq0, and v0 qoTH0qo.
(ii) If 1 < k _< m, use the Q-N BFGS formula:

Hk_qkp" + pq’H_ q _qk ppk
T

(2.22) Hk Hk-1 T - 1 +
Pk qk pkTqk PkTqk

(iii) If k > m, use the preconditioned memoryless Q-N formula:

T T ((2.23) Hk Hm Pkqk Hm + Hmqkpk
Pkq" + qk Hmqk PkpT

where Hm is used as a preconditioner.
The matrix Hk need not be stored since only matrix-vector products (Hkv) are

required. These are calculated from

Pk Vuk(2.24) Hkv-- Hqv- u’v 1 +

Tnwhere vk qk qqk, wk p’qk, and uk nqqk. The subscript q is either k 1
or m, depending on whether k <_ m or k > m. If one applies (2.24) recursively, the
following formula is obtained:

(2.25) Hqv=H0v- 1+-- uj

The total storage required for the matrices H1,..., Hm consists of m(2N + 2) loca-
tions.
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If k > m, a restart test is implemented. Restarts will take place if (2.9) and (2.16)
are satisfied. In that case I-Ira is discarded, k is set to 1, and the algorithm continues
from step 1.

Both the L-BFGS and Buckley-Lenir methods allow the user to specify the num-
ber of Q-N updates m. When m 1, BBVSCG reduces to CONMIN, whereas when
m oo, both L-BFGS and the Buckley-Lenir methods are identical to the Q-N BFGS
method (implemented in the CONMIN-BFGS code).

3. TN methods. Just as LMQN methods attempt to combine modest storage
and computational requirements of CG methods with the convergence properties of
the standard Q-N methods, TN methods attempt to retain the rapid (quadratic)
convergence rate of classic Newton methods while making storage and computational
requirements feasible for large-scale applications [6]. Recall that Newton methods for
minimizing a multivariate function J(xk) are iterative techniques based on minimizing
a local quadratic approximation to J at every step. The quadratic model of J at a
point xk along the direction of a vector dk can be written as

(3.1) J(xk + dk) J(xk)+ gTdk + 1d’Hd,
where gk and I-I denote the gradient and Hessian, respectively, of J at Xk. Mini-
mization of this quadratic approximation produces a linear system of equations for
the search vector dk that are known as the Newton equations:

(3.2) Hkdk --gk.

In the modified Newton framework a sequence of iterates is generated from x0 by the
rule xk+l Xk + akdk. The vector dk is obtained as the solution (or approximate
solution) of the system (3.2) or, possibly, a modified version of it, where some positive
definite approximation to I-Ik, Hk, replaces Hk.

When an approximate solution is used, the method is referred to as a truncated
Newton method because the solution process of (3.2) is not carried to completion. In
this case dk may be considered satisfactory when the residual vector r Hkdk + gk

is sufficiently small. Truncation may be justified since accurate search directions are
not essential in regions far away from local minima. For such regions any descent
direction suffices, and so the effort expended in solving the system accurately is often
unwarranted. However, as a solution of the optimization problem is approached, the
quadratic approximation of (3.1) is likely to become more accurate and a smaller
residual may be more important. Thus the truncation criterion should be chosen to
enforce a smaller residual systematically as minimization proceeds. One such effective
strategy requires

where

(3.4) r] min , IIgll c _< 1.

Indeed, it can be shown that quadratic convergence can still be maintained [6]. Other
truncation criteria have also been discussed [15], [16], [29].

The quadratic subproblem of computing an approximate search direction at each
step is accomplished through some iterative scheme. This produces a nested itera-
tion structure: an outer loop for updating xk and an inner loop for computing dk.
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The linear CG method is attractive for large-scale problems because of its modest
computational requirements and theoretical convergence in at most N iterations [9].
However, since CG methods were developed for positive definite systems, adaptations
must be made in the present context where the Hessian may be indefinite. Typically,
this is handled by terminating the inner loop (at iteration q) when a direction of neg-
ative curvature is detected (dqTHkdq < , where is a small positive tolerance such
as 10-10); an exit direction that is guaranteed to be a descent direction is then chosen
[6], [29]. An alternative procedure to the linear CG for the inner loop is based on
the Lanczos factorization .[9], which works for symmetric but not necessarily positive
definite systems. It is important to note that different procedures for the inner loop
can lead to a very different overall performance in the minimization [28].

Implementations of two TN packages are examined in this work: TN1, developed
by Nash [15]-[17], which uses a modified Lanczos algorithm with an automatically
supplied diagonal preconditioner, and TN2 (TNPACK) developed by Schlick and Fo-
gelson [29] (see also [30]), designed for structured separable problems for which the
user provides a sparse preconditioner for the inner loop. In TN2 a sparse modified
Cholesky factorization based on the Yale Sparse Matrix Package is used to factor the
preconditioner, which need not be positive definite (computational chemistry prob-
lems, where such situations occur, provided motivation for the method). Two modi-
fied Cholesky factorizations have been implemented in TN2 [28]. Although we have
not yet formulated a preconditioner for our meteorology application, we intend to fo-
cus future efforts on formulating an efficient preconditioner for this package. Here we
report only results for which no preconditioning is used in TN2. Although it is clear
that performance must suffer, our results provide further perspective. Full algorithmic
descriptions of the TN codes can be found in the original cited works.

4. Testing problems. Mor, Garbow, and Hillstrom [13] developed a relatively
large collection of carefully coded test functions of different degrees of difficulty and
designed very simple procedures for testing the reliability and robustness of the opti-
mization software. We used these problems to test the different LMQN methods.

The test problems of [13] involve Hessians of varying spectral condition numbers
and eigenvalues, and the eigenvalues are generally of unknown and uncontrollable dis-
persion. A synthetic test function with a controllable spectrum of clustered eigenvalues
was thus also tested.

Two representative real-life large-scale unconstrained minimization applications
from meteorology and oceanography were also examined to compare the performances
of the LMQN and TN methods. The number of variables for these large-scale problems
ranges from 7330 to 14,763.

4.1. Standard library test problems. All of the 18 test problems of Mor(,
Garbow, and Hillstrom for unconstrained minimization have the following composi-
tion:

m

(4.1) J(x)=f2(x), m<_N, xEng.
i--1

These problems were all minimized by using both the recommended standard
starting points x0 as well as by using nonstandard starting points, taken as 10x0 and
100x0. The vectors x0 and 100x0 are regarded as being close to and far away from
the solution, respectively; it is not unusual for unconstrained minimization algorithms
to succeed with an initial guess of x0 but fail with an initial guess of either 10x0 or

100x0.



590 x. zou ET AL.

4.2. Synthetic cluster function problems. Consider the quadratic objective
function

1
(4.2) J(x)-- xTHx,
where x is a vector of N variables and H is an N x N positive definite matrix of real
entries. There exists then a real orthogonal matrix Q such that

(4.3) QTHQ diag(1,..., N),

where the ith column of Q is the ith eigenvector corresponding to the ith eigenvalue
Ai. The objective function can be written as

(4.4) J(x) xTQDQTx.
The orientation and shape of this N-dimensional quadratic surface is a function

of Q and D: the directions of the principal axes of this hyperellipsoid are determined
by the directions of the eigenvectors, and the lengths of the axes are determined by
the eigenvalues. The axes’ lengths are inversely proportional to the square root of the
corresponding eigenvalues.

Consider a quadratic objective function defined by

1 (Diixi)2(4.5) J(x)
i=l

where

i- Mk- l-J 1Dk) ck,(4.6) Dii 1 + [-J + 1

[ represents the floor function, Nk, Mk, and K are some positive integers, and ck
and Dk are some real values satisfying the following restrictions:

K

I <_K <_N,

Cl < C2 < < CK, 0 <_ Dk < 1,

k

By comparing (4.7) with (4.4) we see that the function (4.5) has the standard basis
eigenvectors (since Q in this case was taken to be equal to the identity matrix I) and
K clusters of eigenvalues with N eigenvalues in the kth cluster, respectively. The kth
cluster is located around the position c with interval width D, which is defined in
a fractional form in terms of ck (0.0 <_ Dk < 1.0). For example, D 0.5 implies an
interval width of [0.5ck, 1.5ck].
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This function yields an eigenvalue system of homogeneous dispersion within each
cluster, i.e., each cluster consists of equally spaced eigenvalues. The choice Q I
determines an orientation of the hyperellipsoid in which the principal axes are aligned
parallel to the x coordinates. The advantage of this choice is that, without loss of
generality, the objective function and its gradient vector are computationally very
simple even for large N, which permits testing on very large problems at a relatively
low cost. The gradient components for this choice are given by

Gi (Dii)2xi, i 1,...,N,

and the condition number of the Hessian is given by

2

(4.9) ca ’Oll ]

As shown below, we can test the LMQN methods with a variety of setup values for
the various parameters (N; K; Nk, k 1,..., K; ck, k 1,..., K; Ok, k 1,..., K).

Example 1. Let N 21; K 1; N1 N; D1 A; C1 1.0. These parameters
yield N-dimensional hyperellipsoidal contours. The condition number of this system
is ca ((11 + 10A)/(ll- 10A))2.

Example 2. Let N 21;K 2,N1 ll, N2 10;C1 1.0, C2 A;D1
0.2, D2 0.3. These parameters yield a bicluster problem, the condition number
being controlled by ca --((6 + 402)c2/(6- 501)cl)2.

4.3. Oceanography problem. This problem is derived from an analysis of the
monthly averaged pseudo-wind-stress components over the Indian Ocean. We attempt
to analyze the wind over a region by using the following available information: (a)
ship-reported averages on a 1 resolution mesh and (b) a 60-yr pseudostress clima-
tology. The objective function is a measure of discrepancy in the data according to
certain prescribed conditions, which may be dynamically or statistically motivated.
According to climatological observations, the wind pattern should be smooth. Some
measure of roughness and some measure of lack of fit to climatology should also be
included in the objective function [11].

To formulate the problem, we used the following objective function:

where Txo and Tyo are the components of the 1 mean values determined by the ship
wind reports; Txc and Tuc are climatology pseudostress vectors, respectively; x
u. (u2 + v2) 1/2 and TU V. (U2 + V2) 1/2 are the resultant eastward and northward
pseudostress components, respectively; v represents the wind vector; and L is a length
scale (chosen to be 1 latitude), which makes all the terms in the objective cost
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function dimensionally uniform and scales them to the same order of magnitude. The
coefficients (actually weights) 7, A,/, and ( control how closely the direct minimization
fits each constraint. The first term in J expresses the closeness to the input data. The
second measures the fit to the climatology data values for that month. The third is a
smoothing term for data roughness and controls the radius of influence of an anomaly
in the input data. The fourth and the fifth terms are boundary-layer kinematic terms
that force the results to be comparable to the climatology.

A discretization of the domain 2 of 3665 mesh points produces 2 x 3665 7330
variables.

4.4. Meteorology problems. Combining in an optimal way new information
(in the form of measurements) with a priori knowledge (in the form of a forecast) is a
key idea of variational data assimilation in numerical weather prediction. The object
is to produce a regular, physically consistent two- or three-dimensional representation
of the state of the atmosphere from a series of measurements (called observations)
that are heterogeneous in both space and time. This approach is implemented by
minimizing a cost function measuring the misfit between the observations and the
solution predicted by the model.

Below, a two-dimensional limited-area shallow-water-equations model is used to
evaluate a quadratic objective function. The equations may be written as the following
(see [20] for details):

(4.11a)
Ou Ou Ou
o--i + + + =o,

(4.11b)
Ov Ov Ov 0+ + vN + + N o,

(4.11c) 0 0 0 + =0,

where f is the Coriolis parameter u, v are the two components of the velocity field,
and is the geopotential field; both fields are spatially discretized with a centered-
difference scheme in space and an explicit leap-frog integration scheme in time. A
rectangular domain of size L 6000 km, D 4400 km is used along with discretization
parameters Ax 300 km, Ay 220 km, and At 600 s.

This model is widely used in meteorology and oceanography since it contains
most of the physical degrees of freedom (including gravity waves) present in the more
sophisticated three-dimensional primitive-equation models. It is computationally less
expensive to implement, and results with this model can be expected to be similar to
those obtained from a more complicated primitive-equation model. The gradient of
the objective function with respect to the control variables is calculated by the adjoint
technique [20].

Two experiments are conducted here. The first involves a model in which only
the initial conditions serve as the control variables. The second includes both the
initial and boundary conditions as control variables.

The objective function is defined as a simple weighted sum of squared differences
between the observations and the corresponding prediction model values:

N Nv
J W’( bs)2 + Wy -.[(u ubs)2 + (v vb)2],

n=l n=l
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where u, v are the two components of the velocity field, is the geopotential field,
N is the total number of geopotential observations available over the assimilation
window (to, tR), and Nv is the total number of wind vector observations. The quan-
tities 0obs vonbs, and (nbSn are the observed values for the northward wind component,
the eastward wind component, and the geopotential field, respectively, and the quan-
tities un, vn, and Cn are the corresponding computed model values. We and Wv
are weighting factors, taken to be the inverse of estimates of the statistical root-mean-
square observational errors on geopotential and wind components, respectively. Values
of We 10-a m-asa and Wv 10-2 m-2s2 are used. In the first problem the objec-
tive function g is viewed as a function of x0 (u(to), v(to), (t0))T, whereas in the
second J is a function of (x0, v), where v represents a function of time defined on the
boundary.

For the experiments the observational data consist of the model-integrated values
for wind and geopotential at each time step starting from the Grammeltvedt initial
conditions [10] (see Fig. 1). Random perturbations of these fields, performed by using
a standard library randomizer RANF on the CRAY-YMP (shown in Fig. 2), are then
used as the initial guess for the solution. A grid of 21 21 points in space and 60 time
steps in the assimilation window (10 hrs) results in a dimension of the vector of control
variables of 1323 for the initial control problem. Controlling the boundary conditions
of a limited-area model implies storing in memory as control variables all of the three
field variables on the boundary perimeter for all the time steps. The dimension of the
vector of control variables thus becomes 14,763.

Two different scaling procedures were considered: gradient and consistent. The
first scales the gradient of the objective function. The second makes the shallow-
water-equations model nondimensional.

5. Numerical results for LMQN methods. In most of our test problems
(those in [13] and synthetic problems) the computational cost of the function is low
and the computational effort of the minimization iteration sometimes dominates the
cost of evaluating the function and gradient. However, there are also several practical
large-scale problems (for example, the variational data assimilation in meteorology)
for which the functional computation is expensive. We report, therefore, both the
number of function and gradient evaluations and the time required for minimization
of some problems.

Table 1 shows the amount of storage required by the different LMQN methods
for various values of m, the number of Q-N updates, and the dimension N.

The runs below were performed on a CRAY-YMP, for which the unit roundoff
is approximately 10-14. In all tables "Iter" represents the total number of iterations,
"Nfun" represents the total number of function calls, "MTM" represents the total CPU
time spent in minimization, and "FTM" represents the CPU time spent in function
and gradient evaluations.

5.1. Results for the standard library test problems. For the 18 test prob-
lems, the number of variables ranges from 2 to 100. All the runs reported in this
section and 5.2 were terminated when the stopping criterion (2.6) was satisfied. Low
accuracy in the solution is adequate in practice.

In the corresponding tables P denotes the problem number, and the results are
reported in the form

CONMIN-CG/CONMIN-BFGS/E04DGF,
L-BFGS (m- 3)/L-BFGS (m 5)/L-BFGS (m--7),

BBVSCG (m 3)/BBVSCG (m- 5)/BBVSCG (m 7).
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(b)

FIG. 1 Ueopotetlal #eld (a) baaed o the Urammeltedt nitial condltlo ad the id #eld
(b), calculated from the geopotential fields in Fig. l(a) by the geostrophic approximation at the same
time levels. Contour interval is 200 m2s-2 and the value of maximum vector is 29.9 ms-1
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(a)

(b)

FIG. 2 Random perturbation o] the geopotential (a) and the wind (b), fields in Fig. 1. Contour
interval is 500 m2s-2 and the value of maximum vector is 54.4 ms-1.
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TABLE 1

Storage locations (N, dimension of the control variable; m, number of quasi-Newton updates).

ICONMIN-CG CONMIN-BFGS E04DGF L-BFGS BBVSCG
5N+2 N(N+7)/2 14N (2m+2)N+2m (2m+3)N+2m

Table 2 compares the performance of the four LMQN methods from the standard
starting points, with m 3, 5, 7 updates for both L-BFGS and the Buckley-Lenir
method. An "F" indicates failure when the maximum number of function calls (3000)
is exceeded. An "S" indicates failure in the line search. The latter may occur from
roundoff, and a solution may be obtained nonetheless.

The results show that for some problems in which the objective function depends
on no more than three or four variables (such as problems 4, 10, 12, and 16) the
full-memory Q-N BFGS method is clearly superior to the LMQN .methods. For other
problems the LMQN methods display better performance.

For most problems the number of iterations and function calls required decreases
as the number of Q-N updates m is increased in L-BFGS. A dramatic case illustrating
this is the extended Powell singular function (problem 15). The variation of the value
of the objective function and the norm of the gradient with the number of iterations
is shown in Fig. 3. For m 3 the number of iterations and function calls required to
reach the same convergence criteria is (65, 76); for m 5 it is (56, 66), and for m 7
it is (39, 45). The difference between different values of m becomes obvious only after
18 iterations.

BBVSCG usually uses the fewest function calls when m 7. Either m 7 or
m 3 performs best in terms of the number of iterations. Figures 4 and 5 present two
illustrative examples. Figure 4 presents the variation of the value of J and the norm
of VJ for the Wood function (problem 17), and Fig. 5 presents the same variation for
the variable-dimensioned function (problem 6 (N 100)). The differences between
the cases m 5 and m 7 for the two problems are smaller than the corresponding
differences between the m 3 and m 5 cases.

Table 2 also shows that L-BFGS usually requires fewer function calls than does
BBVSCG. This agrees with the experience of Liu and Nocedal [12], who suggested
that BBVSCG gives little or no "speed-up" from additional storage. To investigate
this further, we measure in Figs. 6 and 7 the effect of increasing the storage. We define
the speed-up by using the same definition as did Liu and Nocedal, i.e., the ratio of
function calls required when m 3 and m 7.

We see from these figures that the speed-up of BBVSCG is not smaller than
that of L-BFGS. There are cases for which L-BFGS gains more speed-up than does
BBVSCG (i.e., problems 2, 4, 5, 7a, 9b, 11, 15, 18). However, there are also cases for
which BBVSCG has larger speed-up than does L-BFGS (i.e., problems 7b, 8, 9a, 12,
13, 16, 17). Therefore, the reason that L-BFGS requires fewer function calls cannot
be the difference in speed-up between the two codes.

For problems for which the function and gradient evaluations are inexpensive, we
also examine the number of iterations and the total time required by the two methods.
From Table 2 we see that BBVSCG usually requires fewer iterations and less total
CPU time than does L-BFGS. The more accurate line search in BBVSCG may provide
an explanation. Will a more accurate line search in L-BFGS decrease the number of
iterations? In Table 3 we present the results for L-BFGS (m 7) when the line search
is forced to satisfy (2.8) with/i/--0.01 rather than 0.9.

For most problems (18 out of 21) the number of iterations when L-BFGS is used
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TABLE 2

Eighteen standard library test problems with standard starting points.

P N Iter Nfun MTM FTM
(total CPU time) (function calls’ CPU)

22/28/37 49/31/81 0.0223/0.0238/0.0211 0.0008/0.0005/0.0014
3 28/27/28 35/31/34 0.0278/0.0316/0.0383 0.0006/0.0005/0.0006

25/31/26 42/44/39 0.0229/0.0326/0.0315 0.0007/0.0007/0.0007

2 6

3 3

4 2

5 3

10 2

11 4

12 3

13

14

15

16

17

18

10

100

12

30

100

10

50

100

100

100

100

24/41/48 50/45/100 0.0260/0.0557/0.0301 0.0026/0.0023/0.0051
52/42/35 66/46/42 0.0556/0.0523/0.0513 0.0034/0.0024/0.0021
45/52/38 80/86/55 0.0456/0.0619/0.0516 0.0041/0.0044/0.0029
3/7/4 7/9/11 0.0028/0.0058/0.0070 0.0001/0.0002/0.0002
6/7/7 9/9/9 0.0059/0.0073/0.0074 0.0002/0.0002/0.0002
4/5/4 9/9/8 0.0032/0.0042/0.0031 0.0002/0.0002/0.0001
99/140/167 257/187/433 0.0912/0.1042/0.0770 0.0033/0.0024/0.0051
173/167/169 229/208/215 0.1752/0.2045/0.2461 0.0030/0.0027/0.0028
114/123/136 232/235/231 0.1066/0.135910.1723 0.0030/0.0031/0.0030
11/32/47 31/40/113 0.0109/0.0285/0.0278 0.0010/0.0013/0.0037
30/29/27 40/40/37 0.0310/0.0361/0.0383 0.0013/0.0013/0.0012
19/22/22 36/35/36 0.0175/0.0230/0.0279 0.0012/0.0011/0.0012
6/19/19 13/20/41 0.0052/0.0373/0.0148 0.0002/0.0003/0.0006
19/19/19 20/20/20 0.0187/0.0224/0.0256 0.0003/0.0003/0.0003
14/13/17 26/22/27 0.0129/0.0142/0.0218 0.0004/0.0003/0.0004
10/36/35 21/37/73 0.0224/1.7774/0.0464 0.0004/0.0007/0.0014
36/36/36 37/37/37 0.0733/0.0936/0.1125 0.0007/0.0007/0.0007
15/26/29 37/49/45 0.0288/0.0586/0.0707 0.0007/0.0010/0.0009
215/97/F 432/100/F

2202/396/222 2511/458/255
239/234/201 433/373/289
600/135/F 1208/140/F
F/2049/106 F/2400/1240
572/470/223 1108/800/355
24/71/F 59/80/F
60/59/56 73/69/67

67/48/49 132/87/80
125/17/332 306/26/863
17/21/17 19/23/19
18/17/18 32/25/24
127/F/141 281/F/309
250/250/223 331/308/272
136/146/148 254/256/215
8/10/11 18/15/28
13/13/13 25/25/25
11/11/16 26/22/30
26/35/36 F/36/79
38/22/27 63/43/37
25/24/23 S/48/52
15/16/29 36/21/71
26/24/24 35/32/33
13/13/15 30/27/24
46/42/53 98/52/122
49/48/47 56/54/53
43/54/51 78/91/48
18/36/24 49/50/69
33/35/38 45/46/50
31/30/34 56/48/52
47/42/46 95/43/108
65/56/39 76/66/45
44/49/58 86/79/82
10/15/16 22/16/35
16/14/14 18/15/15
14/16/15 30/25/19
48/36/200 106/43/418
106/93/86 137/119/113
30/24/22 53/42/34
686/465/832 1384/491/1724
1137/853/781 1213/895/821
709/591/698 1393/1110/1318

0.4707/0.2870/2.1152
3.5291/0.7419/0.4794
0.4597/0.4616/0.4111
2.1548/1.1544/3.8358
6.2462/5.7458/3.2839
1.8518/1.4923/0.7219
0.0604/3.5806/0.7649
0.1266/0.1590/0.1824
0.1276/0.1066/0.1271
0.1437/0.0355/0.1997
0.0182/0.0261/0.0236
0.0186/0.0190/0.0228
0.2719/9.3038/0.1596
0.4425/0.5301/0.5577
0.2381/0.2883/0.3168
0.0063/0.0073/0.0097
0.0142/0.0162/0.0177
0.0098/0.0108/0.0191
0.4817/0.0356/0.0231
0.0432/0.0305/0.0387
0.0344/0.0262/0.0279
0.0207/0.0183/0.0330
0.0337/0.0355/0.0402
0.0187/0.0199/0.0222
0.1457/2.1017/0.0749
0.1094/0.1345/0.1574
0.0968/0.1431/0.1422
0.04571.7946/0.0378
0.0706/0.0941/0.1227
0.0576/0.0645/0.0854
0.1247/2.0963/0.0536
0.1367/0.1512/0.1243
0.0854/0.1087/0.1494
0.0078/0.0103/0.0114
0.0150/0.0151/0.0169
0.0130/0.0161/0.0163
0.0497/0.0362/0.0871
0.1073/0.1152/0.1260
0.0272/0.0253/0.0262
8.8249/26.57/9.0296
8.2528/6.6732/6.6005
8.5565/7.2290/9.2365

0.2152/0.0498/1.4839
1.2506/0.2282/0.1276
0.2158/0.1859/0.1440
1.2577/0.1457/3.1262
3.1237/2.4986/1.2903
1.1542/0.8334/0.3697
0.0010/0.0014/0.0512
0.0012/0.0012/0.0011
0.0023/0.0015/0.0014
0.0173/0.0015/0.0484
0.0011/0.0013/0.0011
0.0018/0.0014/0.0014
0.0650/0.6949/0.0712
0.0766/0.0712/0.0628
0.0589/0.0593/0.0498
0.0001/0.0001/0.0002
0.0002/0.0002/0.0002
0.0002/0.0002/0.0002
0.1299/0.0016/0.0034
0.0027/0.0019/0.0016
0.0051/0.0016/0.0014
0.0081/0.0048/0.0161
0.0079/0.0072/0.0075
0.0068/0.0061/0.0054
0.0142/0.0075/0.0176
0.0081/0.0078/0.0077
0.0113/0.0132/0.0107
O. 0006/0.0006/0.0009
O.0005/0.0006/0.0006
0.0007/0.0006/0.0006
0.0014/0.0006/0.0016
0.0011/0.0010/0.0007
0.0013/0.0012/0.0012
0.0002/0.0001/0.0003
0.0001/0.0001/0.0001
0.0002/0.0002/0.0002
0.0009/0.0004/0.0035
0.0011/0.00100.0009
0.0004/0.0003/0.0003
6.7316/2. 39398.4209
5.8978/4.3587/3.9912
6.7916/5.4006/6.5045
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FIG. 3. Variation o[ (a) the objective function and (b) the norm of gradient with the number

of iterations using the L-BFGS method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 15.

is then markedly reduced (compare Table 2 L-BFGS (m- 7) with Table 3). Among
those problems, about two-thirds require more function calls, but about one-third
require even fewer function calls.

This implementation of L-BFGS is compared with the CONMIN-CG, E04DGF,
L-BFGS ( -0.9), and BBVSCG codes in Table 4. The "number of wins" describes
the number of runs for which a method required fewest function calls and the number
of runs for which a method required fewest iterations. Because ties occur, numbers
across a row do not add up to the number of different test cases.

We see that L-BFGS (m 7 and 0.01) uses the fewest iterations and that
L-BFGS (m 7 and /-0.9), CONMIN-CG, and BBVSCG use the fewest function
calls. If both the numbers of iterations avd function calls are considered, CONMIN-
CG seems to be the best.
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FIG. 4. Variation of (a) the objective junction and (b) the norm of gradient with the number

of iterations using the BBVSGG method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 17.

We also find that L-BFGS still requires the fewest function calls among LMQN
methods that use nonstandard starting points (data not shown).

Therefore, from the experiments with the 18 library test problems, L-BFGS with
a more accurate line search (f 0.01) emerges as the most efficient minimizer for
problems for which the function calls are inexpensive and the computational effort of
the iteration dominates the cost of evaluating the function and gradient. However,
both L-BFGS with inexact line searches and CONMIN are very effective on problems
for which the function calls are exceedingly expensive. E04DGF does not perform as
well as the other LMQN methods.

5.2. Results for the synthetic cluster function problems. For the first
one-cluster hyperellipsoidal problem we tested the sensitivity of all the methods to
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FIG. 5. Variation of (a) the objective function and (b) the norm of gradient with the number

of iterations using the BBVSCG method with m equal 7 (solid), 5 (dash dot), and 3 (dotted) for the
test library problem 6 with dimension 100.

various degrees of ill conditioning by controlling the value of D1, the dispersion interval
in fractional form. Table 5 presents the results for D1 taken to be 0.2, 0.8, and 0.99,
respectively. The corresponding condition numbers are 2.0, 39.9, and 436.8. The
results in Table 5 indicate that L-BFGS performs best when the condition number
is small. As the condition number is increased, L-BFGS requires the most iterations
and function calls, whereas CONMIN-CG uses the fewest function calls. In CPU
time E04DGF is most efficient and CONMIN-BFGS is most expensive (even though
the latter requires fewer iterations and function calls than does L-BFGS). The full-
memory CONMIN-BFGS code spends about four times as much CPU time as does
any other method. This occurs because most iteration time is spent in matrix and
vector multiplications.

For the second bicluster problem we control the condition number by changing
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FIG. 6. Speed-up NFUN(3)/NFUN(7), for L-BFGS method.
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FIG. 7. Speed-up NFUN(3)/NFUN(7), for BBVSCG method.

the position of the center of the second cluster C2. The performance when the value
of the condition number is equal to 8.29, 8.29 102, and 8.29 10a, respectively, is
given in Table 6. We see that when the condition number is equal to 8.29, L-BFGS
uses the fewest function calls. However, the differences among the various methods is
not significant. When the condition number is increased, L-BFGS again turns out to
be the worst. The E04DGF code turns out to be best in all computational respects:
number of iterations, number of function calls, and total CPU time. If we use a more
accurate line search, L-BFGS is competitive with CONMIN-CG, which is the second
best, and is better than BBVSCG.

We also compared the performance of different LMQN methods on a multicluster
problem. The same conclusion can be drawn (table omitted): the E04DGF performs
best. L-BFGS with a more accurate line search and CONMIN-CG come in second,
followed by BBVSCG.
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TABLE 3

Eighteen standard library test problems with standard starting points, using the L-BFGS (m
7) method with more accurate line search.

P N Iter Nfun (total CPU time) (Function calls’
CPU time)

3 19 55 0.0325 0.0009
2 6 19 57 0.0352 0.0029
3 3 3 9 0.0038 0.0002
4 2 98 355 0.1938 0.0047
5 3 11 42 0.0199 0.0014

10 4 14 0.0057 0.0002
6 100 7 27 0.0220 0.0005

12 36 97 0.1130 0.0479
7 30 254 654 1.2429 0.6812
8 100 58 223 0.2491 0.0039

10 61 226 0.1371 0.0127
9 50 155 444 0.5163 0.1027
10 2 8 30 0.0130 0.0002
11 4 13 35 0.0219 0.0012
12 3 14 47 0.0348 0.0107
13 100 41 107 0.1656 0.0134
14 100 23 77 0.0880 0.0010
15 100 19 56 0.0685 0.0008
16 2 9 28 0.0139 0.0002
17 4 29 83 0.0507 0.0007
18 100 704 1451 9.8829 7.2431

TABLE 4

Number of wins on the whole set of 18 test problems with the standard starting points, using
limited memory Q-N methods.

L:BFGS
WINS CONMN E04DGF (9=0.9)

-CG, m=3 m=5 rn=7
Iter 6 0 0 2
Nfun ,5 ,0, 2 3 5

L-BFGS
,(l=0.01),,
m=7
13
2

BBVSO3

m=3 m=5 m=7

0 0 5

TABLE 5

One cluster problem (N 21; K 1; N1 21; C1 1.0; D 0.2, 0.8, and 0.99), the
condition numbers are 2.0, 39.9, and 436.8, respectively.

CONMIN:CG
Conmin-BFGS
E04DGF

L-BFGS
(1=0.9)

BBVSCG

L-BFGS’
(=,10"2

’0.2 0.8 0.99
10’ 21 ’21
11 45 56
10 21 32
10 50 117
10 45 97
10 42 99
10 24 44
10 26 26
10 42 61
10 21 45
10 21 45
10 21 45

Nfun

0.2 0.8 0.’99
2i’ 43 43’
13 47 58
23 ,45 67
12 56 124
12 52 103
12 48 107
19 47 87
17 50 49
15 62 101
23 45 46
23 45 46
23 45 46

(total CPU time
0.2 0.8 0.99
o.o15q 0.0342 0.0342
0.0493 0.2187 0.2679
0.0060 0.0119 0.0179
0.0129 0.0654 0.1515
0.0146 0.0716 0.1535
0.0157 0.0773 0.1855
0.0152 0.0403 0.0747
0.0165 0.0528 0.0527
0.0170 0.0790 0.1269
0.0168 0.0343 0.0347
0.0185 0.0393 0.0397
0.0196 0.0436 0.0440
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TABLE 6

Bi-cluster problem (N 21; K 2; N1 11; N2 10; CI 1.0; C2 2.0,20, and 200;
DI 0.2, 0.3), the condition numbers are 8.29, 8.29 102, and 8.29 104, respectively.

m Itcr

D 2.0 20.0 200.

CONMIN-CG
Conmin-BFGS
E04DGF

L-BFGS
(1=0.9)

BBVSCG

L-BFGS’
(=I0-2)

18 23 35
28 90 141
15 19 22
24 158 1009
24 154 895
24 168 579
20 67 168
24 75 167
24 81 169
18 21 29
18 20 29
18 21 30

2.0

37
30
33
28
29
28
39
38
31
39
39
39

N fun

20.0 2O0.

47 71
92 143
42 47
170 1083
164 951
182 610
129 289
128 256
126 232
53 81
49 83
51 88

(total CPU time)
2.0 20.0 200.0

0.0318 0.0412 0.0634
0.1334 0.4516 0.6958
0.0115 0.0148 0.0167
0.0338 0.2205 1.4129
0.0392 0.2591 1.5187
0.0439 0.3330 1.1523
0.0355 0.1198 0.2695
0.0418 0.1406 0.2895
0.0398 0.1636 0.3232
0.0335 0.0419 0.0616
0.0376 0.0439 0.0699
0.0410 0.0504 0.0824

TABLE 7

Ocean problem (N 7330), using limited-memory Q-N methods.

MTM
Algorithm Iter Nfun (total CPU time)

CONMIN-CG 7 15 15.45

L-BFGS(I=0.9) 22 25 17.15

BBVSCG 4 8 8.43

L-BFGS(I=0.001) 22 25 17.03

FTM
(function calls’

CPU time,)

15.42

16.44

9.23

!6.33

5.3. Results for the oceanographic large-scale minimization problem.
Only CONMIN-CG, L-BFGS, and BBVSCG were successful for this large-scale prob-
lem. E04DGF failed in its line search. All the methods used the same convergence
criterion:

(5.1) IIgll < e, e 10-8.

Numerical experiments indicate that when the number of Q-N updates m is increased
from 3 to 7, there is no significant improvement in performance. In Table 7 we present
only the results for L-BFGS and BBVSCG when m 3. We see that the function
evaluation for this problem is far more expensive than is the iterative procedure. Both
L-BFGS and CONMIN-CG require 15 function calls, whereas BBVSCG uses only 8
function calls. Therefore, BBVSCG emerges as the most effective algorithm here. It
also uses fewest iterations. No significant improvement was observed for L-BFGS with
a more accurate line search.

5.4. Results for the meteorological large-scale minimization problem.
Both gradient scaling and nondimensional scaling were applied to the meteorological
large-scale minimization problem for all four LMQN methods. CONMIN-CG and
BBVSCG failed after the first iteration with either gradient scaling or nondimensional
scaling. L-BFGS was successful only with gradient scaling. E04DGF worked only
with the nondimensional shallow-water-equations model. It appears that additional
scaling is crucial for the success of the LMQN minimization algorithms applied to this
real-life, large-scale meteorological problem.
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TABLE 8

Meteorological problem with the limited memory quasi-Newton methods.

Control Variables

Initial

Initial+Boundary

MTM
Algorithm tc Nfun (total CPUtimc)

E04DGF 72 203 36.89
L-BFGS 66 89 15.53
EO4DGF 160 481 87.31
L-BFGS 179 468 80.70

FTM
(function calls’

CP,U ,time)
33.56
14.76
79.98
77.81

TABLE 9

Maximum absolute differences between the retrieval and the unperturbed initial wind and geopo-
tential fields using the limited memory quasi-Newton methods.

Cbntroi Variables Algorithm,, ,i"2"1"V2) 1/2 ,*
E04DGF 0.75E-2 0.12E2

In iti ai L-BFGS 0.38E- 0.90E0
E04DGF 0.1’0E0 0.64E

Initial+Boundary L-BFGS 0.26E1 0.22E2

Table 8 presents the performance of these two LMQN methods, namely, E04DGF
and L-BFGS, when only the initial conditions or the initial-plus-boundary conditions
are taken to be the control variables. Because of the different scaling procedures used
in the two methods the minimization was stopped when the convergence criterion

(5.2) IIgll < 10-4 x Ilgoll

was satisfied.
We observe from Table 8 that most of the CPU time is spent on function calls

rather than in the minimization iteration. By comparing the number of function
calls and CPU time we find that the computational cost of L-BFGS is much lower
than that of E04DGF. L-BFGS converged in 66 iterations with 89 function calls. In
contrast, E04DGF required 72 iterations and 203 function calls to reach the same
convergence criterion. This produces rather large differences in the CPU time spent
in minimization. L-BFGS uses less than half of the total CPU time required for
E04DGF.

The differences between figures showing the retrieved initial wind and geopoten-
tial and Fig. 1 are imperceptible (figures omitted). Table 9 gives the maximum differ-
ences between the retrieval and the unperturbed initial conditions from E04DGF and
L-BFGS minimization results. An accuracy of at least 10-3 is reached for both the
wind and geopotential fields by using both the codes of L-BFGS and of E04DGF for the
initial control. This clearly shows the capability of the unconstrained LMQN methods
to adjust a numerical weather prediction model to a set of observations distributed in
both time and space.

When we control both the boundary and initial conditions, we expect to produce
a much more difficult problem than when we control only the initial conditions. First,
since the dimensionality of the Hessian of the objective function is increased by about
one order of magnitude (from 103 to 104), the condition number of the Hessian will
increase as O(N2/d) [27], where d is the dimensionality of the space variables and N is
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TABLE 10

Initial control problem in meteorology.

algorithm

TNI

TNI
(no prec.)
TN2

ltcr

3 19
50 20
3 63
50 39
3 81
50. 4

Nfun

0
26
64
40
82
5

NCG

50
54
i70
165
242
91

MTM

12.20
13.79
38.82
32.78
68.68
16.41

’i.3
12.89
37.15
31.53
67.21
16.30

the number of components of the vector of control variables. Second, the perturbation
of the boundary conditions creates locally an ill-posed problem. This is reflected by
an increase of high-frequency noise near the boundary. In turn, the condition number
of the Hessian of the objective function increases.

From Tables 8 and 9 we see, indeed, that when we control both the initial and
boundary conditions, minimization becomes much more difficult. The computational
cost is doubled and the accuracy of the retrieval is decreased by an order of magnitude
compared with those of the initial control problem. The largest differences occur near
the boundary for both the wind and geopotential fields. However, the differences
between the performances of E04DGF and L-BFGS on the initial- and boundary-
value problems are small.

6. Results for TN methods. The meteorology problems of 5.4 were tested for
TN1 and TN2. In TN methods performance.often depends on the specified maximum
number of permitted inner iterations per outer iteration (MXITCG). Our experience
suggests that different settings for MXITCG have a small impact on the performance
of TN1 but a rather large impact on that of TN2 (see Table 10). This results from our
current unpreconditioned implementation for TN2 since the inner CG loop requires
more iterations to find a search direction.

To clarify this idea and to see what differences in performance between the two
TN methods were due to the different truncation criteria, CG versus Lanczos, and
to preconditioning, we also performed minimization for TN1 without diagonal pre-
conditioning. The results are presented in Table 10. Similar trends are identified for
both TN1 and TN2 in this case: the cost for large MXITCG is much lower than that
for small MXITCG. However, TN2 with MXITCG 50 performs much better than
does TN1 with MXITCG 50 in terms of Newton iterations, CG iterations, function
evaluations, and CPU time. This strongly suggests that with a suitable preconditioner
for the problem in meteorology, TN2 might perform best.

Numerical results for both initial control and initial and boundary control are
summarized in Tables 11 and 12. We see from the tables that time is approximately
proportional to the number of inner iterations. Thus the use of preconditioning in
TN1 accelerates performance, as expected. Note that without preconditioning TN1
requires more function evaluations than does TN2. Preconditioning is particularly
important as the dimension of the minimization problem increases.

Comparison with Table 9 shows that the TN methods are competitive with
L-BFGS. TN1 is better than L-BFGS for initial control and much better than L-
BFGS for initial and boundary control. TN1 also produces higher accuracy than do
the other three methods (see Tables 9 and 12).
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TABLE 11

Meteorological problem with the truncated Newton methods.

Control Variables Algorithm ltcr

TN1 19
Initial TN2 4

TNI 70
Initial+Boundary TN2 12.

Nfun

70
96

283
5Z0

’MTM FTM
(iotl CPU time) (function Calls’

CPU lime)
12.20 11.31
16.41 16.30
’49.96 46.22
87.22 86.30

TABLE 12

Maximum absolute differences between the retrieval and the unperturbed initial wind and geopo-
tential fields using the truncated Newton methods.

Control Variables

Initial

Initial+Boundary

Algorith,m -_, ,(u2+v2)I ]2 ., #
TN1 0.89E-2 0.54E2
TN2 0.58E-2 0.41E2
TNI 0.96E1 0.48E3
TN2 0.14E0 0.90E3

It appears that for this set of test problems TN methods always require far fewer
iterations and fewer function calls than do the LMQN methods. The good perfor-
mance of the TN methods for large-scale minimization of variational data assimilation
problems is very encouraging since minimization is the most computationally intensive
part of the assimilation procedure and the numerical weather prediction model already
taxes the capability of present-day computers. The complexity of these problem stems
from the cost of the integration of the model and of the adjoint system required to
update the gradient in the minimization procedure.

7. Summary and conclusions. Four recently available LMQN methods and
two TN methods were examined for a variety of test and real-life problems. All meth-
ods have practical appeal: they are simple to implement, they can be formulated to
require only function and gradient (and possibly additional preconditioning) informa-
tion, and they can be faster than full-memory Q-N methods for large-scale problems.
L-BFGS emerged as the most robust code among the LMQN methods tested. It uses
the fewest iterations and function calls for most of the 18 standard test library prob-
lems, and it can be greatly improved by a simple scaling or by a more accurate line
search. All of the LMQN methods (L-BFGS, CONMIN-CG, and BBVSCG) perform
better than the full-memory Q-N BFGS method, especially in terms of total CPU
time. E04DGF appears to be the least efficient method for the library test prob-
lems. However, numerical results obtained for the synthetic cluster function reveal
that E04DGF performs quite well on problems whose Hessian matrices have clustered
eigenvalues.

Both variable-storage methods (L-BFGS and BBVSCG) were very successful on
the large-scale problem from oceanography, and BBVSCG turned out to perform
slightly better on this problem than did L-BFGS.

The convergence rate of the variable-storage methods was accelerated when the
number m of Q-N updates was increased for medium-sized problems. However, for
small- and large-scale problems both methods showed only a slight improvement as
the number of Q-N updates m is increased. The reason for this is not yet known,
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and further research is needed. Implementation of these minimization algorithms on
vector and parallel computer architectures is expected to yield a significant reduction
in the computational cost of large minimization problems.

Only E04DGF and L-BFGS performed successfully on the large-scale optimal
control problems in meteorology, and they were successful only after special scalings
were applied. L-BFGS performed better than E04DGF in terms of computational
cost.

Although the L-BFGS method may be adequate for most present-day large-scale
minimization, TN methods yield the best results for large-scale meteorological prob-
lems.
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