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Summary 

The adjoint method application in variational data assimila- 
tion provides a way of obtaining the exact gradient of the cost 
function J with respect to the control variables. Additional 
information may be obtained by using second order informa- 
tion. This paper presents a second order adjoint model (SOA) 
for a shallow-water equation model on a limited-area 
domain. One integration of such a model yields a value of 
the Hessian (the matrix of second partial derivatives, VzJ) 
multiplied by a vector or a column of the Hessian of the cost 
function with respect to the initial conditions. The SOA 
model was then used to conduct a sensitivity analysis of the 
cost function with respect to distributed observations and to 
study the evolution of the condition number (the ratio of 
the largest to smallest eigenvalues) of the Hessian during the 
course of the minimization. The condition number is strongly 
related to the convergence rate of the minimization. It is 
proved that the Hessian is positive definite during the process 
of the minimization, which in turn proves the uniqueness of 
the optimal solution for the test problem. 

Numerical results show that the sensitivity of the response 
increases with time and that the sensitivity to the geopoten- 
tial field is larger by an order of magnitude than that to the 
u and v components of the velocity field. Experiments using 
data from an ECMWF analysis of the First Global Geo- 
physical Experiment (FGGE) show that the cost function J 
is more sensitive to observations at points where meteorologi- 
cally intensive events occur. Using the second order adjoint 
shows that most changes in the value of the condition 
number of the Hessian occur during the first few iterations 
of the minimization and are strongly correlated to major 

large-scale changes in the reconstructed initial conditions 
fields. 

1. Introduction 

The comple te  descr ipt ion of the initial a tmospher i c  

s tate  in a numer ica l  wea the r  p red ic t ion  m e t h o d  
cons t i tu tes  an i m p o r t a n t  issue. The  fou r -d imen-  
sional var ia t ional  da ta  assimilat ion (VDA) m e t h o d  
offers a p romis ing  way  to achieve such a descr ip-  

t ion of  the a tmosphe re .  I t  consists  of  finding the 
ass imi la t ing  mode l  so lu t ion  which minimizes  a 

p rope r ly  chosen  object ive  funct ion  m e a s u r i n g  the 
dis tance be tween  mode l  so lu t ion  and  avai lab le  
obse rva t ions  d is t r ibuted  in space  and  time. The  
con t ro l  var iab les  are ei ther  the initial condi t ions  
or  the initial condi t ions  plus the b o u n d a r y  condi-  
tions. The  bounda ry  conditions have to be specified 

so tha t  the p r o b l e m  is well posed  in the sense of  
H a d a m a r d .  In  m o s t  of  the uncons t r a ined  mini-  
m iza t i on  a lgor i thms  assoc ia ted  with the V D A  
a p p r o a c h ,  the g rad ien t  of  the object ive  funct ion 
with respect  to the con t ro l  var iab les  plays  an 
essential  role. This  grad ien t  is ob t a ined  t h r o u g h  
one direct  in t eg ra t ion  of the mode l  equa t ions  
fol lowed by  a b a c k w a r d s  in tegra t ion  in t ime of the 
l inear  ad jo in t  sys tem of the direct  model .  
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VDA was first applied in meteorology by 
Marchuk (1974) and by Penenko and Obrazstov 
(1976). Kontarev (1980) further described how to 
apply the adjoint method to meteorological prob- 
lems, while Le Dimet (1982) formulated the 
method in a general mathematical framework 
related to optimal control of partial differential 
equations. In the following years, a considerable 
number of experiments has been carried out on 
different two-dimensional (2-D) barotropic models 
by several authors, such as Courtier (1985); Lewis 
and Derber (1985); Derber (1985); Hoffmann 
(1986); Le Dimet and Talagrand (1986); Le Dimet 
and Nouailler (1986); Courtier and Talagrand 
(1987, 1990); Derber (1987); Talagrand and Courtier 
(1987); Lorenc (1988a and 1988b); Thacker and 
Long (1988); Zou et al. (1991). Th6paut and 
Courtier (1991); Navon et al. (1990, 1992) as well 
as Chao and Chang (1992) applied the method 
to 3-D operational NWP models. While major 
advances have been achieved in the application of 
the adjoint method, this field of research remains 
both theoretically and computationally active. 
Additional research to be carried out includes 
applications to complicated models such as multi- 
level primitive equation models related to distri- 
buted real data and the inclusion of physical 
processes in the VDA process. 

The SOA model serves to study the evolution 
of the condition number of the Hessian during 
the course of the minimization. Two forward 
integrations of the nonlinear model and the 
tangent linear model and two backwards integra- 
tions in time of the first order adjoint (FOA) 
model and the SOA system are required to 
provide the value of Hessian/vector product. This 
Hessian/vector product is required in truncated 
Newton-type methods and may be used with the 
Rayleigh quotient power method to obtain the 
largest and smallest eigenvalues of the Hessian 
whose dimension is 1083 x 1083 for the test 
problem. The dimension of the Hessian will be 
more than l0 s x l0 s for 3-D primitive equations 
models. If the smallest eigenvalues of the Hessian 
of the cost function with respect to the control 
variables are positive at each iteration of the VDA 
minimization process, then the optimal solution 
of the VDA is unique. This statement is proven to 
be true for the shallow water equation model 
(Section 4.2). The variation of the condition 
number of the Hessian of the cost function with 

respect to number of iterations during the mini- 
mization process reflects the convergence rate of 
the minimization. It has been observed (Navon 
et al., 1992) that large scale changes occur in the 
process of minimization during the first 30 itera- 
tions, while during the ensuing iterations only 
small scale features are assimilated. This entails 
that the condition number of the Hessian of the 
cost function with respect to the initial conditions 
changes faster at the beginning of the minimiza- 
tion and then remains almost unchanged during 
the latter iterations. The condition number can 
also provide information about the error co- 
variance matrix. The rate at which algorithms for 
computing the best fit to data converge depends 
on the size of the condition number and the 
distribution of eigenvalues of the Hessian. The 
inverse of the Hessian can be identified as the 
covariance matrix that establishes the accuracy to 
which the model state is determined by the data; 
the reciprocals of the Hessian's eigenvalues repre- 
sent the variance of linear combinations of vari- 
ables determined by the eigenvectors (Thacker, 
1989). 

The structure of the paper is as follows: the 
theory of the SOA is introduced in section 2. In 
section 3, a detailed derivation of the SOA model 
of the two-dimensional shallow water equations 
model is presented. A brief description of the 
FOA model is provided in Appendix A. Quality 
control methods for the verification of the correct- 
ness of the SOA model are then discussed in 
Appendix B. Issues concerning uniqueness of 
the solution and the evolution of the condition 
number of the Hessian during the course of the 
minimization as well as related issues of the 
structure of the reconstructed initial conditions 
are addressed in section 4. Section 5 is devoted to 
a sensitivity study of the solution with respect 
to distributed inaccurate observations. Finally 
a summary and conclusions are presented in 
section 6. 

2. The SOA Model 

2.1 Theory of the SOA Model* 

The forwards and backwards integrations of the 
nonlinear model and the adjoint model, respec- 

* A brief description of the FOA model is provided in 
Appendix A. 
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tively, provide the value of the cost function J and 
its gradient. The following question may then be 
posed: can we obtain any information about the 
Hessian (second order derivative matrix) of the 
cost function with respect to the initial conditions 
by integrating the adjoint model equations? The 
calculation of the matrix of the second order 
derivatives is useful in many instances. For 
example, a Hessian/vector product is required in 
the truncated Newton large-scale nonlinear un- 
constrained optimization algorithm (Nash, 1985). 
Once the Hessian/vector product is available, the 
condition number of the Hessian may be obtained. 
This condition number may then be used to study 
the convergence rate of VDA. Analysis of the 
spectrum of the Hessian can provide an in-depth 
insight into the behavior of the large-scale mini- 
mization algorithms (Luenberger, 1984). We will 
show in this section that one integration of the 
SOA model yields a Hessian/vector product or a 
column of the Hessian of the cost function with 
respect to the initial conditions. Therefore, the 
SOA model provides an efficient way to compute 
the Hessian of the cost function by performing N 
integrations of the SOA model where N is the 
number of the components of the control variables 
vector. For a large dimensioned model, obtaining 
the full Hessian matrix proves to be a computa- 
tionally prohibitive task beyond the capability of 
present day computers. The SOA approach will 
be used to conduct a sensitivity analysis of the 
observations in section 5 of this paper. We will 
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Fig. 1. Verifications of the correctness of the gradient calcu- 
lation (dash line) and Hessian/vector product calculation 
(solid line) by FOA and SOA models, respectively 

also study the relative importance of observations 
distributed at different space and time locations. 

Assume that the model equations can be 
written as 

OX 
- F ( X )  ( 2 . 1 )  

& 

X(to) = U (2.2) 

where X is the state vector (a three-component 
vector of (u, v, 4~) t in the shallow-water equations) 
in a Hilbert space ;~ whose inner product is 
denoted by < ,  > ,  t is the time, t o is the initial time, 
U is the initial condition of X and F is a function 
of X. For any initial condition (2.2), (2.1) has a 
unique solution, X(t). 

Let us define the cost function as 

J (v )  =-2 < w ( c x -  xo), c x -  x ~ > dt (2.3) 
o 

where W is a weighting matrix often taken to be 
the inverse of the estimate of the covariance matrix 
of the observation errors, T is the final time of the 
assimilation window, the objective function J(U) 
is the weighted sum of squares of the distance 
between model solution and available observa- 
tions distributed in space and time, X ~ is an 
observation vector and the operator C represents 
the process of interpolating the model solution X 
to space and time locations where observations 
are available. The purpose is to find the initial 
conditions such that the solution of Eq. (2.1) 
minimizes the cost function J(U) in a least- 
squares sense. The FOA model as defined by 
Eqs. (A.11), (A.12) may then be rewritten as 

O P - ( O F ~ * p + c * w ( c x - x ~  (2.4) 
~t \ O x /  

P(T) = 0. (2.5) 

where P represents the FOA variables vector. The 
gradient of the cost function with respect to the 
initial conditions is given by 

17vJ = n(to). (2.6) 

Let us now consider a perturbation, U', on the 
initial condition U. The resulting perturbations 
for the variables X, P, X and P may be obtained 
from Eqs. (2.1), (2.2), (2.4) and (2.5) as 

- X ( 2 . 7 )  
& 0X 
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)((0) = U' (2.8) 

]* + .~ P + C * W C X ( 2 . 9 )  
\ L 

/~(T) = 0 (2.10) 

Eqs. (2.7), (2.8) and Eqs. (2.9), (2.10) are called the 
tangent linear and SOA models, respectively. 

Let us denote the FOA variable after a per- 
turbation U' on the initial condition U by Pv + v,, 
then according to definition 

Pv +v,(to) = P(to) + -5(to). (2.11) 

Expanding Vv+v,J at U in a Taylor series and 
only retaining the first order term, results in 

Vu+v,J = VvJ + VzJ 'U'  +O(II U'llS). (2.12) 

From Eq. (2.6), we know that 

Vv+v,J = Pv+v,(to). (2.13) 

Combining Eqs. (2.6), (2.11)-(2.13), one obtains 

P(to) = v z J  �9 U' = HU'  (2.14) 

where H = v z J  is the second derivative of the cost 
function with respect to initial conditions. 

If we set U' = ej, where ej is the unit vector with 
thej-th element equal to 1, thej-th column of the 
Hessian may be obtained by 

Hej =/~(t0). (2.15) 

Therefore, theoretically speaking, the full Hessian 
H can be obtained by M integrations of Eqs. (2.9), 
(2.10) with U'=ei ,  i=  1 , . . . , N  where N is the 
number of the components of the control variables 
vector (the initial conditions U(to), V(to) and ~b(t0) 
in our case). 

In summary, the j-th column of the Hessian of 
the cost function can be obtained by the following 
procedure: 

(a) Integrate the model (2.1), (2.2) and the tangent 
linear model (2.7), (2.8) forward and store in 
memory the corresponding sequences of the 
states Xi and X~ (i = 0 . . . . .  M); 

(b) Integrate the FOA Eqs. (2.4), (2.5) backwards 
in time and store in memory the sequence of 
Pi (i = 0,... ,  M); 

(c) Integrate the SOA model (2.9), (2.10) back- 
wards in time. The final value P(to), yields the 
j-th column of the Hessian of the cost function. 

The verification of the correctness of FOA and 
SOA models is provided in Appendix B. 

2.2 The Estimate of the Condition Number 
of the Hessian 

Let us denote the largest and the smallest eigen- 
values of the Hessian matrix H and their corre- 
sponding eigenvectors by 2ma x, 2mi n, Via x and 
Vmi n, respectively. Then the condition number of 
the Hessian is given by 

K(H) - 2max. (2.16) 
2rain  

Considering the eigenvalue problem H U  = 2U 
and assuming that the eigenvalues are ordered in 
decreasing order with 121l/> 12zl/> "" ~> 12,[, an 
arbitrary initial vector X0 may be expressed as a 
linear combination of the eigenvectors { Ui} 

Xo = ~ ciUi. (2.17) 
i = 1  

If 2~ is an eigenvalue corresponding to the i-th 
eigenvector U, the product of m multiplications 
of the Hessian H with Eq. (2.17) result in, 

X,, = ~ c~2~' U~ (2.18) 
i = l  

where 

X m :  HmXo . 

Factoring 2]' out, we obtain 

Xm = 2'~ i Ui. (2.19) 
i = 1  2 1  

Since 21 is the largest eigenvalue, the ratio (2i '1 m 
\ 2 1 /  

approaches zero as m increases (suppose 21 # 22). 
Therefore we may write 

Xm = 21Cl U1. (2.20) 

From (2.20) observe that the largest eigenvalue 
may then be calculated by 

/th component of X,,+ 1 
21 =~ (2.21) 

j th  component of Xm 

This technique is called the power method (Strang, 
1986). We can normalize the vector X m by its 
largest component in absolute value. If we denote 
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the new scaled iterate to be X' then m '  

X,,+ 1 = H X '  m (2.22) 

and the method is called the power method with 
scaling. It gives us an eigenvector whose largest 
component  is 1. 

The main steps in the power method with 
scaling algorithm are: 

(a) Generate a starting vector Xo. 
(b) Form a matrix power sequence Xm = HXm_ 1. 
(c) Normalize X,, so that its largest component  

is unity. 
(d) Return to step (b) until convergence 

[ X m - -  X m _  l [ ~_~ 10 -6 

is satisfied or a prescribed upper limit of the 
number of iterations has been attained. 

The smallest eigenvalue of H may also be 
computed by applying the shifted iterated power 
method to the matrix Z = z" I - H, where z is the 
majorant  of the spectral radius of H and I the 
identity matrix. 

Since the Hessian H is symmetric, we will 
employ here the Rayleigh quotient power method 
which has a better convergence rate. 

3. The Derivation of the SOA 
for the Shallow Water Equations Model 

In this section, we consider the application of the 
SOA model to a two-dimensional limited-area 
shallow water equations model. Our purpose is to 
illustrate how to derive the SOA model explicitly. 

The shallow water equations model may be 
written as 

Ou Ou Ou 04 
- u - - - v - - + f v - - -  (3.1) 

& 9x Oy 9x 

Ou 9v 0v 94 
- u - - - v - - - f u - - -  (3.2) 

& Ox 9y 9y 

9 4 _  9(u4) 9(v4) 
& 9x 9y 

(3.3) 

where u, v, 4 and f are the two components of the 
horizontal velocity, geopotential field and the 
Coriolis factor, respectively. 

We shall use initial conditions due to Gram- 
meltvedt (1969) 

h = H o + H 1 tanh 9(y - Yo) 
2D 

+ H2 sech 9(y - Yo) sin x2rc_ (3.4) 
D L 

where 4 = gh, Ho = 2000m, H1 = - 2 2 0 m ,  H2 = 
133 m, g = 10 m sec- 2 L = 6000 km, D = 4400 km, 
f =  10-4sec -1, f l=  1.5 x 10 - lxsec  - l m  -1. Here 
L is the length of the channel on the fl plane, D is 

D .  
the width of the channel and Yo = -- is the middle 

2 
of the channel. The initial velocity fields were 
derived from the initial height field via the 
geostrophic relationship, and are given by 

g Oh 
u - ( 3 . 5 )  

f 0 y  

g 9h 
v = - - -  (3.6) 

f 9x" 

The time and space increments used in the model 
were 

A x  = 300kin, Ay = 220km, At = 600s. (3.7) 

which means that there are 21 x 21 grid point 
locations in the channel and the number of the 
components  of initial condition vector (u, v, 4) t 
is 1083. Therefore the Hessian of the cost function 
in our test problem has a dimension of 1083 x 
1083. 

The southern and north boundaries are rigid 
walls where the normal velocity components  
vanish, and it is assumed that the flow is periodic 
in the west-east  direction with a wavelength equal 
to the length of the channel. 

Let us define 

X = (u, v, 

/u + + 
e ,  

cTx cTy cTx 

0v 0v 04 
- - +  v - - +  f u  + F = - Ugx Oy ~y 

O(u4) o(v4) - -  -Jr- - -  
Ox Oy 

(3.8) 

(3.9) 

Then Eqs. (3.1)-(3.3) assume the form of Eq. (2.1). 
It is easy to verify that 
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OF 

0X 

_ ; a(.) 
O(u('))+ vO(") (.) _ f ( . )  

Ox Oy Ox 

(.)av + f(.)  ua(') + a(v(')) a(') 
~3x Ox Oy Oy 

a(~(.)) a(q~(.)) a(u(.)) + a(v(.)) 

(3.10) 

The adjoint of an operator L, L*, is defined by the 
relationship 

(LX, Y )  = (X ,L*Y)  (3.11) 

where ( ' ,  "} denotes the inner product 

( . , . }  = f f  ...dD (3.12) 

where D is the spatial domain. Using the defini- 
tion (3.12), the adjoint of (3.11) can be derived as 

with final conditions 

u(T) = O, v(T) = 0, ~b(T) = 0 (3.17) 

where P = (u*,v*, ~b*) ~ is the first order adjoint 
variable. Wu, Wv, W e are weighting factors which 
are taken to be the inverse of estimates of the 
statistical root-mean-square observational errors 
on geopotential and wind components, respec- 
tively. In our test problem, values of We= 
10- 4 m-  4 s* and W, = Wv = 10- 2 m-  2 S 2 are used. 

0 x l  

0(.) a@(.)) (.)o~ 
- u  + f ( ' )  

Ox Oy Ox 

( . )~  0(.) O(u(.)) 
@ - f ( ' )  - v  - -  

c3y Ox 

0(') a(') 

\ 0x Oy 

0(.) 
Ox 
~(-) 

- - 4 - -  Oy 

0(.) 0(-) 
- -hi  - - IJ  

Ox Oy 

(3.13) 

Therefore the first order adjoint model with the 
forcing terms may be written as 

Ou*___ ( _ u  &*_ ~(vu*) ~ v* & 

& Ox c?y Ox 

+fv* - d? Ox ) + W,(u - u ~ (3.14) 

Or* / Ou Or* 
- t u * - - - f u * - v - -  & Oy Oy 

3(uv*) 4)~ w~(~-~~ (3.15) 
0x 0y / 

~e*_ ( 0u* ~v* 0q~* 0q5.'\ 

+ W~(~b - 4~ ~ (3.16) 

Now let us consider a perturbation, U', on the 
initial condition for X, X(to). The resulting cor- 
respondin~ perturbations for variables X and P, 

= (fi,/), ~b) t and/5 = (/i, ~, q~)t, are obtained from 
Eqs. (3.1)-(3.3) and (3.14)-(3.17) as 

(0(ua) da dU_s/) + 0q ) 
& -  \ 0x + 0y + 0y ~ _  (3.18) 

01) /i ov 0/) 3(v/~) 0v_yq~ ) - ( + f / i  + u - -  + + (3.19) 
c~t \ Ox Ox Oy 

Oq~ 
_ -(0(qSa) + 0(q5/)3 + 0(u(qS) + (3.20) 

& \ 0x 0y 0x 0y / 

with zero initial conditions, and 

0, ( u C~, O( vO) Ov ~x - - - - + ~ - - + 4  
fff ~x Oy Ox 
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u - -  -1- 
c?x ~3y 8x ~x / 

(  (ue) 
& 0y ~3y 0x 

+ w3  

(3.21) 

+ Oy ~y Ox ~y J 
(3.22) 

( 
8t ~x 8y ~x ~y 

- t~0qS* - t384'*~ + W+~ (3.23) 
c3x 0y / 

condition 

tS(T) = 0, $(T) = 0. (3.24) 

with final 

O(T) = 0, 

Therefore 

/3(to) = (if(to), 17(to), q~(to)) 1 = HU' (3.25) 

where H is the Hessian of the cost function with 
respect to the initial conditions. Equation (3.25) 
gives the Hessian/vector product. If we choose U' 
to be the unit vector ej where the j-th component 
is unity and all its other components are zeros, 
then the corresponding column Hj of the Hessian 
H will be obtained after one integration of the 
SOA backwards in time. 

4. Second Order Adjoint Information 

4.1 Calculation of the Hessian~Vector Product 

There are two practical ways to calculate the 
Hessian/vector product at a point X associated 
with VDA. One way consists in using a finite- 
difference method while the other way is by using 
the SOA method. The finite-difference approach 
assumes the following form 

f(~) = VJ(X + ~ Y ) -  VJ(X)= ~HY + O(~ 2) (4.1) 

where Y is a random perturbation vector and H 
is the Hessian of the cost function. A second way 
to obtain Hessian/vector product is to integrate 
the SOA equations model backwards in time. 
According to Eq. (2.14), we also have 

f(a) = ~H Y. (4.2) 

The computational cost required to obtain the 
Hessian/vector product is approximately the same 

for both methods. The SOA approach requires us 
to integrate the original nonlinear model and its 
tangent linear model forward in time once and 
integrate the FOA model and the SOA model 
backwards in time once. The finite difference 
approach requires the integration of the original 
nonlinear model forward in time twice and the 
FOA model backwards in time twice. The computa- 
tional costs for integrating the tangent linear 
model forward in time, the FOA model back- 
wards in time or the SOA model backwards in 
time once are comparable. However, the SOA 
model method gives an accurate value of the 
Hessian/vector product while the finite-difference 
method yields only an approximated value, which 
can be a very poor estimate when the value ~ is 
not properly chosen. Figures 2-4 present a com- 
parison between the first 50 components of 
Hessian/vector products at the optimal point 
obtained by using both the SOA and finite- 
difference approaches for various scalars ~ vary- 
ing from 10, 3 to 0.01. It is clearly seen that the 
Hessian/vector product obtained by using finite- 
difference approach converges to that obtained by 
SOA as the scalar c~ decreases. With the SOA 
approach an accurate result can be obtained with 
a relatively large perturbation (~ = 10), while the 
finite-difference approach is very sensitive to the 
magnitude of perturbations. When the perturba- 
tions are large, say for ~ = 10, the finite-differencing 
yields no meaningful results (Fig. 2). When the 
perturbations are small, the finite-difference 

1 0 0 0 0  

5000 

o 

- 5 0 0 0  

- 1 0 0 0 0  

--15000 

0 

. . . .  I . . . .  [ '  ' ! '  ' I . . . .  I ' t '  ' ' I '- 
- t i I 

/ ]  'i' 

- , , , , I  . . . .  I , , ,  I . . . .  I . . . .  I ,  
10 20 30 4 0  50 

V e c t o r  Ludex 

Fig. 2. The  first 50 c o m p o n e n t s  of  the  Hess i an /vec to r  p ro-  
ducts  at the op t imal  so lu t ion  ob ta ined  by the finite-difference 
a p p r o a c h  (dash line), and  S O A  m e t h o d  (solid line) when  
:~= 10 
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an inaccurate estimate of the Hessian/vector 
product. This is the case when the Hessian/vector 
product is estimated at the initial guess point with 
e=0.01  (Fig. 5). Therefore it is much more 
advantageous to use the SOA approach than to 
use the finite-difference approach. 

The calculation of a Hessian/vector product 
is required in many occurrences. For instance, 
Nash's (1984) Truncated Newton method requires 
the values of Hessian/vector products. It may also 
be used to carry out eigenvalue calculations and 
sensitivity analysis. 
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approach might involve a subtraction of nearly 
equal numbers which results in the cancellation of 
significant digits and the results thus obtained are 

4.2 The Uniqueness of the Solution 

An important issue in VDA is to determine 
whether the solution is unique. If more than one 
local minimum exists, then the solution of the 
minimization process may possibly change depend- 
ing on different initial guesses. 

There are two different but complementary 
ways to characterize the solution to unconstrained 
optimization problems. In the local approach, one 
examines the relation of a given point to that of 
its neighbors. The conclusion is that at an un- 
constrained relative minimum point of a smooth 
cost function, the gradient of the cost function 
vanishes and the Hessian is positive semidefinite; 
and conversely, if at a point the gradient vanishes 
and the Hessian is positive definite, that point is 
a relative minimum point. This characterization 
has a natural extension to the global approach 
where convexity ensures that if the gradient 
vanishes at a point, that point is a global mini- 
mum point. 

The Hessian (the matrix of second order deri- 
vatives of the cost function with respect to the 
control variables) is the generalization to E" of the 
concept of the curvature of the function, and cor- 
respondingly, positive definiteness of the Hessian 
is the generalization of positive curvature. We 
sometimes refer to a function as being locally 
strictly convex if its Hessian is positive definite in 
the region. In these terms we see that the second 
order sufficiency result requires that the function 
be locally strictly convex at the point X*. 

A simple experiment was conducted to find out 
about the uniqueness of the cost function with 
respect to the initial conditions using the shallow- 
water equation model. The experiment is devised 
as follows: the model-generated values starting 



The Second Order Adjoint Analysis: Theory and Applications l 1 

0.00604 

0.00002 

.~  0.00600 

0,00595 

0.00596 

0.00594 

0 

- . . . .  I . . . .  I . . . .  I . . . .  I . . . .  t ' ' '  

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I , , ,  

lO 20 30 40 50 
The n u m b e r  of i t e r a t i o n s  

Fig. 6. Variation of the smallest eigenvalue of the Hessian of 
the cost function with the number of iterations 

SaO~ . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I ' ' ' 2 ~  

520 

510 

500 

- , , , , I  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  
10 20 30 40 60 

Number of itera~ons 

values implies the positive definiteness of the 
Hessian, which in turn proves the uniqueness of 
the optimal solution. 

4.3 Convergence Analysis 

The largest and smallest eigenvalues and the 
condition numbers are considered here. The 
purpose of this study is to provide an in-depth 
diagnosis of the convergence of the VDA applied 
to a meteorological problem. The various scale 
changes of different field reconstructions with the 
number of minimization iterations of VDA has 
attracted the attention of several researchers 
(Navon et al., 1992). In this research work we will 
attempt to provide an explanation of this phenom- 
enon based on the  evolution of the condition 
number of the Hessian of the cost function with 
respect to control variables (Thacker, 1989). It has 
been observed that in VDA, large scale changes 
occur in the first few iterations and small scale 
changes occur during the latter iterations in the 
process of the minimization of the cost function. 

The same experiment as described in section 
4.2 was conducted again this time to follow 
the quality of the reconstructed initial conditions 
at different stages of the minimization process. 
Figures 8-10 show the perturbed geopotential 

Fig. 7. Variation of the largest eigenvalue of the Hessian of 
the cost function with the number of iterations 

from the initial condition of Grammeltvedt  (Eq. 
(3.4)) are used as observations, the initial guess 
is a randomly perturbed Grammeltvedt  initial 
condition, and the length of the assimilation is 
10 hours. We know exactly what the solution is, 
and the-value of the cost function at the minimum 
must be zero. All the random perturbations used 
in this paper are from a uniform distribution. The 
limited memory  quasi-Newton large-scale uncon- 
strained minimization method of Liu and Nocedal 
(1989) is used for all experiments in this paper. 

The symmetric versions of the power and 
shifted power methods are used to obtain the 
largest and smallest eigenvalues of the Hessian at 
each iteration. The results are shown in Figs. 6 
and 7. The smallest eigenvalues at each iteration 
of the minimization process are small positive 
numbers. The positiveness of the smallest eigen- 

~0NT0UR ~ROM ~6e~. T0 2~ee~. CONTOUR INTERWL 0V S ~ e  ~Xn.3~= ~3~7~ 

Fig. 8. Distribution of the randomly perturbed geopotential 
field 
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Fig. 9. Reconstructed geopotential field after 6 iterations of 
minimization 
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Fig. 10. Reconstructed geopotential field after 25 iterations 
of minimization 

field and the reconstructed geopotential fields 
after 6 and 25 iterations, respectively. It can be 
clearly seen that most of the large scale recon- 
structions oceur within the first 25 iterations of 
the minimization process. The geopotential field 
reconstructed after 25 iterations is very similar to 

the one reconstructed after 54 iterations at which 
stage the prescribed convergence criteria 

II VJ(Xk)II <~ 10 -14 • max{l,  IIXkll } 

is satisfied. This clearly indicates that the VDA 
achieves most of the large scale reconstructions 
during the first 25 iterations and that in the latter 
part of the minimization process only small scale 
features are being assimilated. In this case by 
stopping the minimization process prior to the 
cost function satisfying the preset convergence 
criteria, the expensive computational cost of the 
VDA process could be cut by more than a half, 
while satisfactory results may still be obtained. 

This in turn is related to the evolution of the 
largest and smallest eigenvalues and thus to the 
change in the condition number of the Hessian 
with iterations (Figs. 6, 7 and 11). From these 
figures we observe: 

(a) The smallest eigenvalues are positive at each 
iteration and remain approximately the same 
except for rather small changes during the first 
few iterations (Fig. 6). 

(b) The largest eigenvalues decrease quickly dur- 
ing the first few iterations of the minimization 
process, then change only slightly for the 
next 15 iterations and remain approximately 
the same during the latter minimization 
stages until the convergence criteria is attained 
(Fig. 7). 

(c) The condition numbers of the Hessian/vector 
product at different steps of the minimization 
vary in a way similar to that of the evolution 
of the largest eigenvalues during the minimi- 
zation process and their magnitude is about 
83,000 which is very large (Fig. 11). 

We conclude that most changes in the condi- 
tion numbers occur during the early stage of the 
VDA minimization process. This explains why 
large scale reconstructions occur during the first 
30 iterations of the minimization process. 

The large condition numbers in the initial stage 
of the minimization imply that the contour lines 
of the cost function J ( =  constant) are strongly 
elongated in the parameter space (Lions, 1971; 
Fletcher, 1987; Gill et al., 1981; Luenberger et al., 
1984), which explains the slow convergence rate 
of the VDA process. The above experiment was 
carried out without adding either a penalty or a 
smoothing term. The addition of such a penalty 
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Fig. 1 1. Variation of the condition numbers of the Hessian 
of the cost function with respect to the number  of iterations 

term, which is positive definite and quadratic with 
respect to the initial conditions, will definitely 
increase the convexity of the cost function. Thus 
the addition of an adequate quadratic penalty 
term adding additional information to the cost 
function changes the condition number of the 
Hessian and speeds up the convergence of the 
VDA process. 

5. Sensitivity Analysis for Observations 

5.1 Sensitivity Theory  for  Observation 

The cost function is also a function of the 
observations. Different observations will result in 
different solutions. Due to the errors inherent in 
the heterogeneous observations, it is important to 
obtain the sensitivities of the cost function to the 
changes in the observations which quantify the 
extent to which the perturbations in the observa- 
tions correspond to the perturbation in the 
solution. If the sensitivities are large, then the 
model will possess a large uncertainty with respect 
to changes in the observations. 

Conventional evaluation of the sensitivities 
with respect to model parameters is carried out by 
changing the values of model parameters and 
recalculating each model solution for every pa- 
rameter. Such a calculation is prohibitive for 
models with a large number of parameters since it 
requires an exceedingly large amount of comput- 
ing time. The adjoint sensitivity method (Cacuci, 
1981; Hall and Cacuci, 1982, 1983; Sykes et al., 
1985) proved to be an efficient method for 
carrying out sensitivity analysis. The objective of 
the sensitivity analysis considered here is to 

estimate changes in the cost function, J, arising 
from changes in observations which are distributed 
in space and time. This will illustrate the relative 
importance of observations at different time and 
space locations. 

Due to the equivalent position of the state 
vector and the observation vector in Eq. (A.1), the 
cost function can be viewed as depending on both 
of them, namely 

J = J ( X -  X~ (5.1) 

As such, the following identities can be proved 
using the chain rule: 

c3J ~ J  
- (5.2) 

~ X  OX o 

632j O 2 j  

( ~ X 2  - (~XO z �9 (5.3) 

These two equations are used in the following 
sensitivity analysis. 

Let us denote a change in the observations by 
5 X  ~ If this change is small, then we may expand 
the cost function J around X ~ as 

J(X~ + (~X~ 

= J(X~ + ~J(X~ ) 6XO(t,) 
 xo(t.) 

+ 
2 # X ~  

+ o( II ,sx~ 3). (5.4) 

According to the identities given by Eqs. (5.2) and 
(5.3), Eq. (5.4) can be written as 

J(X~ + (~X~ 

•J(X~ , o  
= J(X~ 6 A  

cgx(t.) 

1 ~2J(X~ 
-]- - (~ X ~ ( t n ) t (~ X ~ 

2 cgX(t.) 2 

+ O( k] 6X~ 3) (5.5) 

where t, denotes the time, t, = t o + nAt  and At is 
given by Eq. (3.7). Since the first order term in 
Eq. (5.5) dominates, we obtain from Eq. (5.5) 

j '  = J(X~ + (~X~ - J(X~ 

_ ~ o 

J ( X  ( t , ) )SX o + O( II 6X~ 2). (5.6) 
0x(t.) 
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This equation describes changes in the cost func- 
tion resulting from changes in the observation at 
time t,. 

If the gradient of the cost function with respect 
to the state vector X(t,) is zero, then we obtain 

J '=  J(X~ + 6X~ - J(X~ 

= 1_ 6NO(t,), c~sJ(X~ + O( N 6X~ 3) 
2 c?X(t,) 2 

(5.7) 

where the second derivative of J with respect to 
the observations is the Hessian of J with respect 
to the state variable at time t,. Equation (5.7) 
describes the changes in the cost function result- 
ing from a change in the observation at time t,. 

Let us now calculate the first derivative of the 
cost function J with respect to X(t,). The variation 
of the cost function J in Eq. (A.6) can be written as 

M 
6J = ~ ( W(Xi - X~ X~) 

i=0 
n-1 

_ _  - -  X 0 - F~ <w(x, xo ) ,~ i>+<w(x .  - . ) , 2 . >  
i=O 

M 
X ~ + ~, < w ( x , -  ,) .xi> 

i=n+ l 

=(~Jl +(W(Xn-X~ (5.8) 

where J(~ is the resulting perturbation on X~ and 
is defined by the tangent linear Eqs. (2.7), (2.8). It 
can be shown from Appendix A that 

i - 1 1  Xi = lJ  i +  At(C~F~ ~ X ,  (5.9) 

for i > n, and 

\ o x / / A  

for n > i .  Using the definition of the adjoint 
operators, Eq. (5.10) yields 

~/:~ \OX//IJ 
for n being larger than i. Now we can write J1, J2 
corresponding to Eqs. (5.9) and (5.11) respectively 
as 

~J~ Z w ( x , - x ~  ~+ 
, : o  . ~ = ,  \~x/AJ "1 

6J2-- ~ W(Xi -X~  I + A t  2 ,  
i : . + ,  ~= \OX/jA / 

Substituting J1, J2 into Eq. (5.8) and using basic 
concepts of adjoint operators, we obtain the 
following expression 

i=o j=i t_ \OXJ jA  

+ < w ( x .  - xo) ,  ~?.> 

+ ~ I + A t  
i~ .+1 . . ~ =  ._ \ c ~ x / j J l  

• w ( x ~ -  i),2~~ . (5.12) 

We know however that 

6J = ( Vx(to>J, J?,>, (5.13/ 

Equating Eqs. (5.12) and (5.13), we obtain the 
gradient of the cost function with respect to X(t,) 
as 

= Z 11 I + 
i=0 

+ w ( x .  - x o) 

+ Z I+ t- ~ 

x W(X, - X~ (5.14) 

In summary, the perturbation in the cost 
function resulting from a perturbation in the 
observation at the time t, may be obtained by 
performing the following operations 

(a) Generate a perturbation on the observation 
at time t,; 

(b) Calculate the gradient of the cost function 
with respect to state variable X(t,), which is the 
sum of the results of integrating Eq. (5.15) and 
Eq. (5.16) plus the middle term in Eq. (5.14), 
(1) Starting from PM = W(XM-X~ inte- 

grate the "forced" adjoint equation 

OF * 

(5.15) 

backwards in time from t M to t,. The final 
result P, is the sum of the last two terms 
in Eq. (5.14), 
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(2) Starting from ){0 = W(Xo - X~ integrate 
the "forced" equation 

\ ~ X J i _  1 1 

+ W(X, - X ~ (5.16) 

forward in time from to to t,. The final 
result Jr, is the sum of the first two terms 
in Eq. (5.14). 

(c) Use Eq. (5.6) to obtain the corresponding 
perturbation in the cost function resulting 
from the perturbation in the observations at 
time t,. 

It is worthwhile noting that we do not need to 
integrate the FOA equations repeatedly to obtain 
the gradient of the cost function with respect to 
X~. We only need to integrate the FOA equations 
backwards in time starting from tM to t, and store 
the FOA variable at each iteration in memory, 
then integrate the forced linear equation forward 
in time from to to t, and store the results at each 
iteration in memory. The sum is the gradient of 
the cost function with respect to the state variables 
at time t, plus W ( X , -  X ~ for n = 0, 1 . . . .  ,M. 
Once these gradients are calculated, they need not 
be recalculated. They can be used repeatedly to 
calculate the perturbations in the cost function for 
different perturbations in the observations. 

5.2 Numerical Results from Model 
Generated Data 

A sensitivity study was conducted by using the 
same model as that described in section 3. First 
we choose a point (xls ,Ylo)  in the assimilation 
window where x~5 = Xo + 15Ax and Ylo = Y0 + 
lOAy. Suppose a 1% perturbation in the observa- 
tions occurs only at this point for the two 
components of the wind velocity field and the 
geopotential field. The variation of the resulting 
perturbations in the cost function as a function of 
the number of time steps is displayed in Fig. 12 
(solid line). The results indicate that the changes 
in the cost function with respect to the changes in 
the observations at a fixed point are different for 
different times in the assimilation window. If per- 
turbations are imposed firstly only on the u-wind 
component,  then only on the v-wind component  
and then only on the geopotential field qS, the 
corresponding perturbations in the cost function 

- ' ' ' ' I . . . .  I . . . .  t ' 
3O 

'~0 
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-10 

. . . .  I . . . .  I . . . .  I , i  
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Fig. 12. Time variation of the sensitivities of cost function J 
to 1% observational error in the v-wind component (dashed 
line), the u-wind component (dotted line which coincides with 
the dashed line), the geopotential field q5 (dashed-dotted line 
which coincides with the solid line) and in all the three fields 
(solid line) at point (xl 5, Ylo) 

exhibit different variations with time as shown in 
Fig. 12 by the dotted line, dashed line and 
dash-dot line, respectively. This figure indicates 
also that perturbations in the observed geopoten- 
tial field have more impact on the cost function 
than those in the observed velocity field. The 
changes in the cost function arising from changes 
in the u-wind component  and v-wind component  
observations are close to zero at all times. Similar 
experiments conducted at different grid points 
yield similar results. 

To study the importance of observations at 
different space locations, three different points are 
chosen. They are located at (xs,yxs), (Xlo, Y~o), 
(xls,Y5), respectively, representing low, middle 
and high points in the isoline values of the 
geopotential field. From Fig. 13 we observe that 
the changes in the observations occurring at the 
end of the assimilation period result in larger 
changes in the magnitudes of the cost function 
than corresponding changes in the observations 
occurring at the beginning of the assimilation 
window. This means that recent events have more 
impact on the cost function that older events. 

Finally, we study the impact of the perturba- 
tions on all the observational data. The results are 
displayed in Fig. 14. This figure clearly indicates 
that perturbations of the observations at the end 
of the assimilation window have a larger impact 
on the sensitivity of the cost function with respect 
to the observations. 
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Fig. 13. Time variation of the sensitivities of cost function J 
to 1~o observational error at points (Xlo,Ylo) (solid line) 
(xs, Y15) (dotted line), and (x15, Ys) (dash line) in the wind and 
the geopotential fields 
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Fig. 14. Time variation of the sensitivities of cost function J 
to 1~o observational error on all grid points in the wind and 
the geopotential fields 

5.3 Numerical Results Using Real Analysis 
of FGGE Data 

To  examine the sensitivity of  the cost funct ion 
with respect to real analyses, we employed  a set 
of F G G E  da ta  of height and hor izon ta l  wind 
fields at 5 0 0 m b  level at 0 and 18UTC,  M a y  26, 
1979. The  da ta  are equal ly spaced with A2 = Aq~ = 
1.875 ~ . Using the formula  

~b(J) y + 4) o - 2 2 0 0  + ( J -  1 ) ,220  
= -  = + 0 o  

X 
2(1) - )- 20 (5.8) 

c o s  4~( J )  

we obta in  a co r re spondence  between points  on 
the sphere and grid points  located on a l imited 
area on a / ? -p l ane  ap p ro x im a t io n  at (32 ~ 130~ 
which approx ima te ly  represents  the center  of the 
zonal  jet. Using a cubic in te rpo la t ion  we obta ined  
the height  and hor izonta l  wind da ta  on  the grid 
points.  Then  we carr ied out  ano the r  cubic inter- 
po la t ion  near  the left b o u n d a r y  in order  to impose 
a per iodic  b o u n d a r y  condi t ion  in the x-direction.  
N ea r  the top  and b o t t o m  boundar ies  we used a 
l inear in te rpola t ion  to impose solid b o u n d a r y  
condit ions.  The  fields thus ob ta ined  are shown in 
Fig. 15. 

The  geopotent ia l  and  wind fields at t ime 0 U T C  
were used to p roduce  the mode l -genera ted  obser- 
vations.  The  min imiza t ion  s tar ted f rom geopoten-  
tial and  wind fields d is t r ibut ion at t ime 18 UTC.  
The  difference between these two fields is shown 
in Fig. 16. Having  the model -genera ted  observa-  

I ~.~ 

5921~3 

, . . . .  , ,  . . . . . . . . . .  . : t  

. . . . .  1 1 1 / . . , "  . . . . . .  

,,.,,,i]l .ll//llll- 

a b 

Fig. 15. Distribution of(a) the geopotential and (b) the wind 
fields for the FGGE data at 0 UTC 05/26, 1979 on the 500 mb. 
The contour intervals are 200m2/s 2 and the magnitude of 
maximum velocity vector is 0.311E + 02 m/s 
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Fig. 16. Distribution of the difference fields of the geo- 
potential (a) and the wind (b) fields at 18 UTC and 0UTC on 
500mb between 18UTC and 0UTC times. The contour 
intervals are  100mZ/s  2 and the magnitude of maximum 
velocity vector is 0.210E + 02 m/s 
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Fig. 17. Time variation of the sensitivities of the cost 
function J to 1% observational error in the wind and the 
geopotential fields at grid points (x 1 o, Y lo) (solid line) and 
(xT, Ys) (dotted line) 

tions, the minimization should be able to reduce 
the value of the cost function as well as the norm 
of its gradient, and the reconstructed differences 
should be zero. This turns out to be the case. 

From Fig. 15, we note that meteorologically- 
intensive events occur at the center area of the 
limited-area domain while fewer events occur at 
the corners of the limited-area domain. We chose 
two points (Xlo, Ylo ) and (xT,Ys), which are 
located in the center and in the bot tom left corner 
of the limited area domain, respectively. We then 
introduced a 1% perturbation in the geopotential 
and wind fields at these two points. The variations 
of sensitivities of the cost function with the 
number of time steps in the assimilation window 
are displayed in Fig. 17, the solid line correspond- 
ing to sensitivity at the point (Xlo,Ylo) and the 
dotted line to sensitivity at the point (xv,ys). 
Clearly the sensitivity of the cost function with 
respect to observations at point (X~o, Y~o) is larger 
than that at the point (xv, Ys)- This confirms that 
the cost function is more sensitive to observations 
at points where intensive events occur. It also 
means that the accuracy of observations at loca- 
tions where intensive events occur has more 
impact on the quality of the VDA retrieval. 

6. Summary and Conclusions 

In this paper, a SOA model was developed, 
providing second order information. The coding 
work involving in obtaining the SOA model was 

rather modest once the FOA model has been 
developed. 

One integration of the SOA model yields an 
accurate value of a column of the Hessian of the 
cost function provided the perturbation vector is 
a unit vector with one component being unity and 
the remainder being zeros. Numerical results show 
that the use of the SOA approach to obtain the 
Hessian/vector product is much more advan- 
tageous than the corresponding finite-difference 
approach, since the latter yields only an approxi- 
mated value of the Hessian/vector product which 
may be a very poor estimate. The numerical cost 
of using the SOA approach is roughly the same 
as that of using the finite-difference approach. 
This application of the SOA model is crucial in 
the implementation of the large-scale truncated 
Newton method, which was proved to be a very 
efficient for large-scale unconstrained minimiza- 
tion (Zou et al., 1991). 

Another application of the SOA model is in the 
calculation of eigenvalues and eigenvectors of the 
Hessian. There are several iterative methods such 
as the power method, Rayleigh quotient or the 
Lanczos method (Strang, 1986), which require 
only the information of the Hessian-vector pro- 
duct to calculate several eigenvalues and eigen- 
vectors. Such a calculation using the power 
method is presented in this paper and reveals that 
most changes of the largest eigenvalue occur 
during the first few iterations of the minimization 
procedure, which might explain why most of 
large-scale features are reconstructed earlier than 
the small scale features in the VDA retrieval 
solution during minimization (Navon et al., 1992) 
and the positivity of the smallest eigenvalues of 
the Hessians of the cost function during the 
minimization process indicates the uniqueness of 
the optimal solution. 

We also examined the sensitivity of the cost 
function to observational errors using a two 
dimensional limited-area shallow water equation 
model. We found that the sensitivity depends on 
the time when the errors occur, the specific field 
containing the errors, and the spatial location 
where the errors occur. The cost function is more 
sensitive to the observational errors occurring 
at the end of the assimilation window, to errors 
in the geopotential field, and to errors at these 
grid point locations where intensive events 
o c c u r .  



18 Z. Wang et al. 

Sensitivity analysis using balanced perturba- 
tions will be reported in a future paper where we 
will pay special attention to the spatial scale of the 
perturbations. Further research on the issue of 
calculating the inverse Hessian multiplied by a 
vector is currently under consideration, the latter 
being of crucial importance for developing a new 
efficient large-scale minimization algorithm. 

Appendix A 

Brief Description of  the FOA 

The theory and application of the FOA model is discussed 
by several authors, e.g. Talagrand and Courtier (1987) and 
Navon et al. (1990). In order to provide a comprehensive 
description of the SOA model, we briefly summarize the 
theory of the FOA model. 

The distance function, which measures the distance be- 
tween the model solution and the available observations 
distributed in time and space, is defined in discrete form as 

1 M 
J = 2~-o (W(X~ - X~ - X~  (A.1) 

where Xi and X~ are the model solution and observation at 
i-th time level, respectively, and W is the weighting function 
which can be taken as the inverse of the estimate of the 
statistical root-mean-square observation errors (see remarks 
in body of text). 

Now consider a perturbation, U', on the initial condition 
U, Eqs. (2.1), (2.2) become 

a(X + 2 )  _ F ( X  + X)  (n.2) 
Ot 

X(to) + 2(to) = U + U' (A.3) 

where .~ is the resulting perturbation of the variable X. 
Expanding (A.2) at Xand retaining only the first order term, 
one obtains 

a s  a v  ^ 
- X ,  ( A . 4 )  

& OX 

2(to) = u ' .  (A.5) 

Equations (A.4), (A.5) are defined as the tangent linear 
equations of Eqs. (2.1), (2.2). 

The variation of the distance function J due to the 
perturbation U' is 

M 

6J = ~ ( W ( X ,  - XT), X,). (A.6) 
i = 0  

Using the Euler time differencing scheme for example one 
obtains from (A.4) 

1 LaXJ, 

j=OL \ o x J j J  

where At is the constant time step, I is the unit matrix 

operator, OX j represents thej-th row of the matrix ~ ,  and 

i 

1-[ denotes the product of i + 1 factors. 
j=o 

Substituting (A.7) into (A.6) and using basic concepts of 
adjoint operators, we obtain the following expression 

i - 1  

,=, \ a x / j j  j 

+ ( W ( X o  - Xo), 2 o )  (A.8) 

where ( )* denotes the adjoint of (). On the other hand, we 
have 

6J = ( VuJ, Xo). (A.9) 

Equating Eqs. (A.8) and (A.9), one obtains the gradient of the 
cost function with respect to the initial conditions as 

i=okj=o I4- \ a X , / j J )  

The i-th term in (A.IO) can be obtained by a backwards 
integration of the following adjoint equation 

& = \DX]  P (A.11) 

from the i-th time step to the initial step, starting from 

Pi = W(Xi - XT) (A.12) 

where P represents the adjoint variables corresponding to )(. 
It appears that M integrations of the adjoint model, starting 
from different time steps tu,  tM-1 , . . . , t l ,  are required to 
obtain the gradient VvJ. However, since the adjoint model 
(A.11) is linear, only one integration from t M to t o of the 
adjoint equation is required to calculate the gradient of the 
cost function with respect to the initial conditions. 

In summary, the gradient of the cost function with respect 
to the initial condition U can be obtained by the following 
procedure: 

(a) Integrate the model from t o to t M from initial condition 
(2.2) and store in memory the corresponding sequence of 
the model states Xg (i = 0, 1 . . . . .  M); 
Starting from PM = W(XM - X~ integrate the "forced" 
adjoint equation (A.11) backwards in time from tM to to 
with a forcing term W(X,.- X ~ being added to the 
right-hand-side of (A.11) at the i-th time step when an 
observation is encountered. The final result P0 is the 
value of gradient of the cost function with respect to the 
initial condition. 
It is worth noting that 
(i) When the observations do not coincide with the 

model grid points, the model solution should be 
interpolated to the observations, i.e., C X -  X ~ should 
be used instead of X - X  ~ in the cost function 
definition, where the operator C represents the 

(b) 
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process of interpolating the model solution to space 
and time locations where observations are available. 

(ii) We note that the numerical cost of the adjoint model 
computation is about the same as the cost of one 
integration of the tangent linear model, the latter 
involving a computational cost of between 1 and 2 
integrations of the nonlinear model. 

Appendix B 

The Verification of the Correctness of FOA and SOA 

It is very important to verify the correctness of the FOA and 
SOA codes. A Taylor expansion in the direction of Yleads to 

J(X + ~Y) = J(X) + 7_J(X) Y+ Y+ 0(~3 ) 
OX 2 ~X 2 

(B.1) 

where ~ is a small scalar, Y is a random perturbation vector 
which can be generated by using the randomizer on the 
Cray-YMP computer and Y~ denotes the transpose of the 
vector Y. Equation (B.1) can be used to define two functions 
of~ 

J (X+ ~Y) - J(X) 
~b(c~) = (B.2) 

~j(x) 
Y 

0X 

and 

~j(x) 
J(X + ~ Y) - J(X) - ~ Y 

OX 
4~(~) (8.3) 

lcd-,~2J(x)- 
2 r o ~ r  

then for small 7 we have 

~b(c~) = 1 + O(~) (B.4) 

q~(~) = 1 + o(~) .  (B.5) 

For values of c~ which are small but not very close to the 
machine zero, one should except a value of ~,(c 0 or ~b(~) 
approaching 1 linearly for a wide range of magnitudes of ~. 

The experiment was performed using a limited area 2-D 
shallow water equation model. The results are shown in 
Fig. 1. It is clearly seen that for values of c~ between 
10~ -11, unit values for O(c~) and q~(~) are obtained. The 
correctness of the gradient of the cost function and the 
correctness of the Hessian/vector product have therefore 
been verified. 
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