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ABSTRACT

This thesis is aimed at (a) conducting an in-depth investigation of the feasibility

of the 4-D variational data assimilation (VDA) applied to realistic situations; (b)

achieving an improvement of the existing large-scale unconstrained minimization al-

gorithms. The basic theory of the VDA was developed in a general mathematical

framework related to optimal control of partial differential equations (PDEs) [116].

The VDA attempts to find an initialization (if control variables are the initial condi-

tions) most consistent with the observations over a certain period of time as linked

together with a forecast model through a cost functional which is a statement about

our knowledge and uncertainties concerning the forecast model and observations dis-

tributed in space and time (hence, the phrase 4-D VDA). This goal is accomplished

by defining the cost function to be a weighted sum of the squares of the difference

between the model solution and the observations; an attempt to minimize this cost

function is then sought by using an iterative minimization algorithm in the framework

of optimal control of PDEs [116]. The gradient of the cost function with respect of

the control variables is obtained by integrating the so-called first order adjoint model

backwards in time.

The present thesis first develops the second order adjoint (SOA) theory and ap-

plies it to a shallow-water equations (SWE) model on a limited-area domain. One

integration of such a model yields a value of the Hessian (the matrix of second par-

tial derivatives of the cost function with respect to control variables) multiplied by a

vector. The SOA model was then used to conduct a sensitivity analysis of the cost

function with respect to observations distributed in space and time and to study the

evolution of the condition number (the ratio of the largest to smallest eigenvalues)

xvi



of the Hessian during the course of the minimization since the condition number is

strongly related to the convergence rate of the minimization. It is proved that the

Hessian is positive definite during the process of the large-scale unconstrained min-

imization, which in turn proves the uniqueness of the optimal solution for our test

problem.

Experiments using data from an European Center for Medium-range Weather

Forecasts (ECMWF) analysis of the First Global Geophysical Experiment (FGGE)

show that the cost function J is more sensitive to observations at points where mete-

orologically intensive events occur. The SOA technique shows that most changes in

the value of the condition number of the Hessian occur during the first few iterations

of the minimization and are strongly correlated to major large-scale changes in the

retrieved initial conditions fields.

It is also demonstrated that the Hessian/vector product thus obtained is more

accurate than that obtained by applying a finite-difference approximation to the gra-

dient of the cost function with respect to the initial conditions. The Hessian/vector

product obtained by the SOA approach is applied to one of the most efficient min-

imization algorithms, namely the truncated-Newton (TN) algorithm of Nash ([129],

[130], [134]). This modified version of the TN algorithm of Nash differs from it only

in the use of a more accurate Hessian/vector product for carrying out the large-scale

unconstrained optimization required in VDA. The newly obtained algorithm is re-

ferred to as the adjoint truncated-Newton algorithm (ATN). The ATN is applied

here to a limited-area SWE model with model generated data where the initial con-

ditions serve as control variables. We then compare the performance of the ATN

algorithm with that of the original TN Nash [134] method and the LBFGS method

of Liu and Nocedal [117]. Our numerical tests yield results which are twice as fast

as these obtained by the TN algorithm both in terms of number of iterations as well

xvii



as in terms of CPU time. Further, the ATN algorithm turns out to be faster than

the LBFGS method in terms of CPU time required for the problem tested.

Next, the thesis applies the VDA to a realistic 3-D numerical weather prediction

model, requiring the derivation of the adjoint model of the adiabatic version of the

Florida State University Global Spectral Model (FSUGSM). The experiments with

FSUGSM are designed to demonstrate the numerical feasibility of 4-D VDA. The

impact of observations distributed over the assimilation period is investigated. The

efficiency of the 4-D VDA is demonstrated with different sets of observations. The

results obtained from a forecast starting from the new initial conditions obtained

after performing VDA of model generated data sets are meteorologically realistic

while both the cost function and root-mean-square (rms) errors of all fields were

reduced by several orders of magnitude irrespective if whether the initial conditions

are shifted or randomly perturbed. It is also demonstrated that the presence of

horizontal diffusion in the model yields a more accurate solution to the VDA problem.

In all of the previous experiments, it is assumed that the model is perfect, and

so is the data. The solution of the problem will have a perfect fit to the data, with

zero difference. This is of course an unrealistic assumption and the lack of inclusion

of model errors constitutes a serious deficiency of the assimilation procedure.

The nudging data assimilation (NDA) technique introduced by Anthes [4] con-

sists in achieving a compromise between the model and observations by relaxing the

model state towards the observations during the assimilation period by adding a

non-physical diffusion-type term to the model equations. Variational nudging data

assimilation (VNDA) combines the VDA and NDA schemes in the most efficient way

to determine optimally the best initial conditions and optimal nudging coefficients

simultaneously. The humidity and other different parameterized physical processes

are not included in the adjoint model integration. Thus the calculation of the gra-

dient by the adjoint model is approximate since the forecast model is used in its

xviii



full-physics (diabatic) operational form. It is shown that it is possible to perform

4-D VDA with realistic forecast models even prior to more complex adjoint models

being developed, such as models including the adjoint of all physical processes [215].

The resulting optimal nudging coefficients are then applied in NDA (or physical

initialization) (thus the term optimal nudging data assimilation (ONDA)) [229].

xix



CHAPTER 1

INTRODUCTION

1.1 Overview

We wish to know and understand not only the climatological or current state of

the atmosphere, but also to predict its future state (the aim of numerical weather

prediction). Beyond the qualitative understanding of the atmosphere, a quantitative

estimate of its state in the past and present, as well as quantitative prediction of

future states is required. The estimate of the present state is prerequisite for future

prediction, and the accuracy of past prediction is essential for an accurate estimate

of the present.

How does the estimation of the present proceed in meteorology? A good starting

point is Wiener’s article [223] on prediction and dynamics. At the time of his writing,

meteorology, like economics, could still be considered a semi-exact science, as opposed

to the allegedly exact sciences of celestial mechanics [89]. Dynamical processes in

the atmosphere were poorly known, while observations were sparse in space and time

as well as inaccurate. Relying theoretically on the hope of the system’s ergodicity

and stationarity, Wiener argued that the best approach to atmospheric estimation

and prediction was statistical. In practice, this meant ignoring any quantitative

dynamical knowledge of system behaviour, requiring instead a complete knowledge

of the system’s past history, and using the Wiener-Hopf filter to process this infinite

but inaccurate information into yielding an estimate of the present and future of

weather dynamics [222].

During roughly the same period, synoptic meteorologists were actually producing

charts of atmospheric fields at present and future times guided by tacit principles

1



similar to those explicitly formulated by Wiener. The main tool was smooth in-

terpolation and extrapolation of observations in space and time. Still, rudimentary

and quantitative dynamical knowledge was interpolated into these estimates of at-

mospheric states, such as the geostrophic relation between winds and heights, and

the advection of large-scale features of the prevailing winds.

The first step leading to the present state of art of estimation in meteorology

was objective analysis, which replaced manual, graphic interpolation of observations

by automated mathematical methods, such as for instance two-dimensional (2-D)

polynomial interpolation [160]. Not surprisingly, this step was largely motivated

by the rapidly improving knowledge of atmospheric dynamics to produce numerical

weather forecasts [27]. The main ideas underlying objective analysis were statis-

tical [57, 63, 165]. Observations are considered to sample a random field, with a

given spatial covariance structure which is preconditioned and stationary in time.

This generalized in fact the idea of Wiener [223] from a finite-dimensional system

governed by Ordinary Differential Equations (ODEs) to an infinite-dimensional one

governed by Partial Differential Equations (PDEs) of Geophysical Fluid Dynamics

(GFD). In practice, these statistical ideas appeared too complicated and computa-

tionally expensive at the time to be adopted as they stood into the fledgling Nu-

merical Weather Prediction (NWP) process. Instead, various shortcuts, such as the

successive-correction method were implemented in the operational routine of weather

bureaus [39].

Two related developments led to the next step, in which a connection between

statistical interpolation on one hand, and dynamics, on the other, became apparent

and started to be used systematically. One development was the increasingly accurate

nature of short-term numerical weather forecasts; the other was the advent of time

continuous, space-borne observing systems. Together, they produced the concept

of four-dimensional (4-D) space-time continuous data assimilation in which a model

2



forecast of atmospheric fields is sequentially updated with incoming observations

[28, 192, 178]. Here the model carries forward in time the knowledge of a finite

number of past observations, subject to the appropriate dynamics, to be blended

with the latest observations.

At this point, we note merely that noisy, inaccurate data should not be fitted by

exact interpolation, but rather by a procedure which has to achieve simultaneously

two goals (a) to extract the valuable information contained in the data, and (b) to

filter out the spurious information, i.e. the noise. Thus the analyzed data should

be close to the data but not too close. The statistical approach to this problem is

linear regression. The variational approach consists in minimizing the distance, e.g.,

in a quadratic norm, between the analyzed field and the data, subject to constraints

which yield smoother results. The merger of these two approaches into a stationary,

ergodic context is intuitively obvious, and is reflected in the fact that root-mean-

square (rms) minimization is used in popular parlance for both approaches.

In summary, during the last decade due to a constant increase in the need for

more precise forecasting and now-casting, several important developments have taken

place in meteorology directed mainly in two directions [107, 109]:

1. Modeling at either large scale or at smaller scales. Recently, many models

have been developed including an ever increasing detail of physical processes

and parameterizations of sub-grid phenomena.

2. Data: new sources of data such as satellite data, radar, profiles, and other

remote sensing devices have led to an abundance of widely distributed data

in space and time. However, a common characteristic of these data is to be

heterogeneous either in their space or time density or in their quality.

Therefore, a cardinal problem is how to link together the model and the data.

This problem includes several questions:
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1. How to retrieve meteorological fields from sparse and/or noisy data in such a

way that the retrieved fields are in agreement with the general behaviour of

the atmosphere? (Data Analysis)

2. How to insert pointwise data in a numerical forecasting model? This informa-

tion is continuous in time, but localized in space (satellite data for instance)?

(Data Assimilation)

3. How to validate or calibrate a model from observational data? The dual ques-

tion in this case being how to validate observed data when the behaviour of

the atmosphere is predicted by a numerical model.

For these questions a global approach can be defined by using a variational for-

malism. Variational data assimilation (VDA) consists of finding the assimilating

model solution which minimizes a properly chosen objective function measuring the

distance between model solution and available observations distributed in space and

time. The assimilating model solution is obtained by integrating a dynamic system

of partial differential equations from a set of initial conditions (and/or boundary con-

ditions for limited area problems). Therefore, the complete description of the initial

atmospheric state in a numerical weather prediction method constitutes an impor-

tant issue. The four dimensional VDA method offers a promising way to achieve

such a description of the atmosphere using a methodology originating in the theory

of optimal control of distributed parameters.

Several techniques of assimilation have been used so far, e.g. optimal interpola-

tion and inverse methods, blending and nudging methods as well as Kalman filtering

applications [41, 68]. The optimal interpolation scheme (OI) is a particular form of

statistical interpolation and has been widely used amongst most operational centers

[118]. However several weaknesses inherent in the method and its practical imple-

mentation are now identified. For instance, the OI analysis extracts information
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poorly from observations nonlinearly related to the model variables [2]. The data se-

lection algorithm is also generally a source of noise which persists in the final analysis

[161].

The variational approach circumvents some of the practical OI weakness, since

it allows the analysis to use all the observations at every model grid point, and

can easily handle a non trivial link between the observations and the model state.

In its 4-D version, the method consistently uses the information coming from the

observations and the dynamics of the model. Over a period of time it produces

the same results as the full extended Kalman-Bucy filter approach [207] at a much

lower cost. But the Kalman-Bucy filter approach does have its own advantages. For

instance, since it is a sequential estimation method it is capable of providing explicit

error estimates, such as the error covariance matrix of the obtained solution [68].

2-D VDA was implemented at ECMWF [59]. 3-D VDA has been successfully

implemented operationally at the National Meteorological Center (NMC), USA [53],

yielding consistently better analyses and forecasts when compared with their classical

OI system.

The cost of the 4-D VDA is still prohibitive with current computer power

and there are remaining problems (such as, for instance, the treatment of non-

differentiable processes in the model) to be solved prior to its being implemented

operationally. However, the theoretical advantages of 4-D VDA as compared with

the current operational data assimilation systems make it a good candidate for a

possible near future operational assimilation scheme. As a matter of fact 4-D VDA

has recently been used with real data in a semi-operational set-up at ECMWF.

1.2 Four dimensional variational data assimilation in meteorology

The first application of variational methods in meteorology has been pioneered

by Sasaki ([179, 180]). Washington and Duquet [220], Stephens ([196, 197]) and
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Sasaki ( [181, 182, 183, 184]) have given a great impetus towards the development of

variational methods in meteorology.

In a series of basic papers Sasaki ([181, 182, 183, 184]) generalized the application

of variational methods in meteorology to include time variations and dynamical equa-

tions in order to filter high-frequency noise and to obtain dynamically acceptable ini-

tial values in data void area. In all these applications, the Euler-Lagrange equations

were used to calculate the optimal state. In general Euler-Lagrange equations are a

coupled PDE system of mixed type of well-posed initial-boundary value problems,

and can be solved numerically with reasonably computational cost [64, 139, 140, 142].

However, in most cases of real interest, this approach has not proved particularly

useful or promising. VDA circumvents the Euler-Lagrange equations by directly

minimizing a cost function measuring the misfit between the model solution and the

observations with respect to the control variables.

VDA was first applied in meteorology by Marchuk [127] and by Penenko and

Obrazstov [164]. Kontarev [95] further described how to apply the adjoint method

to meteorological problems, while Le Dimet [106] formulated the method in a general

mathematical framework related to optimal control of partial differential equations

based on the work of Lions [116]. In the following years, a considerable number

of experiments has been carried out on different two dimensional (2-D) barotropic

models by several authors, such as Courtier [33]; Lewis and Derber [112]; Derber [50];

Hoffmann [87]; Le Dimet and Talagrand [108]; Derber [51]; Talagrand and Courtier

[202]; Lorenc [120, 121]; Thacker and Long [204], Zou et al. [227], Navon et al.

[152]. Most of the published scientific papers including all the aforementioned papers

related to the use of adjoint methods in 4-D VDA have employed simplified models.

Only has recently the method been applied to more complex models (Thépaut and

Courtier [207], Navon et al. [149], and Thépaut et al. [210]). The main conclusion

was that the method may be applicable to realistic situations. However in most of
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these papers, observational data to be assimilated is idealized, in the sense that the

observations are generated by the model itself. In this case, it is assumed that the

model is perfect, and so is the data. The solution of the problem will have a perfect

fit to the data, with zero difference. This is an unrealistic assumption and the lack of

inclusion of model errors constitutes a serious deficiency of assimilation procedure.

While major advances have been achieved in the application of the adjoint

method, this field of research remains both theoretically and computationally ac-

tive [208, 209, 221, 213]. Nowadays the typical cost functional includes both model

errors and observational errors as well as background errors [42, 234]. Additional

research to be carried out includes: (a) applications to complicated models such as

multilevel primitive equation models related to distributed real data and the inclusion

of physical processes in the VDA process; (b) establishing more efficient large-scale

unconstrained minimization algorithms; (c) deriving efficient ways to carry out 4-D

VDA by using high performance parallel computers by using for instance domain

decomposition methods [150].

In parallel with the introduction of variational methods in meteorology, start-

ing in the 1960’s and 1970’s, mathematicians in collaboration with researchers from

other scientific disciplines have achieved significant advances in optimization the-

ory and optimal control, both from the theoretical viewpoint as well as from the

computational one. In particular significant advances have been achieved in the

development of large-scale unconstrained and constrained optimization algorithms

([10, 60, 61, 73, 123, 134, 143, 144, 145, 146, 147, 167] to cite but a few).
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U0

U
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Time

Space

Figure 1.1: Schematic representation of the 4-D VDA where squares represent obser-
vations, U0 is the initial guess, U is the optimal solution and dotted and solid lines
represent the trajectories starting from U and U0. Starting from U0, the 4-D VDA
finds the best initial condition U such that the sum of the weighted squares of the
difference between model solution and the observations obtains minimum.

1.3 Preliminaries

1.3.1 The definition of a variational method

The aim of the VDA [148] is to find an initial state for a numerical forecast by

processing observations which are distributed in space and time (hence, the phrase

4-D data assimilation). The variational data assimilation attempts to find a set of

initial conditions most consistent with the observations over a certain period of time

as linked together with a forecast model. This goal is accomplished by defining a

cost function consisting of the weighted sum of the squares of the difference between

model solution and the observations; an attempt to minimize this cost function is

then carried out (see Fig. 1.1). Therefore, the 4-D variational data assimilation
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problem may be mathematically defined as

min
U

J(U), (1.1)

where the cost function J(U) is defined as

J(U) = Jo + Jb + Jp, (1.2)

where Jo, Jb and Jp are the distance to the observations, the distance to the back-

ground and the penalty term which contains physical constraints applied to the

model state ~X, respectively [3, 83, 158, 214]. To perform a 4-D VDA over a time

period, one needs to find the model trajectory which minimizes the misfit between

model solution and the observations over the period, as well as the misfit to a guess

at the initial time. This initial guess ~Xg represents the best estimate of the model

state at the initial time, prior to any collection of observations at and after the initial

time. As in all the operational assimilation schemes, the initial guess ~Xg represents a

summary of all the information on ~X accumulated before the initial time. A natural

distance for observational errors is the sum of weighted squares of the differences

between the model solution and the observations. For simplicity, we assume the cost

function is defined by

J(U) = Jo =
1

2

M
∑

i=0

< W (C ~Xi − ~Xo
i ), (C

~Xi − ~Xo
i ) >, (1.3)

where ~Xi is the state variable vector at the i-th time level in a Hilbert space X
whose inner product is denoted by < ·, · > using either an Euclidean norm or other

suitably defined norms such as an energy norm. M + 1 is the total number of time

levels in the time assimilation window [t0, tf ] where t0 and tf are the initial and final

times and W is a weighting function usually taken to be the inverse of the covariance

matrix of observation errors. The objective function J(U) is the weighted sum of

the squares of the distance between the model solution and available observations
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distributed in space and time. ~Xo
i is the observation vector at the i-th time level,

while the operator C represents a projection operator from the space of the model

solution ~X to the space of observations. The control variable U and the state vector

~X satisfy model equations

∂ ~X

∂t
= F ( ~X), (1.4)

~X(t0) = U, (1.5)

where t is the time, and F ∈ C2 is a function of ~X, where C2 denotes a set of twice

continuously differentiable functions.

It is worth noting that the control variable U may consist of initial conditions

and/or boundary conditions or model parameters to be estimated. For mesoscale

numerical weather prediction (NWP) models and for steady state problems the model

equations will be given by F ( ~X) = 0. Once U is defined, Eq (1.4) has an unique

solution, ~X.

In order to determine or at least approximate the optimal solution of Eq. (1.1)

and therefore the optimal associate state of the atmosphere, we first have to set up

an optimality condition. A general optimality condition is given by the variational

inequality [116]

(∇J(U∗), V − U∗) ≥ 0, (1.6)

for all V belonging to a set of admissible control space Uad where ∇J is the gradient

of the cost functional J with respect to the control variable U .

In the case where Uad has the structure of a linear space, the variational inequality

(1.6) is reduced to an equality

∇J(U∗) = 0. (1.7)

The aforementioned 4-D VDA problem (1.1) usually can not be solved analyti-

cally. Fortunately standard procedures [108, 144] exist allowing us to solve it. Among
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the feasible methods for large-scale unconstrained minimization are (a) the limited

memory conjugate gradient method ([144, 173, 174, 189, 190]); (b) quasi-Newton

type algorithms ([46], [70], [155]); (c) limited-memory quasi-Newton methods such

as LBFGS algorithm ([117], [154]) and (d) truncated-Newton algorithms ([129], [130],

[131], [138], [185, 186]).

These procedures are iterative procedures, i.e. they start from an initial guess U0,

find a better approximation U1 to optimal solution U in the sense of J(U1) ≤ J(U0),

and repeat this minimization process until a prescribed convergence condition is

met (see Fig. 1.2). A common requirement of all these procedures is the need to

explicitly supply the gradient of the cost function with respect the control variables.

The question is therefore: how to numerically determine the gradient ∇UJ? One

theoretical possibility would be to evaluate the components of ∇UJ through finite-

difference approximations of the form ∆J/∆uj, where ∆J is the computed variation

of J resulting from a given perturbation ∆uj of the j-th component uj of U . This

method has been put forward by Hoffman [85, 86, 87] for performing variational

assimilation. But it requires as many model integrations as there are components

in U . Its numerical cost would be totally prohibitive in most situations, especially

for NWP problems where the number of the components of the control variables is

bigger than 105.

With present computer power, the only practical way to implement variational

assimilation is through an appropriate use of the so-called adjoint of the assimilation

model although it is still computational expensive. The adjoint model of a numerical

model basically consists of the equations which govern the temporal evolution of a

small perturbation imposed on a model equation, written in a form particularly

appropriate for the computation of the sensitivities of the output parameters of the

model with respect to input parameters [19, 20, 80, 103, 128, 232]. The use of

adjoint models is an application of the theory of optimization and optimal control
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U

U0

Figure 1.2: Schematic representation of a minimization process, where ellipses are
the isolines of the cost function J , U0 is the initial guess, U is the optimal solution
and each arrow represents an iteration of the minimization process.

of PDEs, which has been developed in the last twenty years by mathematicians

[116], and which is progressively being applied to various research disciplines. The

principle for deriving adjoint models is based on a systematic use of the chain rule

for differentiation.

1.3.2 Description of the first order adjoint analysis

A cost effective way to obtain the gradient of the cost function with respect to

the control variables is to integrate the first order adjoint (FOA) model backwards

in time from the final time to the initial time of the assimilation window. The theory

and application of the FOA model is discussed by several authors, e. g. Talagrand

and Courtier [202] and Navon et al. [149]. In order to provide a self-contained

comprehensive dissertation and develop the second order adjoint (SOA) theory, we

briefly summarize the theory of the FOA model.
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Let us consider a perturbation, U ′, on the initial condition U , Eqs (1.4-1.5)

become

∂( ~X + X̂)

∂t
= F ( ~X + X̂),

= F ( ~X) +
∂F

∂ ~X
X̂ +

1

2
X̂∗ ∂F

2

∂ ~X2
X̂ +O(‖X̂‖3), (1.8)

~X(t0) + X̂(t0) = U + U ′, (1.9)

where (·)∗ denotes the complex conjugate transpose, ‖ · ‖ denotes the Euclidean

norm or other suitably defined norm of “·” and X̂ is the resulting perturbation of

the variable ~X. Retaining only the first order term of Eq (1.8), one obtains

∂X̂

∂t
=
∂F

∂ ~X
X̂, (1.10)

X̂(t0) = U ′. (1.11)

Eqs. (1.10)-(1.11) define the tangent linear model equations of Eqs. (1.4-1.5) and

are linear with respect to the perturbation U ′ on the initial condition U . Eq. (1.10)

is called a tangent linear model because the linearization is around a time-evolving

solution, and therefore, the coefficients of the linear model are defined by slopes of

the tangent to the nonlinear model trajectory in phase space.

The Gateaux derivative δJ of the cost function in the direction of U ′ is defined

by

δJ = lim
α→0

J(U + αU ′) − J(U)

α
, (1.12)

which can be expressed as

δJ = ∇UJ · U ′ (1.13)

Eq. (1.13) is, to the first order accuracy, the variation of the distance function J

due to the perturbation U ′ on the initial condition U , i.e.

δJ =
M
∑

i=0

< W ( ~Xi − ~Xo
i ), X̂i > . (1.14)
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Using for example the Euler time differencing scheme one obtains from (1.10)

X̂i+1 = X̂i + ∆t[
∂F

∂ ~X
]iX̂i

= [I + ∆t(
∂F

∂ ~X
)i]X̂i

=
i

∏

j=0

[I + ∆t(
∂F

∂ ~X
)j]X̂0 (1.15)

where ∆t is the constant time step, I is the unit matrix operator, (∂F/∂ ~X)j rep-

resents the matrix ∂F/∂ ~X at the j-th time level, and
∏i

j=0 denotes the product of

i+ 1 factors.

Substituting (1.15) into (1.14) and using basic concepts of adjoint operators, we

obtain the following expression

δJ =
M
∑

i=1

< {
i−1
∏

j=0

[I + ∆t(
∂F

∂ ~X
)j]}∗W ( ~Xi − ~Xo

i ), X̂0 >

+ < W ( ~X0 − ~Xo
0), X̂0 > (1.16)

where ( )∗ denotes the adjoint of ( ). On the other hand, we have

δJ =< ∇UJ, X̂0 > . (1.17)

Equating Eqs. (1.16) and (1.17), one obtains the gradient of the cost function with

respect to the initial conditions as

∇UJ =
M
∑

i=0

{
i−1
∏

j=0

[I + ∆t(
∂F

∂ ~X
)j]}∗W ( ~Xi − ~Xo

i ). (1.18)

The i-th term in (1.18) can be obtained by a backwards integration of the following

adjoint equation

−∂P
∂t

= (
∂F

∂ ~X
)∗P, (1.19)

from the i-th time step to the initial step, starting from

Pi = W ( ~Xi − ~Xo
i ), (1.20)
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where P represents the adjoint variables corresponding to X̂. It appears that M

integrations of the adjoint model, starting from different time steps tM , tM−1 , ......, t1,

are required to obtain the gradient ∇UJ . However, since the adjoint model (1.19)

is linear, only one integration from tM to t0 of the adjoint equation is required to

calculate the gradient of the cost function with respect to the initial conditions.

In summary, the gradient of the cost function with respect to the initial condition

U can be obtained by the following procedure:

1. Integrate the forecast model from t0 to tM from initial condition (1.5) and store

in memory the corresponding sequence of the model states ~Xi (i =0, 1, ......,

M);

2. Starting from PM = W ( ~XM − ~Xo
M), integrate the “forced” adjoint equation

(1.19) backwards in time from tM to t0 where a forcing term W ( ~Xi − ~Xo
i )

is added to the right-hand-side of (1.19) at the i-th time step whenever an

observation is encountered. The final result P0 is the value of gradient of the

cost function with respect to the initial condition,

∇UJ = P0. (1.21)

It is worth noting that

1. When the observations do not coincide with model grid points, the model

solution should be interpolated to the observations, i.e., C ~X − ~Xo should be

used instead of ~X − ~Xo in the cost function definition, where the operator C

represents the process of interpolating the model solution to space and time

locations where observations are available (i.e. C is a projection operator from

the space of the model solution ~X to the space of observations).
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2. We note that the numerical cost of the adjoint model computation is about

the same as the cost of one integration of the tangent linear model, the latter

involving a computational cost of at most one integration of the nonlinear

model.

A continuous derivation of the gradient of the cost function is provided Chapter

3. In order to provide the readers with some practical examples and some insight

about the adjoint theory and the accuracies of the TLM, FOA and SOA models,

two examples, one linear and one nonlinear, are presented in Appendices A and

B, respectively. Both examples have exact solutions and thus exactly illustrate the

adjoint process.

1.4 The theme of my dissertation

This thesis is aimed at (a) carrying out a in-depth investigation of the feasibility

of the 4-D VDA applied to realistic situations; (b) achieving an improvement of the

existing large-scale unconstrained minimization algorithms. Toward this end, the

thesis first develops the SOA theory and a modified version of the truncated Newton

(TN) algorithm of Nash [134], secondly develops the SOA model of the shallow-water

equations model and finally derives the FOA model of the Florida State University

global spectral model (FSUGSM), thirdly conducts a series 4-D VDA experiments

and variational nudging data assimilation, and fourthly compares results of the 4-

D VNDA and optimal nudging assimilation to assess their ability to retrieve high

quality model initial conditions (i.e. physical initialization).

The first part of my thesis (Chapters 2, 3) focuses on the development of the

SOA theory and its application. The SOA model serves to study the evolution of

the condition number of the Hessian during the course of the minimization since

one forward integration of the nonlinear model and the tangent linear model and
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one backwards integration in time of the first order adjoint (FOA) model and the

SOA system are required to provide the value of Hessian/vector product. This Hes-

sian/vector product may then be used with the power method to obtain the largest

and smallest eigenvalues of the Hessian whose dimension is 1083×1083 for our test

problem. The dimension of the Hessian will be more than 105×105 for 3-D primitive

equations models. If the smallest eigenvalues of the Hessian of the cost function

with respect to the control variables are positive at each iteration of the VDA min-

imization process, then the optimal solution of the VDA is unique. This statement

is proved to be true for the shallow water equations model (Subsection 2.4.2). The

variation of the condition number of the Hessian of the cost function with respect to

number of iterations during the minimization process reflects the convergence rate

of the minimization. It has been observed [149] that large scale changes occur in

the process of minimization during the first 30 iterations, while during the ensuing

iterations only small scale features are assimilated. This entails that the condition

number of the Hessian of the cost function with respect to the initial conditions

experiences a fast change at the beginning of the minimization and then remains al-

most unchanged during the latter iterations. The condition number can also provide

information concerning the error covariance matrix. The rate at which algorithms

for computing the best fit to data converge depends on the size of the condition

number as well as the distribution of eigenvalues in the spectrum of the Hessian.

The inverse of the Hessian can be identified as the covariance matrix that establishes

the accuracy to which the model state is determined by the data; the reciprocals of

the Hessian’s eigenvalues represent the variance of linear combinations of variables

determined by the eigenvectors [205]. The above mentioned Hessian/vector product

calculation strategy can be efficiently used in the truncated-Newton algorithm of

Nash [133], which is referred to as adjoint truncated-Newton algorithm (ATN). The

ATN differs from the truncated-Newton algorithm of Nash [134] only in the use of a
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more accurate Hessian/vector product for carrying out the large-scale unconstrained

optimization required in variational data assimilation. The Hessian/vector product

is obtained by solving an optimal control problem of distributed parameters and its

accuracy is analyzed and compared with its finite-difference counterpart. The ATN

is based on the first and second order adjoint (SOA) techniques allowing to obtain

a better approximation to the Newton line search direction for the problem tested

here. The ATN is applied here to a limited-area shallow water equations model with

model generated data where the initial conditions serve as control variables. We com-

pare the performance of the ATN algorithm with that of the original TN Nash [134]

method and the LBFGS method of Liu and Nocedal [117]. Our numerical tests yield

results which are twice as fast as these obtained by the TN algorithm both in terms

of number of iterations as well as in terms of CPU time. Further the ATN algorithm

turns out to be faster than the LBFGS method in terms of CPU time for the problem

tested.

The second part of my thesis (Chapters 3, 4) addresses the challenging issues

related to 4-D VDA application in NWP problems, i.e. the numerical feasibility

of 4-D variational data assimilation applied to complex NWP models. In order to

address these questions, I choose the FSUGSM as an experimental model, since it is

an operational model developed from the Canadian spectral model of the Recherche

en Prevision Numerique [40] by a research group led by Krishnamurti at Florida

State University. In the development of the FSUGSM from the Canadian model,

the primary effort has been directed at improving the physical effect parameteriza-

tions, adapting the model code to run efficiently on the NCAR Cray-1 computer and

developing post-forecast diagnostics [162]. The FSUGSM is a very complex model.

Developing its first order adjoint model and tuning the minimization algorithm to

perform adequately with a control variable vector of dimension 303104 constitute a

challenging task.
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In this part of the thesis the tangent linear model (TLM) is first developed and

then the the first order adjoint model (FOA) of the FSUGSM is developed by writing

the TLM backwards in time subroutine by subroutine. The accuracy of the TLM is

investigated by comparing its results with those produced by identical perturbations

introduced in nonlinear forecasts of the original model. The accuracy of the FOA is

verified by using a Taylor expansion.

Through different initial conditions and different scenarios of sets of observations

distributed in time, we demonstrate the efficiency of the 4-D VDA in extracting the

information contained in the dynamics of the model together with the information

contained in the observations. The conditioning is an important factor for an opera-

tional implementation. The dynamics of the model may lead to different reductions

of rms errors at different times and the loss of the conditioning of the problem, i.e.

the shape of the cost function can become strongly elliptic with respect to the non

optimal metric used and the gradient can even become almost orthogonal to the

direction of the minimum. The solution to this is a knowledge of the structure of

the Hessian of the cost function. It seems that the SOA application may constitute

an efficient way to to obtain additional information about the Hessian of the cost

function.

As mentioned before, an implicit assumption made in 4-D VDA is that the model

exactly represents the state of the atmosphere. However, this is clearly not true since

any model only approximately represents the state of the atmosphere. The nudging

data assimilation (NDA) addresses the imperfectness of the model by adding a non-

physical diffusion-type term to the model equations and thus relaxes the model state

towards the observations during the assimilation period (hence an equivalent name

for it is Newtonian relaxation [98, 99]). The NDA method is a flexible assimilation

technique which is computationally much more economical than the VDA method.

However, results from NDA are quite sensitive to the ad hoc specification of the
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nudging relaxation coefficient, and it is not at all clear how to choose a nudging

coefficient so as to obtain an optimal solution.

Variational nudging data assimilation (VNDA) combines the aforementioned data

assimilation schemes in the most efficient way. It takes both the initial conditions

and the nudging coefficients as control variables and finds the best initial conditions

and optimal nudging coefficients iteratively. In Chapter 6, the VNDA is applied,

in the framework of 4-dimensional variational data assimilation (VDA), to a T42

version of the FSU global spectral model (FSUGSM) in its full-physics operational

form with 12 vertical layers. The technique is tested for its ability to obtain the

best initial conditions and optimal nudging coefficients. Results from the VNDA

indicate significantly better results and a faster convergence rate compared with the

VDA for our test problem when a nudging term is added to the model equations

and the nudging coefficients are optimally estimated using VDA in a parameter es-

timation mode. The humidity and all the different parameterizations of the physical

processes are not included in the adjoint model integration. Thus the calculation of

the gradients by the adjoint model is approximate since the forecast model is used

in its full-physics operational form. It is important to note that the approximate

gradient obtained from a simplified adjoint model is used in the experiments. It is

shown that it is possible to perform variational data assimilation of realistic forecast

models even before more complex adjoint models including diabatic processes are

developed. The resulting optimal nudging coefficients are then applied in nudging

data assimilation (thus the term optimal nudging data assimilation (ONDA)) [229].

Results of data-assimilation experiments involving estimated nudging assimilation,

ONDA and VDA are compared for their ability to retrieve high quality model initial

conditions (physical initialization).

Conclusions summarizing the main results of this thesis, their implications, limi-

tation and outstanding problems are presented in the last Chapter.
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CHAPTER 2

SECOND ORDER ADJOINT ANALYSIS: THEORY AND

APPLICATIONS

2.1 Introduction

The complete description of the initial atmospheric state in a numerical weather

prediction method constitutes an important issue. The four dimensional variational

data assimilation (VDA) method offers a promising way to obtain such a description

of the atmosphere. It consists in finding the assimilating model solution which min-

imizes a properly chosen objective function measuring the distance between model

solution and available observations distributed in space and time. The control vari-

ables are either the initial conditions or the initial conditions plus the boundary

conditions. The boundary conditions have to be specified so that the problem is well

posed in the sense of Hadamard. In most unconstrained minimization algorithms as-

sociated with the VDA approach, the gradient of the objective function with respect

to the control variables plays an essential role. This gradient is obtained through

one direct integration of the nonlinear model equations followed by a backwards

integration in time of the linear adjoint system of the direct model.

The knowledge of the structure of the Hessian of the cost function with respect to

the control variables is useful in many ways. For instance, the positive definiteness

of the Hessian implies the uniqueness of the solution, the Hessian/vector produc-

tion can be used implement truncated-Newton algorithms [134] and the eigenvalue

distribution and eigenvalue structure of the Hessian can provide useful information

for preconditioning unconstrained minimization algorithms [187]. In this chapter I
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will develop the SOA theory to study the evolution of the condition number of the

Hessian during the course of the minimization and to conduct the sensitivity analysis

of the cost function with respect to distributed observations.

The context of this chapter is outlined as follows: the theory of the SOA is

introduced in Section 2.2. In Section 2.3, we present a detailed derivation of the

SOA model of a two dimensional shallow water equations model. Quality control

methods for the verification of the correctness of the SOA model are discussed in

Subsection 2.3.1. Issues concerning uniqueness of the solution and the evolution of

the condition number of the Hessian during the course of the minimization as well

as issues related to the structure of the retrieved initial conditions are addressed in

Section 2.4. Section 2.5 is devoted to a sensitivity study of the solution with respect

to distributed inaccurate observations. Finally conclusions are presented in Section

2.6.

2.2 The second order adjoint model

2.2.1 Theory of the second order adjoint model

The forward and backwards integrations of the nonlinear model and its adjoint

model respectively, provide the value of the cost function J and its gradient. The

following question may then be posed: can we obtain any information about the

Hessian (second order derivative matrix) of the cost function with respect to the ini-

tial conditions by integrating the adjoint model equations? Once the Hessian/vector

product is available, the condition number of the Hessian may be obtained. This

condition number may then be used to study the convergence rate of the minimiza-

tion algorithms used in of VDA. We will show in this section that one integration

of the SOA model yields a Hessian/vector product or a column of the Hessian of

the cost function with respect to the initial conditions. Therefore, the SOA model
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provides an efficient way to compute the Hessian of the cost function by performing

M integrations of the SOA model where M is the number of the components in the

control variables. For a large dimensional model, obtaining the full Hessian matrix

proves to be a computationally prohibitive task beyond the capability of present

day computers. The SOA approach will be used to conduct a sensitivity analysis

of the observations in Section 2.5. We will also study the relative importance of

observations distributed at different space and time locations.

The original idea of the SOA theory was proposed by Le Dimet (personal com-

munication). Here we developed the SOA theory in a clearer and simple manner.

Assume that the model equations are given by Eqs. (1.4) and (1.5). Let us define

the cost function as

J(U) =
1

2

∫ T

t0

< W (C ~X − ~Xo), C ~X − ~Xo > dt, (2.1)

where W is a weighting matrix often taken to be the inverse of the estimate of the

covariance matrix of the observation errors, T is the final time of the assimilation

window, the objective function J(U) is the weighted sum of squares of the distance

between model solution and available observations distributed in space and time,

~Xo is observation vector, the projection operator C represents the process of inter-

polating the model solution ~X to space and time locations where observations are

available. The purpose is to find the initial conditions such that the solution of the

Eq. (1.4) minimizes the cost function J(U) in a least-squares sense. The FOA model

as defined by Eqs. (1.19)-(1.20) may then be rewritten as

−∂P
∂t

= (
∂F

∂ ~X
)∗P + C∗W (C ~X − ~Xo), (2.2)

P (T ) = 0. (2.3)
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where P represents the FOA variables vector. The gradient of the cost function with

respect to the initial conditions is given by (see Subsection 3.2.1)

∇UJ = P (t0), (2.4)

Let us now consider a perturbation, U ′, on the initial condition U . The resulting

perturbations for the variables ~X, P , X̂ and P̂ may be obtained from Eqs. (1.4)-(1.5)

and (2.2)-(2.3) as

∂X̂

∂t
=
∂F

∂ ~X
X̂, (2.5)

X̂(0) = U ′, (2.6)

−∂P̂
∂t

= (
∂F

∂ ~X
)∗P̂ + [

∂2F

∂ ~X2
X̂]∗P + C∗WCX̂, (2.7)

P̂ (T ) = 0, (2.8)

Eqs. (2.5)-(2.6) and Eqs. (2.7) and (2.8) are called the tangent linear and SOA

models, respectively.

Let us denote the FOA variable after a perturbation U ′ on the initial condition

U by PU+U ′, then according to definition

PU+U ′(t0) = P (t0) + P̂ (t0). (2.9)

Expanding ∇U+U ′J at U in a Taylor series and only retaining the first order term,

results in

∇U+U ′J = ∇UJ + ∇2J · U ′ +O(‖U ′‖2) (2.10)

From Eq. (2.4), we know that

∇U+U ′J = PU+U ′(t0), (2.11)

Combining Eqs. (2.4), (2.9), (2.10) and (2.11), one obtains

P̂ (t0) = ∇2J · U ′ = HU ′, (2.12)
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where H = ∇2J is the second derivative of the cost function with respect to initial

conditions.

If we set U ′ = ej, where ej is the unit vector with the j-th element equal to 1,

the j-th column of the Hessian may be obtained by

Hej = P̂ (t0) (2.13)

Therefore theoretically speaking, the full Hessian H can be obtained by M integra-

tions of Eqs. (2.7)-(2.8) with U ′ = ei, i = 1, ...,M where M is the number of the

components of the control variables (the initial conditions u(t0), v(t0) and φ(t0) in

our case).

In summary, the j-th column of the Hessian of the cost function can be obtained

by the following procedure (also see Fig. 2.1):

1. Integrate the model (1.4)-(1.5) and the tangent linear model (2.5)-(2.6) forward

and store in memory the corresponding sequences of the states ~Xi and X̂i (i

=0, ......, M);

2. Integrate the FOA equations (2.2)-(2.3) backwards in time and store in memory

the sequence of Pi (i =0, ......, M);

3. Integrate the SOA model (2.7)-(2.8) backwards in time. The final value P̂ (t0),

yields the j-th column of the Hessian of the cost function with respect to the

control variables.

2.2.2 The estimate of the condition number of the Hessian

Let us denote the largest and the smallest eigenvalues of the Hessian of the cost

function with respect to the control variables and their corresponding eigenvectors

by λmax, λmin, Vmax and Vmin, respectively. Then the condition number of the Hessian
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is given by

κ(H) =
λmax

λmin
(2.14)

Considering the eigenvalue problem HU = λU and assuming that the eigenvalues

are ordered in decreasing order with |λ1| ≥ |λ2| ≥.......≥ |λn|, an arbitrary initial

vector X0 may be expressed as a linear combination of the eigenvectors {Ui}

X0 =
n

∑

i=1

ciUi (2.15)

If λi is an eigenvalue corresponding to the i-th eigenvector Ui, m times multiplications

of the Hessian H to (2.15) result in,

Xm =
n

∑

i=1

ciλ
m
i Ui, (2.16)

where

Xm = HmX0. (2.17)

Factoring λm
1 out, we obtain

Xm = λm
1

n
∑

i=1

ci(
λi

λ1
)mUi. (2.18)

Since λ1 is the largest eigenvalue, the ratio (λi/λ1)
m approaches zero as m increases

(suppose λ1 6= λ2). Therefore we may write

Xm = λm
1 c1U1, (2.19)

From (2.19) we observe that the largest eigenvalue may be calculated by

λ1 =
jth component of Xm+1

jth component of Xm

(2.20)

This technique is called the power method [199]. We can normalize the vector Xm

by its largest component in absolute value. If we denote the new scaled iterate by

X ′
m, then

Xm+1 = HX ′
m, (2.21)
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and the method is called the power method with scaling. It yields an eigenvector

whose largest component is 1.

The main steps in the power method algorithm with scaling are:

1. Generate a starting vector X0.

2. Form a matrix power sequence Xm = HXm−1.

3. Normalize Xm so that its largest component is unity.

4. Return to step (b) until convergence

|Xm −Xm−1| ≤ 10−6, (2.22)

is satisfied or a prescribed upper limit of the number of iterations has been attained.

The smallest eigenvalue of H may also be computed by applying the shifted

iterated power method to the matrix Z = z · I −H, where z is the majorant of the

spectral radius of H and I the identity matrix.

2.3 The derivation of the second order adjoint model for the shallow

water equations model

In this section, we consider the application of the SOA model to a two dimensional

limited-area shallow water equations model. Our purpose is to illustrate how to

derive the SOA model explicitly.

The shallow water equations model may be written as

∂u

∂t
= −u∂u

∂x
− v

∂u

∂y
+ fv − ∂φ

∂x
, (2.23)

∂v

∂t
= −u∂v

∂x
− v

∂v

∂y
− fu− ∂φ

∂y
, (2.24)

∂φ

∂t
= −∂(uφ)

∂x
− ∂(vφ)

∂y
, (2.25)
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where u, v, φ and f are the two components of the horizontal velocity and geopo-

tential fields and the Coriolis factor, respectively.

We shall use initial conditions due to Grammeltvedt [75]

h = H0 +H1tanh
9(y − y0)

2D
+H2sech

9(y − y0)

D
sin

2πx

L
, (2.26)

where H0 = 2000m, H1 = −220m, H2 = 133m, g = 10msec−2, L = 6000km,

D = 4400km, f = 10−4sec−1, β = 1.5 × 10−11sec−1m−1. Here L is the length of the

channel on the β plane, D is the width of the channel and y0 = D/2 is the middle of

the channel. The initial velocity fields were derived from the initial height field via

the geostrophic relationship, and are given by

u = − g
f

∂h

∂y
, (2.27)

v =
g

f

∂h

∂x
. (2.28)

The time and space increments used in the model are

∆x = 300km, ∆y = 220km, ∆t = 600s, (2.29)

which mean that there are 21×21 grid point locations in the channel and the number

of the components of initial condition vector (u, v, φ)t is 1083. Therefore the Hessian

of the cost function in our test problem has a dimension of 1083×1083.

The southern and north boundaries are rigid walls where the normal velocity

components vanish, and it is assumed that the flow is periodic in the west-east

direction with a wave length equal to the length of the channel.

Let us define

~X = (u, v, φ)T , (2.30)

F = −













u∂u
∂x

+ v ∂u
∂y

− fv + ∂φ

∂x

u∂v
∂x

+ v ∂v
∂y

+ fu+ ∂φ

∂y

∂(uφ)
∂x

+ ∂(vφ)
∂y













. (2.31)
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Then Eqs. (2.23)-(2.25) assume the form of Eq. (1.4). It is easy to verify that

∂F

∂ ~X
= −













∂(u(·))
∂x

+ v ∂(·)
∂y

(·)∂u
∂y

− f(·) ∂(·)
∂x

(·)∂v
∂x

+ f(·) u∂(·)
∂x

+ ∂(v(·))
∂y

∂(·)
∂y

∂(φ(·))
∂x

∂(φ(·))
∂y

∂(u(·))
∂x

+ ∂(v(·))
∂y













. (2.32)

The adjoint of an operator L, L∗ is defined by the relationship

< L ~X, ~Y >=< ~X,L∗~Y >, (2.33)

where < ·, · > denotes the inner product

< ·, · >=
∫ ∫

D
· · dD, (2.34)

where D is the spatial domain. Using the definition (2.34), the adjoint of (2.33) can

be derived as

[
∂F

∂ ~X
]∗ = −













−u∂(·)
∂x

− ∂(v(·))
∂y

(·)∂v
∂x

+ f(·) −φ∂(·)
∂x

(·)∂u
∂y

− f(·) −v ∂(·)
∂y

− ∂(u(·))
∂x

−φ∂(·)
∂y

−∂(·)
∂x

−∂(·)
∂y

−u∂(·)
∂x

− v ∂(·)
∂y













. (2.35)

Therefore the first order adjoint model with the forcing terms may be written as

−∂u
∗

∂t
= −(−u∂u

∗

∂x
− ∂(vu∗)

∂y
+ v∗

∂v

∂x
+ fv∗ − φ

∂φ∗

∂x
) +Wu(u− uo), (2.36)

−∂v
∗

∂t
= −(u∗

∂u

∂y
− fu∗ − v

∂v∗

∂y
− ∂(uv∗)

∂x
− φ

∂φ∗

∂y
) +Wv(v − vo), (2.37)

−∂φ
∗

∂t
= −(−∂u

∗

∂x
− ∂v∗

∂y
− u

∂φ∗

∂x
− v

∂φ∗

∂y
) +Wφ(φ− φo), (2.38)

with final conditions

u(T ) = 0, v(T ) = 0, φ(T ) = 0, (2.39)

where P = (u∗, v∗, φ∗)t is the first order adjoint variable. Wu,Wv,Wφ are weighting

factors which are taken to be the inverse of estimates of the statistical root-mean-

square observational errors on geopotential and wind components respectively. In

our test problem, values of Wφ = 10−4m−4s4 and Wu = Wv = 10−2m−2s2 are used.
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Now let us consider a perturbation, U ′, on the initial condition for ~X, ~X(t0).

The resulting corresponding perturbations for variables ~X and P , X̂ = (û, v̂, φ̂)t and

P̄ = (ū, v̄, φ̄)t, are obtained from Eqs. (2.23)-(2.25) and (2.36)-(2.39) as

∂û

∂t
= −(

∂(uû)

∂x
+ v

∂û

∂y
+ v̂

∂u

∂y
− f v̂ +

∂φ̂

∂x
), (2.40)

∂v̂

∂t
= −(û

∂v

∂x
+ fû+ u

∂v̂

∂x
+
∂(vv̂)

∂y
+
∂φ̂

∂y
), (2.41)

∂φ̂

∂t
= −(

∂(φû)

∂x
+
∂(φv̂)

∂y
+
∂(uφ̂)

∂x
+
∂(vφ̂)

∂y
), (2.42)

with zero initial conditions, and

−∂ū
∂t

= −(−u∂ū
∂x

− ∂(vū)

∂y
+ v̄

∂v

∂x
− φ

∂φ̄

∂x
−

û
∂u∗

∂x
− ∂(v̂u∗)

∂y
+ v∗

∂v̂

∂x
− φ̂

∂φ∗

∂x
) +Wuû, (2.43)

−∂v̄
∂t

= −(ū
∂u

∂y
− v

∂v̄

∂y
− ∂(uv̄)

∂x
− φ

∂φ̄

∂y
+

u∗
∂û

∂y
− v̂

∂v∗

∂y
− ∂(ûv∗)

∂x
− φ̂

∂φ∗

∂y
) +Wvv̂, (2.44)

−∂φ̄
∂t

= −(−∂ū
∂x

− ∂v̄

∂y
− u

∂φ̄

∂x
− v

∂φ̄

∂y
−

û
∂φ∗

∂x
− v̂

∂φ∗

∂y
) +Wφφ̂, (2.45)

with final condition

ū(T ) = 0, v̄(T ) = 0, φ̄(T ) = 0. (2.46)

Therefore

P̄ (t0) = (ū(t0), v̄(t0), φ̄(t0))
t = HU ′, (2.47)

where H is the Hessian of the cost function with respect to the initial conditions (the

control variables). Equation (2.47) gives the Hessian/vector product. If we choose
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U ′ to be unit vector ej where the j-th component is unity and all other components

are zeros, then the corresponding column Hj of the Hessian H will be obtained after

one integration of the SOA backwards in time.

2.3.1 The verification of the correctness of the first and the second order

adjoint models

It is very important to verify the correctness of the FOA and SOA codes. A

Taylor expansion in the ~Y direction leads to

J( ~X + α~Y ) = J( ~X) + α
∂J( ~X)

∂ ~X
~Y +

1

2
α2~Y t∂

2J( ~X)

∂ ~X2
~Y +O(α3), (2.48)

where α is a small scalar, ~Y is a random perturbation vector which can be generated

by using the randomizer on the Cray-YMP computer and ~Y t denotes the transpose

of the vector ~Y . Equation (B.1) can be used to define two functions of α

ψ(α) =
J( ~X + α~Y ) − J( ~X)

α∂J( ~X)

∂ ~X
~Y

, (2.49)

and

φ(α) =
J( ~X + α~Y ) − J( ~X) − α ∂J( ~X)

∂ ~X
~Y

1
2
α2~Y t ∂2J( ~X)

∂ ~X2

~Y
, (2.50)

then for small α we have

ψ(α) = 1 +O(α), (2.51)

φ(α) = 1 +O(α), (2.52)

For values of α which are small but not very close to the machine zero, one should

expect a value of ψ(α) or φ(α) approaching 1 linearly for a wide range of magnitudes

of α.

The experiment was performed using a limited area 2-D shallow water equation

model. The results are shown in Figure 2.2. It is clearly seen that for values of α

between 100-10−11 unit values for ψ(α) and φ(α) are obtained. The correctness of
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the gradient of the cost function and the correctness of the Hessian/vector product

have therefore been verified.

2.4 Second order adjoint information

2.4.1 Calculation of the Hessian/vector product

There are two practical ways to calculate the Hessian/vector product at a point ~X

associated with VDA. One way consists in using a finite difference method while the

other way is the SOA method. The finite-difference approach assumes the following

form (namely a difference between two adjacent gradient values)

f(α) = ∇J( ~X + α~Y ) −∇J( ~X) = αH~Y +O(α2), (2.53)

where ~Y is a random perturbation vector and H is the Hessian of the cost function.

A second way to obtain Hessian/vector product is to integrate the SOA equations

model backwards in time. According to Eq. (2.12), we also have

f(α) = αH~Y , (2.54)

The computational cost required to obtain the Hessian/vector product is approx-

imately the same for both methods. The SOA approach requires us to integrate

the original nonlinear model and its tangent linear model forward in time once and

integrate the FOA model and the SOA model backwards in time once. The finite

difference approach requires the integration of the original nonlinear model forward

in time and the FOA model backwards in time twice. The computational costs for

integrating the tangent linear model forward in time, or the FOA model backwards

in time and the SOA model backwards in time once are comparable. However the

SOA model method gives an accurate value of the Hessian/vector product while the

finite-difference method yields only an approximate value, which can be a very poor
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estimate when the value α is not properly chosen. Figures 2.3, 2.4, 2.5 presents a

comparison between the first 50 components of Hessian/vector products at the opti-

mal point obtained by using both the SOA and finite-difference approaches for various

scalars α varying from 10, 3 to 0.01. It is clearly seen that the Hessian/vector product

obtained by using finite-difference approach converges to that obtained by SOA as the

scalar α decreases. With the SOA approach a more accurate result can be obtained

with a relatively large perturbation (α = 10), while the finite-difference approach is

much more sensitive to the magnitude of perturbations. When the perturbations are

large, say for α = 10, the finite-differencing approach yields no meaningful results

(Figure 2.3). When the perturbations are small, the finite-difference approach might

involve a subtraction of nearly equal numbers which results in the cancellation of

significant digits and the results thus obtained are an inaccurate estimate of the Hes-

sian/vector product. This is the case when the Hessian/vector product is estimated

at the initial guess point with α = 0.01 (Figure 2.6). Therefore it is much more

advantageous to use the SOA approach than to use the finite-difference approach.

The calculation of a Hessian/vector product is required in many occurrences.

For instance, Nash’s Truncated Newton method [130] requires the values of Hes-

sian/vector products. It may also be used to carry out eigenvalue calculations and

sensitivity analyses.

2.4.2 The uniqueness of the solution

An important issue related to VDA application is to determine whether the solu-

tion obtained is unique. If there is more than one local minimum, then the solution

obtained by the minimization process may possibly change depending on different

initial guesses.

There are two different but complementary ways to characterize the solution to

unconstrained optimization problems. In the local approach, one examines the rela-
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tion of a given point to its neighbour. The conclusion is that at an unconstrained

relative minimum point of a smooth cost function, the gradient of the cost function

vanishes and the Hessian is positive semidefinite; and conversely, if at a point the

gradient vanishes and the Hessian is positive definite, that point is a relative min-

imum point. This characterization has a natural extension to the global approach

where convexity ensures that if the gradient vanishes at a point, that point is global

minimum point.

The Hessian (the second order derivative of cost function with respect to the

control variables) is the generalization to En of the concept of the curvature of func-

tion, and correspondingly, positive definiteness of the Hessian is the generalization of

positive curvature. We sometimes refer to a function as being locally strictly convex

if the Hessian is positive definite in the region. In these terms we see that the second

order sufficiency result requires that the function be locally strictly convex at the

point X∗.

A simple experiment was conducted to find out about the uniqueness of the

cost function with respect to the initial conditions using the shallow-water equations

model. The experiment is devised as follows: the model-generated values starting

from the initial condition of Grammeltvedt (Eq. (2.26)) are used as observations, the

initial guess is a randomly perturbed Grammeltvedt initial condition, and the length

of the assimilation is 10 hours. we know exactly what the solution is, and the value of

the cost function at the minimum must be zero. All the random perturbations used

in this chapter are from a uniform distribution. The limited memory quasi-Newton

method of of Liu and Nocedal [117] is used for all experiments in this chapter.

The symmetric version of the power and shifted power methods are used to obtain

the largest and smallest eigenvalues of the Hessian at each iteration. The results are

shown in Figures 2.7 and 2.8. The smallest eigenvalues at each iteration of the

minimization process are small positive numbers. The positiveness of the smallest
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eigenvalues implies positive definiteness of the Hessian, which in turn proves the

uniqueness of the optimal solution.

2.4.3 Convergence analysis

The largest and smallest eigenvalues and the condition numbers are considered

here. The purpose of this study is to provide an in-depth diagnosis of the conver-

gence of the VDA applied to a meteorological problem. The various scale changes

of different field retrievals with the number of minimization iterations of VDA have

attracted the attention of several researchers [149]. In this research work we will

attempt to provide an explanation of this phenomenon based on the evolution of the

condition number of the Hessian of the cost function with respect to control variables

[205]. It has been observed that in VDA large scale changes occur in the first few

iterations and small scale changes occur during the latter iterations in the process of

the minimization of the cost function.

The same experiment as described in section 4.2 was conducted again this time

to follow the quality of the retrievals initial conditions at different stages of the

minimization process. Figures 2.9-2.11 show the perturbed geopotential field and

the retrieved geopotential fields after 6 and 25 iterations, respectively. It can be

clearly seen that most of the large scale retrievals occur within the first 25 iterations

of the minimization process. The geopotential field retrieved after 25 iterations is

very similar to the one retrieved after 54 iterations at which stage the prescribed

convergence criterion

‖∇J( ~Xk)‖ ≤ 10−14 ×max{1, ‖ ~Xk‖}, (2.55)

is satisfied. This clearly indicates that the VDA achieves most of the large scale

retrievals during the first 25 iterations and that in the latter part of the minimization

process only small scale features are being assimilated. In this case by stopping the

minimization process prior to the cost function satisfying the preset convergence
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criteria, the expensive computational cost of the VDA process could be cut by more

than a half, while satisfactory results may still be obtained.

This in turn is related to the evolution of the largest and smallest eigenvalues of

the Hessian spectrum and thus to the change in the condition number of the Hessian

with the number of iterations (Figures 2.7, 2.8 and 2.12). From these figures we

observe

1. The smallest eigenvalues are positive at each iteration and remain approxi-

mately the same except for rather small changes during the first a few iterations

(Figure 2.7).

2. The largest eigenvalues decrease quickly during the first a few iterations of

the minimization process, then change only slightly for the next 15 iterations

and finally remain approximately the same until the convergence criteria are

attained (Figure 2.8).

3. The condition numbers of the Hessian/vector product at different steps of the

minimization vary in a way similar to the evolution of the largest eigenvalues

during the minimization process and they are around 83,000 in magnitude

which is very large (Figure 2.12).

We see now that most changes in the condition numbers occur during the early

stage of the VDA minimization process. This explains why large scale retrievals

occur during the first few (25-30) iterations of the minimization process.

The large condition numbers in the initial stage of the minimization imply that

the contour lines of the cost function J = constant are strongly elongated in the

parameter space [62, 73, 116, 123], which explains the slow convergence rate of the

VDA process. The above experiment was carried out without adding either a penalty

or a smoothing term. The addition of such a penalty term, which is positive definite
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and quadratic with respect to the initial conditions, will definitely increase the con-

vexity of the cost function. Thus the addition of an adequate quadratic penalty term

adding additional information to the cost function changes the condition number of

the Hessian and speeds up the convergence of the VDA process.

2.5 Sensitivity analysis for observations

2.5.1 Sensitivity theory for observation

The cost function is also a function of the observations. Different observations

will result in different solutions. Due to the errors inherent in the heterogeneous ob-

servations, it is important to obtain the sensitivities of the cost function to changes in

the observations which quantify to what extent the perturbations in the observations

correspond to the perturbation in the solution. If the sensitivities are large, then the

model will possess a large uncertainty with respect to changes in the observations.

Conventional evaluation of the sensitivities with respect to model parameters is

carried out by changing the values of model parameters and recalculating each model

solution for every parameter. Such a calculation is prohibitive for models with a large

number of parameters since it requires an exceedingly large amount of computing

time. The adjoint sensitivity method [19, 20, 78, 79, 200] has proved to be an efficient

way for carrying out sensitivity analysis. The objective of the sensitivity analysis

considered here is to estimate changes in the cost function J arising from changes in

observations which are distributed in space and time. This will illustrate the relative

importance of observations at different time and space locations.

Assume that the operator C in Eq. (2.1) is an unit operator. Due to the equivalent

position of the state vector and the observation vector in Eq. (2.1), the cost function

can be viewed as depending on both of them, namely

J = J( ~X − ~Xo), (2.56)
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As such, the following identities can be proved using the chain rule:

∂J

∂ ~X
= − ∂J

∂ ~Xo
, (2.57)

∂2J

∂ ~X2
=

∂2J

∂ ~Xo
2 , (2.58)

These two equations are used in the following sensitivity analysis.

Let us denote a change in the observations by δ ~Xo. If this change is small, then

we may expand the cost function J around ~Xo in a Taylor series as

J( ~Xo(tn) + δ ~Xo(tn)) = J( ~Xo(tn)) +
∂J( ~Xo(tn))

∂ ~Xo(tn)
δ ~Xo(tn)

+
1

2
δ ~Xo(tn)t∂

2J( ~Xo(tn))

∂ ~Xo(tn)2
δ ~Xo(tn) +O(‖δ ~Xo(tn)‖3), (2.59)

According to the identities given by Eqs. (2.57) and (2.58), Eq. (2.59) can be written

as

J( ~Xo(tn) + δ ~Xo(tn)) = J( ~Xo(tn)) − ∂J( ~Xo(tn))

∂ ~X(tn)
δ ~Xo

+
1

2
δ ~Xo(tn)t∂

2J( ~Xo(tn))

∂ ~X(tn)2
δ ~Xo +O(‖δ ~Xo(tn)‖3), (2.60)

where tn denotes the time, tn = t0 + n∆t and ∆t is given by Eq. (2.29). Since the

first order term in Eq. (2.60) dominates, we obtain from Eq. (2.60)

J ′ = J( ~Xo(tn) + δ ~Xo(tn)) − J( ~Xo(tn))

= −∂J( ~Xo(tn))

∂ ~X(tn)
δ ~Xo +O(‖δ ~Xo(tn)‖2). (2.61)

This equation describes changes in the cost function resulting from changes in the

observation at time tn.

If the gradient of the cost function with respect to the state vector X(tn) is zero,

then we obtain

J ′ = J( ~Xo(tn) + δ ~Xo(tn)) − J( ~Xo(tn))

=
1

2
δ ~Xo(tn)t∂

2J( ~Xo(tn))

∂ ~X(tn)2
δ ~Xo +O(‖δ ~Xo(tn)‖3), (2.62)
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where the second derivative of J with respect to the observations is the Hessian of J

with respect to the state variable at time tn. Equation (2.62) describes the changes

in the cost function resulting from a change in the observation at time tn.

The gradient ∂J( ~Xo(tn))/∂ ~X(tn) of the cost function with respect to the state

variable ~X(tn) is the value of the first order adjoint variable at time tn. The Hessian

∂2J( ~Xo(tn))/∂ ~X(tn)2 of the cost function with respect to the state variable ~X(tn)

is not required. Only the Hessian/vector product [∂2J( ~Xo(tn))/∂ ~X(tn)2] ~Xo(tn) is

required and it may be obtained using an integration of the second order adjoint

model Eqs. (2.7) and (2.8).

In summary, the perturbation in the cost function resulting from a perturbation

in the observations at the time tn may be obtained by performing the following

operations provided the gradient of the cost function with respect to the state vector

X(tn) does not vanish.

1. Generate a perturbation on the observation at time tn;

2. Calculate the gradient of the cost function with respect to state variable X(tn),

i.e. starting from PM = W ( ~XM− ~Xo
M), integrate the “forced” adjoint equation

Pi = [I + ∆t(
∂F

∂ ~X
)∗i ]Pi+1 +W ( ~Xi − ~Xo

i ), (2.63)

backwards in time from tM to tn. The final result Pn is the gradient of the cost

function;

3. Use equation (2.61) to obtain the corresponding perturbation in the cost func-

tion resulting from the perturbation in the observations at time tn.

If the gradient of the cost function with respect to the state vector X(tn) is close

to zero, then we modify the last two steps as
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1. Calculate the Hessian/vector product [∂2J( ~Xo(tn))/∂ ~X(tn)2] ~Xo(tn). That is

to integrate the second order adjoint model Eqs. (2.7) and (2.8) backwards in

time from tM to tn. The final result P̂n is the required Hessian/vector product;

2. Use equation (2.62) to obtain the corresponding perturbation in the cost func-

tion resulting from the perturbation in the observations at time tn.

It is worthwhile noting that we need not integrate the FOA equations repeatedly

to obtain the gradient of the cost function with respect to ~Xtn . We need only to

integrate the FOA equations backwards in time starting from tM to tn and store the

FOA variable at each iteration in memory. The final value is the gradient of the

cost function with respect to the state variables at time tn. Once these gradients are

calculated, they need not be recalculated. They can be used repeatedly to calculate

the perturbations in the cost function for different perturbations in the observations.

2.5.2 Numerical results from model generated data

A sensitivity study was conducted by using the same model as described in Section

3 and the sensitivity calculations were carried out using formula (5.7) at the end of the

variational data assimilation. First we choose a point (x15 , y10) in the assimilation

window where x15 = x0 + 15∆x and y10 = y0 + 10∆y. Suppose a 1% perturbation

in the observations occurs only at this point for the two components of the wind

velocity field and the geopotential field. The variation of the resulting perturbations

in the cost function as a function of the number of time steps is displayed in Figure

2.13 (solid line). The results indicate that the changes in the cost function with

respect to the changes in the observations at a fixed point are different for different

times in the window of assimilation. If perturbations are imposed first only on the

u−wind component, then only on the v−wind component and then only on the

geopotential field φ, the corresponding perturbations in the cost function exhibit
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different variations with time as shown in Figure 2.13 by the dotted line, dashed line

and dash-dot line, respectively. This figure indicates also that perturbations in the

observed geopotential field have more impact on the cost function than these in the

observed velocity field. The changes in the cost function arising from changes in the

u-wind component and v-wind component observations are close to zero at all times.

Similar experiments conducted at different grid points yielded similar results.

In order to study the importance of observations at different space locations,

three different points are chosen. They are located at (x5, y15), (x10, y10), (x15, y5),

respectively, representing low, middle and high points in the isoline values of the

geopotential field. From Figure 2.14 we observe that changes in the magnitudes of

the cost function at the three points behave in a similar pattern and the sensitivities

at the three points differ dramatically at the beginning of the assimilation window.

Finally, we study the impact of the perturbations on all the observational data.

The results are displayed in Figure 2.15. This figure clearly indicates that perturba-

tions of the observations at the beginning of the window of assimilation have a larger

impact on the sensitivity of the cost function with respect to the observations.

Presented in Table 1 are sensitivities (the column labeled “Predicted change”) of

the cost function due to 1% changes in the observations at the beginning of the assim-

ilation window and the corresponding actual changes (the column labeled “Actual

change”) obtained by rerunning the model after actually varying the observations

by 1%. The good agreement obtained between the actual and predicted changes as

shown in Table 1 provides evidence as to the adequacy of the numerical method used

to obtain these sensitivities.
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2.5.3 Numerical results using real analysis of First Global Geophysical

Experiment (FGGE) data

In order to examine the sensitivity of the cost function with respect to real

analyses, we employed a set of FGGE data of height and horizontal wind fields

at 500mb level at 0 and 18UTC, May 26, 1979. The data are equally spaced with

∆λ = ∆φ = 1.875◦. Using the formula

φ(J) =
y

α
+ φ0 =

−2200 + (J − 1) ∗ 220

α
+ φ0, (2.64)

λ(I) =
x

α cos φ(J)
+ λ0, (2.65)

we obtain a correspondence between points on the sphere and grid points located

on a limited area on a β−plane approximation at (32◦, 130◦), which approximately

represents the center of the zonal jet. Using a cubic interpolation we obtained the

height and horizontal wind data on the grid points. Then we carried out another

cubic interpolation near the left boundary in order to impose a periodic boundary

condition in the x-direction. Near the top and bottom boundaries we used a linear

interpolation to impose solid boundary conditions. The fields thus obtained are

shown in Figure 2.16.

The geopotential and wind fields at time 0UTC were used to produce the model-

generated observations. The minimization started from geopotential and wind fields

distribution at time 18UTC. The difference between these two fields is shown in

Figure 2.17. Having the model generated observations, the minimization should be

able to reduce the value of the cost function as well as the norm of its gradient, and

the retrieved differences should be zero. This turns out to be the case.

The sensitivity calculations were carried out using formulas (2.61) plus (2.62) at

the beginning of the variational data assimilation. From Figure 2.16, we note that

meteorologically intensive events occur at the center area of the limited-area domain

while fewer such events occur at the corners of the limited-area domain. We choose
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two points (x10, y10) and (x7, y5), which are located in the center and in the left

bottom corner of the limited-area domain, respectively. We then introduced a 1%

perturbation in the geopotential and wind fields at these two points. The variations

of sensitivities of the cost function with the number of time steps in the window of the

assimilation are displayed in Figure 2.18, the solid line corresponding to sensitivity

at the point (x10, y10) and the dotted line to sensitivity at the point (x7, y5). Clearly

the sensitivity of the cost function with respect to observations at point (x10, y10)

is larger than that at the point (x7, y5). This confirms that the cost function is

more sensitive to observations at points where intensive events occur. It also means

that the accuracy of observations at locations where intensive events occur has more

impact on the quality of the VDA retrieval.
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2.6 Conclusions

In this chapter, a SOA model was developed, providing second order information.

The coding work involving in obtaining the SOA model is rather modest once the

FOA model has been developed.

One integration of the SOA model yields an accurate value of a column of the

Hessian of the cost function with respect to the control variables provided the per-

turbation vector is a unit vector with one component being unity and the rest being

zeros. Numerical results show that the use of the SOA approach to obtain the

Hessian/vector product is much more advantageous than the corresponding finite-

difference approach, since the latter yields only an approximated value of the Hes-

sian/vector product which may be a very poor approximation. The numerical cost

of using the SOA approach is roughly the same as that of using the finite-difference

approach. This application of the SOA model is crucial in the implementation of

the large-scale truncated Newton method, which was proved to be a very efficient

algorithm for large-scale unconstrained minimization [225].

Another application of the SOA model is the calculation of eigenvalues and eigen-

vectors of the Hessian. There are several iterative methods such as the power,

Rayleigh quotient or the Lanczos method [199], which (combined with deflation)

require only information of the Hessian multiplied by a vector to calculate several

dominant eigenvalues and their respective eigenvectors. Such a calculation using the

power method is presented in this chapter and reveals that most changes in the largest

eigenvalue of the Hessian occur during the first few iterations of the minimization

procedure, which may explain why most of large-scale features are retrieved earlier

than the small scale features in the VDA retrieval solution during minimization [149]

while the positiveness of the smallest eigenvalues of the Hessian of the cost function

during the minimization process indicate the uniqueness of the optimal solution.
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We also examined the sensitivity of the cost function to observational errors using

a two dimensional limited-area shallow water equations model. We found that the

sensitivity depends on the time when the errors occur, the specific field containing

the errors, and the spatial location where these errors occur. The cost function is

more sensitive to observational errors occurring at the beginning of the assimilation

window, to errors in the geopotential field, and to errors at grid point locations where

intensive events occur.

Sensitivity analysis using balanced perturbations will be reported later where we

pay special attention to the spatial scale of the perturbations. Further research on

the issue of calculating the inverse Hessian multiplied by a vector is currently under

consideration, the latter being of crucial importance for developing a new efficient

large-scale unconstrained minimization algorithm.
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Figure 2.1: Schematic flowchart of the relationships between the model equations
and the adjoint equations. The gradient ∇UJ and the Hessian/vector product GU ′

are obtained by integrating the FOA and SOA models, respectively.
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Figure 2.2: Verifications of the correctness of the gradient calculation (dotted line)
and Hessian/vector product calculation (solid line) by FOA and SOA models, re-
spectively.
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Figure 2.3: The first 50 components of the Hessian/vector products at the optimal
solution obtained by the finite-difference approach (dash line), and the second order
adjoint method (solid line) when α = 10
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Figure 2.4: Same as Figure 2.3 except α = 3.
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Figure 2.5: Same as Figure 2.3 except α = 0.01.
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Figure 2.6: Same as Figure 2.5 except at the initial guess point.
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Figure 2.7: Variation of the smallest eigenvalue of the Hessian of the cost function
with the number of iterations.
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Figure 2.8: Variation of the largest eigenvalue of the Hessian of the cost function
with the number of iterations.
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Figure 2.9: Distribution of the randomly perturbed geopotential field.

Figure 2.10: Reconstructed geopotential field after 6 iterations of minimization.
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Figure 2.11: Reconstructed geopotential field after 25 iterations of minimization.
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Figure 2.12: Variation of the condition numbers of the Hessian of the cost function
with respect to the number of iterations.
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Figure 2.13: Time variation of the sensitivities of cost function J to 1% observational
error in the v-wind component (dashed line), the u-wind component (dotted line
which coincides with the dashed line), the geopotential field φ (dash-dotted line
which coincides with the solid line) and in all the three fields (solid line) at point
(x15, y10).
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Figure 2.14: Time variation of the sensitivities of cost function J to 1% observational
error at points (x10, y10) (solid line) (x5, y15) (dotted line), and (x15, y5) (dash line)
in the wind and the geopotential fields.
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Figure 2.15: Time variation of the sensitivities of cost function J to 1% observational
error on all grid points in the wind and the geopotential fields.
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Figure 2.16: Distribution of (a) the geopotential and (b) the wind fields for the
First Global Geophysical Experiment (FGGE) data at 0UTC 05/26, 1979 on the
500mb. The contour intervals are 200m2/s2 and the magnitude of maximum vector
is 0.311E+02m/s.

Figure 2.17: Distribution of the difference fields of the geopotential (a) and the wind
(b) fields at 18UTC and 0UTC on 500mb between 18UTC and 0UTC times. The con-
tour intervals are 100m2/s2 and the magnitude of maximum vector is 0.210E+02m/s.

55



-800

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60

Figure 2.18: Time variation of the sensitivities of the cost function J to 1% obser-
vational error in the wind and the geopotential fields at grid points (x10, y10) (solid
line) and (x7, y5) (dotted line).
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Table 2.1: A comparison between the actual and predicted changes due to identical
perturbations at specified locations at the beginning of the assimilation window.

Location where Specific perturbations Predicted Actual

perturbations are given at the given location change change

(x15, y10) 1% on u, v and φ. 100.1707 100.2702

(x15, y10) 1% on u only. 0.7124 0.7328

(x15, y10) 1% on v only. 0.0633 0.0652

(x15, y10) 1% on φ only. 99.1629 99.2294

(x10, y10) 1% on u, v and φ. 120.4539 120.2349

(x5, y15) 1% on u, v and φ. 144.5532 144.3873

(x15, y5) 1% on u, v and φ. 88.4600 88.4590

All points. 1% on u, v and φ. 105860.5213 105867.8337
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CHAPTER 3

THE ADJOINT TRUNCATED NEWTON ALGORITHM FOR

LARGE-SCALE UNCONSTRAINED OPTIMIZATION

3.1 Introduction

The issue of variational 4-dimensional data assimilation (VDA) applied to the

shallow water equations (SWE) model has been the subject of several recent re-

search papers such as [34], [108], [218], [225], [227], [228] etc. In Chapter 2, we

introduced the SOA theory and applied it the SWE model. It was found that the

Hessian/vector product obtained by using the SOA approach is more accurate than

the finite difference approach and the convergence rate is slow.

Newton descent methods have never been used in a realistic large-scale optimal

control of distributed parameters problems due to the fact that computation and

storage of the Hessian matrix are too costly to be practical. Among feasible methods

for large-scale unconstrained minimization are (a) the limited memory conjugate

gradient method ([144], [190]); (b) quasi-Newton type algorithms ([46], [70], [155]);

(c) limited-memory quasi-Newton methods such as LBFGS algorithm ([117], [154])

and (d) truncated-Newton algorithms ([49, 131, 133, 134, 137, 185, 186]).

The TN algorithm can be applied to many problems such as to the above uncon-

strained minimization problem (Eq. (2.1)) and to parallel minimization problems

([135], [136]). The main purpose of the present work is to propose a modified version

of the truncated-Newton (TN) algorithm of Nash [134] which uses the SOA tech-

nique to obtain a more accurate Hessian/vector product required in calculating the
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Newton line search direction and to compare the numerical results obtained by the

ATN algorithm with these obtained by the TN algorithm of Nash [134] as well as by

the LBFGS algorithm [117]. The ATN algorithm is only useful for optimal control

problems where adjoint model codes exist or could be easily derived.

The truncated-Newton algorithms attempt to blend the rapid (quadratic) conver-

gence rate of classic Newton method with feasible storage [134] and computational

requirements [137] for large-scale unconstrained minimization problems. When these

algorithms are used for the large-scale unconstrained minimization [227], the Hes-

sian/vector product is usually obtained by applying a finite-difference (FD) approx-

imation technique to the gradient of the cost function with respect to the initial

conditions, while the gradient is calculated by using the first order adjoint (FOA)

technique. Other alternatives for obtaining the Hessian/vector product such as auto-

matic differentiation ([55], [69]), analytical evaluation and higher order FD approxi-

mations exist. However, they are either not feasible for this optimal control problem

applied to VDA or are too costly to apply.

We will introduce in Section 3.2 the FOA and the SOA techniques used in the

VDA to obtain a more accurate Hessian/vector product. In Section 3.3 we present

numerical results obtained by using the ATN algorithm , and compare them with

the results obtained by using the limited memory quasi-Newton algorithm of Liu

and Nocedal [117] and the truncated-Newton algorithm of Nash [134]. A detailed

discussion concerning the accuracy of the FD approximation of the Hessian/vector

product and the sources of error related to this approximation is provided. Conclu-

sions as well as topics for further research related to the ATN approach are presented

in Section 3.4.
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3.2 The adjoint Newton algorithm

3.2.1 Description of the first and second order adjoint theories

For a perturbation U ′ on the initial condition U in Eq. (1.5), the exact evolution

of the resulting solution due to the initial perturbation U ′ is given by the difference,

~X2 − ~X1, between the two solutions of the model Eq. (1.4) with initial conditions

~X1(t0) = U and ~X2(t0) = U + U ′, respectively. The tangent linear variable defined

by Eqs. (1.10)-(1.11) only yields a second order approximation, with respect to U ′,

to the exact evolution of the perturbation due to this perturbation U ′. The Gateaux

derivative, < ∇UJ, U
′ >, of the cost function J is given by

δJ =< ∇UJ, U
′ >=

∫ tf

t0

< W (C ~X − ~Xo), CX̂ > dt, (3.1)

To exhibit the linear dependence of δJ with respect to U ′ and consequently in

order to compute the gradient of J , we introduce the adjoint variable P . Taking the

inner product of Eqs. (1.10) with −P and integrating between times t0 and tf gives

∫ ft

t0

< −P, ∂X̂
∂t

> dt =
∫ ft

t0

< −P, ∂F
∂ ~X

X̂ > dt, (3.2)

Integrating by parts, one obtains

< −P (tf), X̂(tf) > + < P (t0), X̂(t0) > +
∫ tf

t0

< X̂,
∂P

∂t
>

= −
∫ tf

t0

< [
∂F

∂ ~X
]∗P, X̂ > dt, (3.3)

or

< −P (tf ), X̂(tf ) > + < P (t0), X̂(t0) >

=
∫ tf

t0

< X̂,−∂P
∂t

− [
∂F

∂ ~X
]∗P > dt, (3.4)
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Now let us define P as being the solution of

−∂P
∂t

=
(∂F

∂ ~X

)∗
P + C∗W (C ~X − ~Xo), (3.5)

P (tf) = 0, (3.6)

Then from Eq. (3.1) one obtains

δJ(U, U ′) =< ∇UJ, U
′ >=< U ′, P (t0) > (3.7)

and

∇UJ = P (t0). (3.8)

Therefore the gradient of the cost function is obtained by a backwards integration

of the adjoint system (3.5-3.6). The dependence of J on the initial condition U is

implicit via X.

It is important to realize that the TLM defined by Eqs. (1.10)-(1.11) is only

second order accurate except when the original model equations Eq. (1.4) are linear.

Although the TLM is used to derive Eq. (3.8), Eq. (3.8) is exact since there is

no TLM variable in the FOA model defined by Eqs. (3.5 and 3.6). This point is

illustrated in Appendix B by using a simple nonlinear model.

For the perturbation U ′ on the initial condition U , the resulting perturbation on

the variable P , P̂ , may be obtained from Eqs. (3.5)–(3.6) as

− ∂P̂

∂t
=

(∂F

∂ ~X

)∗
P̂ +

[ ∂2F

∂ ~X2
X̂

]∗
P + C∗WCX̂, (3.9)

P̂ (tf) = 0. (3.10)

Eqs. (3.9) and (3.10) define the SOA model of Eqs. (1.4) and (1.5).

Let us denote the FOA variable after a perturbation U ′ on the initial condition

U by P(U+U ′), then according to the definition

P(U+U ′)(t0) = P (t0) + P̂ (t0). (3.11)
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Expanding ∇U+U ′J around U in Taylor series and retaining only the first order terms,

results in

∇U+U ′J = ∇UJ + ∇2
UJ · U ′ +

1

2
(U ′)∗

∂3J(~ξ0)

∂U3
U ′, (3.12)

where ∇2
UJ is the Hessian matrix of second derivatives of the cost function with

respect to the initial condition and ~ξ0 is a point in the interval [U, U +U ′]. From Eq.

(3.8), we know that

∇U+U ′J = P(U+U ′)(t0). (3.13)

Using Eq. (3.8) and Eqs. (3.11)-(3.12), one obtains

∇2
UJ · U ′ = P̂ (t0) −

1

2
(U ′)∗

∂3J(~ξ0)

∂U3
U ′, (3.14)

where G = ∇2
UJ . Therefore the error in a SOA approximation is proportional to

‖U ′‖2.

3.2.2 The adjoint truncated-Newton method.

We provide a brief description of the ATN algorithm which differs from the TN

algorithm ([134], [137]) only in the Hessian/vector calculation required for solving

the Newton equations at the k-th iteration

Gk
~dk = −~gk, (3.15)

where Gk is the Hessian of the cost function, ~dk is the linear search direction and

~gk = ∇J(~Uk) is the gradient of the cost function with respect to the initial conditions.

For a complete description of the TN algorithm, see Nash [134] and Appendix C.

The main steps of the ATN algorithm are as follows:

(1) Choose ~U0, an initial guess to the minimizer ~U∗ and set the iteration counter

to k = 0.
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(2) Test ~Uk for convergence. If the following convergence criterion is satisfied

‖~gk‖ < 10−5 · ‖~g0‖, (3.16)

then stop. Otherwise continue.

(3) Solve approximately the Newton Eqs. (3.15) using a preconditioned

modified-Lanczos algorithm where the Hessian/vector product is obtained

using a backwards integration of of the SOA model given by Eqs. (3.9) and

(3.10).

(4) Set k = k + 1 and update

~Uk+1 = ~Uk + αk
~dk, (3.17)

where αk is the step-size obtained by conducting a line search using Davi-

don’s cubic interpolation method [46]. Go to step 2.

The computational cost required to obtain the Hessian/vector product is similar

for both the FD approach and the SOA approach. The SOA approach requires us to

integrate the original nonlinear model and its tangent linear model forward in time

once and integrate the FOA model and the SOA model backwards in time once.

The FD approach requires the integration of the original nonlinear model forward

in time and the FOA model backwards in time twice. The computational costs for

each model integration are comparable.

3.3 Numerical results obtained using the adjoint truncated-Newton

algorithm.

In this section we display numerical results obtained by applying the ATN algo-

rithm for the large-scale unconstrained minimization of the functional in the VDA
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and compare the results obtained by the ATN algorithm with these obtained by both

the TN and the LBFGS algorithms.

3.3.1 Application of the adjoint truncated-Newton algorithm to varia-

tional data assimilation

A simple experiment was conducted applying the ATN algorithm to minimize

the cost functional J given by Eq. (2.1) in the VDA using the SWE model. The

experiment is devised as follows: the model generated values starting from the ini-

tial condition of Grammeltvedt [75] are used as observations, the initial guess is a

randomly perturbed Grammeltvedt initial condition, and the length of the time as-

similation window is 10 hours. We know the exact solution, i.e. that the value of the

cost function at the minimum must be zero since we must retrieve the original initial

conditions. The ATN algorithm described in Section 3.2.2 is used here for large-scale

unconstrained minimization in the VDA experiment. The maximum number of con-

jugate gradient inner-iterations (MCGI) allowed for each ATN iteration is chosen as

50. The number of BFGS corrections that is to be stored in memory is denoted by

M.

Computations were performed on the CRAY-YMP supercomputer at the Su-

percomputer Computations Research Institute in Florida State University. All the

routines are coded in single precision FORTRAN. The runs were made on the CRAY-

YMP supercomputer, for which the relative machine precision ε is approximately

10−14. The variation of the objective function scaled by its initial value (J/J0) as

well as that of the norm of the gradient also scaled by its initial value (‖~g‖/‖~g0‖)
as a function of the number of iterations are displayed in Figure 3.1, respectively.

Figure 3.1 shows that after 16 minimization iterations the value of the cost func-

tion and the norm of the gradient were reduced by 10 and 6 orders of magnitude,
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respectively. At this stage the prescribed convergence criterion given by Eq. (3.16)

is satisfied. The CPU time used by the ATN algorithm is 10.817s. The rms error,
√

‖φr − φu‖2/N , between retrieved geopotential field φr after 16 iterations and the

unperturbed geopotential field φu is 0.9069m2/s2 which is 3 orders of magnitude

smaller than that of the perturbations, where N is the number of components in φr.

We conclude therefore that the ATN algorithm performs well both in terms of CPU

time and the number of iterations.

3.3.2 Numerical results

In this section we compare the numerical behaviour of the ATN unconstrained

minimization algorithm with those of other robust large-scale unconstrained mini-

mization methods. The methods tested are:

(1) TN–the truncated-Newton method of Nash ([132], [134]).

(2) LBFGS–the limited memory quasi-Newton method of Liu and Nocedal [117].

The test problem is the same as that described in section 3.3.1. Computational

efficiency and accuracy were used as leading criteria. For the ATN, TN and LBFGS

algorithms, the same convergence criterion as set by Eq. (3.16) is applied. The

numerical results obtained are displayed in Table 3.1.

The first column displays the unconstrained minimization algorithms tested. The

second column displays the parameters used for each algorithm. The third, fourth

and eighth columns record the number of iterations (Iter.), the number of function

calls (NFC), and the CPU time in seconds required to satisfy prescribed convergence

criteria, respectively. The fifth column records the total number of conjugate gra-

dient iterations (NCG) used to determine the Newton descent directions. The next

two columns display the scaled cost function (Jk/J0) and the scaled gradient norm

(‖~gk‖/‖~g0‖) at the end of the assimilation process, respectively.
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Both the ATN and TN algorithms obtain the Newton descent direction by solving

approximately the Newton equations using a truncated conjugate gradient algorithm.

They only differ in the calculation of the Hessian/vector product. However their

relative performances turn out to be dramatically different. Table 3.1 indicates that

for different MCGI allowed for each inner iteration, the ATN algorithm outperforms

the TN algorithm. When MCGI is 5, the TN algorithm stopped without satisfying

the prescribed convergence criterion. When MCGI is 4, the TN algorithm required

three times the CPU time used by the ATN algorithm to satisfy the same convergence

criteria. In terms of CPU times the ATN, TN and LBFGS algorithms yield optimal

results when MCGI is 4 and 3 and M is 5, respectively. In this case the CPU time

required by ATN algorithm is about half of that required by either the TN or the

LBFGS algorithms.

If we relax the convergence criterion given by Eq. (3.16) by two orders of mag-

nitude, then the ATN, TN and LBFGS algorithms require 8, 16 and 55 iterations

and take 5s, 8s and 6s of CPU time to converge where we used MCGI=50 for the

ATN and TN and M=5 for the LBFGS, respectively. Therefore even for the relaxed

accuracy requirement the ATN algorithm performed slightly better than the LBFGS

algorithm in terms of CPU time required to satisfy the convergence criteria.

Let us define the degree of nonlinearity of the cost function at ~U as

DN(~U) = (J(~U) − [J(~U∗) + pt∇J(~U∗) + 0.5pt∇2J(~U∗)p])/‖p‖3, (3.18)

where ~U is a point between the starting point U0 and the solution ~U∗, p = ~U − ~U∗

and pt denotes the transpose of p. DN(~U) gives a measure of the size of the third

derivative or a deviation from quadratic behaviour (see Nash and Nocedal [137]).

For our test problem we noticed that DN(~U) increases from 1.7E−7 to 4.7E+12

as ~U approaches ~U∗ from the starting point. Therefore we may classify our test prob-

lem as a highly nonlinear problem near the solution. Then it is not surprising that
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the LBFGS algorithm outperforms the TN algorithm in terms of CPU time (Ta-

ble 3.1) if we take into account Nash’s observation that for most of highly nonlinear

problems, the LBFGS algorithm performs better than the TN algorithm [134]. Our

point is that even in this case, if we use a more accurate line search direction in the

TN algorithm, the TN can outperform the LBFGS as the ATN does for the particular

optimal control problem tested here.

Therefore we conclude that the ATN algorithm turns out to be the most accurate

and robust amongst the large-scale unconstrained minimization algorithms tested in

terms of both CPU time and number of iterations for the specific problem tested here.

3.3.3 An accuracy analysis of the Hessian/vector product.

The Hessian/vector product GkU
′ for a given U ′ required by the inner conjugate

algorithm of the ATN algorithm is obtained by the SOA technique where the vector

U ′ serves as the initial condition for the TLM model. The Hessian/vector product

GkU
′ of the TN algorithm is obtained by the following FD approximation GkU

′|FD

GkU
′|FD =

ĝ(~Uk + hU ′) − ĝ(~Uk)

h
, (3.19)

where Gk is the Hessian matrix at the k-th outer iteration, h =
√

ε× (1 + ‖~Uk‖) is

the differencing parameter, where ε is taken to be the machine precision [134], and

the computed gradients ĝ(~Uk + hU ′) and ĝ(~Uk) are obtained by using Eq. (3.8).

In order to consider the accuracy of the FD approximation with respect to the

differencing parameter h, we assume h ∈ [hmin, hmax] where hmin and hmax are taken

to be the machine accuracy ε and 103, respectively, such that the interval [hmin, hmax]

contains all reasonable sequences of differencing parameters.

Although a FOA integration yields an exact gradient of the cost function with

respect to the control variables, when a computer is used to calculate the gradient
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there is always computational errors involved. Let a positive quantity ε0 denote an

error bound on the absolute error in the computed gradients of the cost function using

Eq. (3.8) at ~Uk and ~Uk + hU ′. It will be assumed throughout this chapter that the

value of ε at the given point is available; an effective technique for computing ε is

given by Hamming [82].

So one has

ĝt(~Uk) = ~g(~Uk) + θ0ε0, (3.20)

ĝt(~Uk + hU ′) = ~g(~Uk + hU ′) + θ1ε0, (3.21)

where |θ0| ≤ 1 and |θ1| ≤ 1. Using a Taylor series expansion, one obtains

~g(~Uk + hU ′) = ~g(~Uk) + h
∂~g(~Uk)

∂~Uk

U ′ +
h2

2
(U ′)∗

∂2~g(~Uk)

∂~U2
k

U ′ + · · ·

= ~g(~Uk) + hGkU
′|t +

h2

2
(U ′)∗

∂2~g(~ξ)

∂~U2
k

U ′, (3.22)

where GkU
′|t = [∂~g(~Uk)/∂~Uk]U

′ denotes the true value of the Hessian/vector product

and ~ξ is a point in the interval [~Uk, ~Uk + hU ′].

Solving for GkU
′|t from Eq. (3.22) and using Eqs. (3.21) and (3.20), one obtains

GkU
′|t =

~g(~Uk + hU ′) − ~g(~Uk)

h
− h

2
(U ′)∗

∂2~g(~ξ)

∂~U2
k

U ′

=
ĝ(~Uk + hU ′) − ĝ(~Uk)

h
+

(θ0 − θ1)ε0
h

− h

2
(U ′)∗

∂2~g(~ξ)

∂~U2
k

U ′, (3.23)

where −h(U ′)∗[∂2~g(~ξ)/∂~U2
k ]U ′/2 is the truncation error and (θ1 − θ0)ε0/h is the con-

dition error [70]. Combining Eqs. (3.19) and (3.23), one obtains

GkU
′|t = GkU

′|FD +
(θ0 − θ1)ε0

h
− h

2
(U ′)∗

∂2~g(~ξ)

∂~U2
k

U ′. (3.24)

According to Eq. (3.14)

GkU
′|t = GkU

′|SOA − 1

2
(U ′)∗

∂3J(~ξ0)

∂U3
k

U ′, (3.25)
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where GkU
′|SOA denotes the Hessian/vector product obtained by using the SOA tech-

nique. Since GkU
′|t and ∂3J(~ξ0)/∂U

3
k are not available, one can not calculate the over

all errors in both SOA and finite-difference approximations. However one may inves-

tigate the truncation and condition errors by looking at the difference between the

GkU
′|SOA and GkU

′|FD,

GkU
′|SOA −GkU

′|FD =

+
(θ0 − θ1)ε0

h
− h

2
(U ′)∗

∂2~g(~ξ)

∂~U2
k

U ′ 1

2
(U ′)∗

∂3J(~ξ0)

∂U3
k

U ′, (3.26)

where the error U ′(U ′)∗[∂3J(~ξ0)/∂U
3
k ]U ′/2 resulting from the SOA approximation is

fixed for fixed U ′ while the truncation and condition errors resulting from the finite-

difference approximation change with differencing parameter.

The rms errors between the the Hessian/vector products obtained by using the

SOA and the FD techniques with various differencing parameters are displayed in

Table 3.2. This Table indicates that (a) the Hessian/vector products obtained by

the FD and the SOA techniques follow a relationship given by Eq. (3.26) where

the error term O(h) dominates for large differencing parameter h, (b) for a small

differencing parameter, the error term O(1/h) in Eq. (3.26) dominates. The FD

technique involves subtractions of nearly equal numbers which result in cancellations

of significant digits and which are the reason for the increase in the rms errors and

(c) the differencing parameter h in the TN Nash [134] may become too small near the

end of the minimization process. Thus in practice, the SOA approximation is more

accurate than the finite-difference approximation in calculating the Hessian/vector

product.

Figure 3.2 shows the first 50 components of the scaled difference between the Hes-

sian/vector products obtained by using the SOA and the FD techniques respectively

after 15 iterations using the ATN algorithm. The differencing parameter is chosen

as h1 = h (solid line), h2 = h × 10−1 (dotted line) and h3 = h × 103 (dashed line)
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where h is the differencing parameter used in the original TN Nash [134] minimiza-

tion algorithm, respectively. The results with h3 = h × 103 clearly illustrate that

toward the end of the minimization the differencing parameter in the TN Nash [134]

is too small. This result agrees with the rms error evolution in Table 3.2. It can be

seen that the FD technique can yield an approximation of similar accuracy to that

obtained by SOA technique if the differencing parameter is properly chosen. However

simply increasing or decreasing the differencing parameter h at every iteration will

not improve the performance of the TN minimization algorithm since the differencing

parameter depends on the vector U ′ at each iteration and the vector U ′ is not known

prior to performing the minimization iteration.

The differencing parameter h should be chosen such as (a) it balances the trunca-

tion error of the order h with the condition error ([70], [72], [74]) of order 1/h, (b) h

must be adjusted to the size of vector U ′ [185, 186] and (c) h should not become so

small as to cause cancellations of significant digits [198]. It is difficult to choose an h

which satisfies all these requirements. Some good choices of h in addition to that used

in the TN Nash minimization algorithm [134] are h = 2(1 + ‖~Uk‖)
√
ε/‖U ′‖ [185, 186],

h =
√
ε/‖U ′‖ [49] and h = 2(1 + ‖~Uk‖)

√
ε/‖U ′‖2 [155] etc. But results (not shown

here) obtained using these choices of h are no better than those obtained when

h =
√

ε× (1 + ‖~Uk‖) as used in the TN Nash [134]. All these choices of h cause

cancellations of significant digits at some stage of the minimization process.

The convergence rate of the ATN minimization algorithm is best understood intu-

itively by splitting the error into three terms [155]. Let ~U∗ be the true solution to the

problem, G(~Uk) the exact Hessian at ~Uk, Gk the approximate Hessian obtained by the

FD or by the SOA technique, and Hk the approximate matrix to the inverse Hessian

matrix that the inner conjugate gradient algorithm actually used, i.e. ~pk = −Hk~gk.

Then, if the step size chosen was 1 and if G(~Uk) is positive definite,

~Uk+1 − ~U∗ = ~Uk −Hk~gk − ~U∗
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= (~Uk −G(~Uk)
−1~gk − ~U∗) + (G(~Uk)

−1 −G−1
k )~gk + (G−1

k −Hk)~gk (3.27)

Therefore

‖~Uk+1 − ~U∗‖ ≤ ‖(~Uk −G(~Uk)
−1~gk − ~U∗)‖ + ‖(G(~Uk)

−1 −G−1
k )~gk‖ + ‖(G−1

k −Hk)~gk‖
(3.28)

The first error term is the Newton error at the (k + 1)-th step. The second error

term is due to the error in the SOA technique or due to discrete differencing and

depends on the choice of h in the conjugate gradient algorithm. The third error

term is an error due to round-off and early termination (truncation) in the conjugate

gradient inner iteration. The second error induced by the SOA technique is smaller

than or as big as that caused by the FD technique. Therefore the ATN minimization

algorithm yields a speed-up for our test problem. It is also clear that both the ATN

and TN algorithms have the same convergence rate. We know that if cost function J

is sufficiently smooth, Gk is a strongly consistent approximation to G(~Uk), and G(~U∗)

is nonsingular, then local quadratic convergence can be obtained if the differencing

parameter h decreases sufficiently rapidly ([16], [71]). Under the same conditions we

expect the ATN algorithm obtains the same convergence. However in practice both

the ATN and TN algorithms have only a super linear convergence rate.

If we choose the vector U ′ as one of the coordinate directions e1, ... en where ei is

the i-th unit vector and n is the number of the components in U ′, respectively, either

the SOA or the FD technique will generate an approximation to the Hessian. Since,

for smooth functions, the Hessian is symmetric, the approximate Hessian is often

symmetrized by averaging corresponding elements in the upper and lower triangles.

Again the SOA technique will obtain a more accurate approximation to the Hessian

than (or an approximation to the Hessian as accurate as) that obtained by using

the FD technique. Burger [15] pointed out that the SOA technique requires less
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computing time than direct differentiation in obtaining the approximate Hessian and

thus the results from the former method are more accurate than these from the latter

method. Our results are consistent with those of Burger [15] in as far as the aspect of

accuracy is concerned. Similar results to ours were obtained by Symes [201] showing

the advantage of using the SOA technique to obtain the Hessian/vector product in

the TN algorithm.

In summary, we conclude that the SOA technique yields a more accurate value

of the Hessian/vector product compared to the FD technique for optimal control

problems tested here. When the differencing parameter h is too small or too big,

cancellations of significant digits or truncation errors dominate the FD approximation.

It is hard to avoid the occurrence of these two types of error in the minimization

process when the FD technique is used [211]. Use of more accurate Hessian/vector

products in the inner conjugate gradient iteration of the TN algorithm results in

a better line search direction as measured by the amount of decrease in the cost

function, but not in the residuals [138].

3.4 Conclusions

In this chapter, we proposed a modified version of the Nash truncated-Newton

algorithm [138] by using the FOA and the SOA techniques, i.e. we proposed a new

method to obtain a Hessian/vector product to be used in the process of solving the

Newton equations for the TN minimization algorithm for an optimal control problem.

The costs of the SOA approach and the FD approach are computationally compa-

rable, each of them requiring four different model integrations when applied to the

optimal control problem tested here. But the former approach yields a more accurate

Hessian/vector product, while the latter provides only a less accurate approxima-

tion to the Hessian/vector product if the finite-differencing parameter is taken to be
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the square root of the machine accuracy. The numerical results indicate that the

new Hessian/vector calculation strategy employed in the modified-Lanczos algorithm

of Nash [138] allows the ATN algorithm to perform better than either the TN or

the LBFGS algorithms both in terms of CPU time as well as in term of number of

iterations required to satisfy the prescribed convergence criterion in our test prob-

lems. This result may be very useful, since truncated-Newton type methods and

conjugate-gradient methods have comparable storage requirements and constitute

the only practical methods for solving many large-scale unconstrained minimization

problems arising in 4-D VDA.

In our test example, the eigenvalues of the Hessian at each iteration are posi-

tive [218], which implies the Hessians are positive definite and the cost function is

strictly convex. Therefore the existence of a local minimum is assured. However the

condition numbers at each iteration are large [218], which explains why all three algo-

rithms require more than 16 iterations to satisfy the prescribed convergence criteria.

Theoretically, the TN and the ATN minimization algorithms have the same con-

vergence rate. However the ATN algorithm results in a speed-up due to the use of a

more accurate Hessian/vector product to obtain the line search direction.

The ATN algorithm, like its TN counterpart, is a close approximation to the

Newton method at reasonable storage and computational cost. We expect the ATN

algorithm to yield a similar speed-up for other large-scale unconstrained minimiza-

tion problems related to optimal control and VDA. The idea of obtaining the Hes-

sian/vector product using the SOA technique can be applied in other settings requir-

ing large-scale minimization, in cases where an adjoint model formulation is possible,

or via automatic differentiation techniques [77] - pointing to a more general applica-

bility of this idea. An application of the ATN minimization algorithm for minimizing

a cost functional in optimal control of distributed parameters in a primitive equations
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3-D spectral model will be reported separately, once the SOA model of this model is

derived.
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Figure 3.1: Variations of the log of the scaled cost function (Jk/J0) (a) and the scaled
gradient norm (‖~gk‖/‖~g0‖) (b) with the number of iterations using algorithms: ATN
(dotted line), TN (solid line) and LBFGS (dashed line), respectively.
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Table 3.1: Numerical results of minimization algorithms: adjoint truncated Newton,
truncated Newton and LBFGS for the minimization of the cost function in the varia-
tional data assimilation problem when observations are model generated and control
variables are the initial conditions.

Algorithms Iter. NFC NCG Jk/J0 ‖~gk‖/‖~g0‖ CPU

MCGI=1 96 139 93 3.622 × 10−9 8.552 × 10−6 23.615s

MCGI=2 42 43 84 8.597 × 10−11 6.922 × 10−6 13.407s

ATN MCGI=3 30 46 89 1.716 × 10−10 9.347 × 10−6 14.116s

MCGI=4 15 16 58 6.540 × 10−10 8.467 × 10−6 7.866s

MCGI=5 20 43 91 2.590 × 10−10 8.467 × 10−6 13.992s

MCGI=50 16 17 85 1.485 × 10−10 4.822 × 10−6 10.817s

MCGI=1 104 164 104 3.211 × 10−10 6.455 × 10−6 35.862s

MCGI=2 50 51 100 1.291 × 10−10 8.577 × 10−6 20.663s

TN MCGI=3 32 38 88 6.440 × 10−10 8.785 × 10−6 17.125s

MCGI=4 38 87 106 1.114 × 10−10 5.929 × 10−6 25.202s

MCGI=5 25 74 75 1.008 × 10−6 1.113 × 10−3 Failure

MCGI=50 34 69 116 1.485 × 10−10 8.156 × 10−6 24.491s

M=3 163 167 7.892 × 10−9 7.804 × 10−6 16.511s

M=4 157 167 2.211 × 10−9 9.655 × 10−6 16.724s

LBFGS M=5 147 153 1.658 × 10−9 8.138 × 10−6 15.585s

M=6 153 159 1.585 × 10−9 7.368 × 10−6 16.290s

M=7 148 158 2.080 × 10−9 8.136 × 10−6 16.333s
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Table 3.2: Rms errors between the Hessian/vector products obtained by using the
second order adjoint and the finite-difference techniques for various differencing pa-
rameters at the end of 15 iterations of the adjoint truncated Newton minimization
algorithm, respectively. The maximum number of conjugate gradient inner-iterations
is 4 and h is the differencing parameter used in the original truncated Newton algo-
rithm of Nash minimization algorithm.

Differencing parameters rms errors

h× 109 7.3674493981314× 10−7

h× 108 6.9428037222996× 10−8

h× 107 6.8992950502148× 10−9

h× 106 6.8262063502701× 10−10

h× 105 6.2331779844824× 10−11

h× 104 1.1954425938165× 10−11

h× 103 1.4501562065627× 10−11

h× 102 2.9876262946020× 10−11

h× 101 2.6527501712652× 10−10

h× 100 2.6074180374738× 10−9

h× 10−1 2.5350296945351× 10−8
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Figure 3.2: The first 50 components of the difference between the Hessian/vector
products obtained by using the SOA and the FD techniques scaled by a factor 1.E09
after 15 iterations using the ATN algorithm where the differencing parameter is
chosen as h1 = h (solid line), h2 = h× 1.E − 01 (dotted line) and h3 = h× 1.E + 03
(dashed line) instead of h in the original TN Nash, respectively.
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CHAPTER 4

THE FSU GLOBAL SPECTRAL MODEL

4.1 Introduction

The spectral method is a popular technique for hemispheric or global atmospheric

modeling, in both operational and research applications. This has largely been a

consequence of the discovery of the transform technique, developed by Orszag [156],

and later refined by Bourke [12]. There are a number of advantages which bespeak

the superiority of the spectral method over the grid-point method for large-scale

prediction models. In the first place, the spectral coefficient representation of the

dependent atmospheric variables carries more information (i.e. smaller scales) than

the grid-point depiction, for an equal number of degree of freedom. Moreover, the

Galerkin procedure (used in most of spectral models), by definition, assures that

when nonlinear terms are evaluated there is no aliasing of unresolved scales into those

scales which are resolved by the model’s truncation limit. Aliasing is a common cause

of nonlinear instability and phase errors in grid-point models, even for those using

fairly sophisticated finite difference approximations for the nonlinear advective terms.

With the aid of transform technique, the spectral model can efficiently compute the

nonlinear terms by forming products in the real (grid) space and transforming them

back to the spectral (coefficients) space. The essence of the Galerkin procedure will

be preserved if exact numerical quadrature is employed for the transforms. Prior

to the introduction of the transform technique, it was thought necessary to remain

in the spectral space and to compute and store a tremendous number of interaction

coefficients (arising from the nonlinearities in the governing equations) in the course
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of a numerical forecast. The removal of this encumbrance has made spectral models

competitive, in terms of computational overhead, with respect to their grid-point

counterparts.

An added advantage which arises from the transform procedure is seen when phys-

ical effects are to be incorporated into the prediction scheme. The availability of the

dependent variables at the transform grid points enables the calculations of parame-

terized physical effects in the real space. These may then be added to the dynamic

tendencies prior to transforming back to the spectral domain. Drawbacks of the spec-

tral method are related to computational issues which may become a problem for high

resolution spectral methods, specially related to the unavailability of fast Legendre

transforms. Moreover transporting spectral methods to high performance parallel

computers of multiple instruction multiple data type (MIMD) may be less efficient

than the corresponding procedure for finite difference or finite element methods.

The FSUGSM has been developed from the Canadian spectral model of the

Recherche en Prevision Numerique [40]. In the development of the FSUGSM from

the Canadian model, the primary effort has been directed at improving the physical

effect parameterizations, adapting the model code to run efficiently on the NCAR

Cray-1 computer and developing post-forecast diagnostics [162].

The FSUGSM is a multi-level primitive equations model with λ (longitude), θ

(latitude) as horizontal coordinates in the real space and σ

σ =
p

ps

, (4.1)

where p and ps are pressure and surface pressure, respectively, as vertical coordinate.

In the horizontal direction, all dependent variables are expanded in a truncated series

of spherical harmonic functions Y m
l (λ, θ). Here Y m

l (λ, θ) = Xm
l (sin θ)eimλ, where

Xm
l (θ) are the associated Legendre functions of the first kind of order m and degree

l (m is the zonal wave number and m − l is the number of meridional nodes from
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pole to pole). For real to spectral space transform, any variable, say f(λ, θ, σ, t), is

assumed to be expanded in a truncated series of spherical harmonics

f(λ, θ, σ, t) =
J

∑

m=−J

|m|+J
∑

l=|m|

fm
l (σ, t)Y m

l (λ, θ), (4.2)

if rhomboidal truncation is used or

f(λ, θ, σ, t) =
J

∑

m=−J

J
∑

l=|m|

fm
l (σ, t)Y m

l (λ, θ), (4.3)

if triangular truncation is used (all experiments in the following chapters are carried

out using a triangular truncation), where fm
l (σ, t) is the spectral coefficients and J

denotes the rhomboidal or triangular truncation limit.

The rhomboidal type of truncation is so named because it allows an equal number

of meridional degrees of freedom, J , for each of the J zonal (wavenumber) degrees

of freedom. For triangular truncation all mode would have to satisfy −J ≤ m ≤ J ,

l ≤ J . There are several advantages to the triangular truncation, particularly in the

calculation of energetics and energy spectra. However, the superiority of triangular

truncation with respect to the integration of a complicated numerical model has

never been demonstrated. Moreover, the rhomboidal truncation is much simpler to

code, particularly if it is desired to take full advantage of symmetry in integrating a

hemispheric model.

Spectral harmonics are orthogonal, with the normalization constant being incor-

porated into the Legendre functions such that (for arbitrary zonal wave numbers m,

n and meridional indices l, j):

1

2π

∫ π
2

−π
2

∫ 2π

0
Y m

l (λ, θ)(Y n
j (λ, θ))t cos θdλdθ = δj

l δ
n
m, (4.4)

where (Y n
j (λ, θ))t = (−1)nY −n

j is the complex conjugate of Y n
j (λ, θ) and δj

l , δ
n
m are

Kronecker deltas. By choosing our spectral expansion functions to be orthogonal,

we greatly simplify the application of the Galerkin weighted residual procedure. In
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principle, one could use any set of expansion functions; the Galerkin procedure only

requires that the residue incurred by the spectral approximation of governing equa-

tions be orthogonal to those of the functions [125].

Given the condition imposed by Eq. (4.4) we can determine the spectral expansion

coefficients fm
l (σ, t) in (4.2) via

fm
l (σ, t) =

1

2π

∫ π
2

−π
2

∫ 2π

0
f(λ, θ, σ, t)(Y n

j (λ, θ))t cos θdλdθ. (4.5)

It should be noted that if f(λ, θ, σ, t) is an explicit function of the dependent variables

in the governing equations, then the notation fm
l is used for the left-hand side of Eq.

(4.5).

4.2 Model equations

It is important to notice that σ = 0 at the top of the atmosphere and σ = 1 is at

the earth’s surface. We will employ the usual boundary conditions σ̇ = 0 at σ = 1

and σ = 0.

It is convenient to define the following operators before developing the governing

equations:

F̂ σ =
∫ 1

σ
Fdσ; F̂ =

∫ 1

0
Fdσ. (4.6)

The real space forms of the governing equations of the FSUGSM are as follows.

This model uses the differentiated forms of the unfiltered primitive equations of mo-

tion and other model equations are the thermodynamic equation, continuity equation,

hydrostatic equation, and a moisture equation, as follows:

Vorticity equation

∂ζ

∂t
= −∇ · (ζ + f)~V − ~k · ∇ × (RT∇q + σ̇

∂~V

∂σ
− F ), (4.7)
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Divergence equation

∂D

∂t
= ~k · ∇ × (ζ + f)~V

− ∇ · (RT∇q + σ̇
∂~V

∂σ
− F ) −∇2(Φ +

~V · ~V
2

), (4.8)

Thermodynamic equation

∂T

∂t
= −∇ · ~V T + TD + σ̇γ − RT

Cp

(D +
∂σ̇

∂σ
) +HT , (4.9)

Surface pressure tendency equation

∂q

∂t
= −D − ∂σ̇

∂σ
− ~V · ∇q, (4.10)

Hydrostatic equation

σ
∂Φ

∂σ
= −RT, (4.11)

and Moisture equation

∂S

∂t
= −∇ · ~V S + SD − σ̇

∂S

∂σ
+HT −HM

− [
RT

Cp

− RT 2
d

εL(Td)
][D +

∂σ̇

∂σ
− σ̇

σ
], (4.12)

where

ζ = vertical component of vorticity = ~k · ∇ × ~V ,

f =Coriolis parameter,

~V= horizontal vector wind,

D = horizontal divergence =∇ · ~V ,

T = the absolute temperature,

q = ln ps,

γ = static stability = RT
Cpσ

− ∂T
∂σ

,
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σ̇= vertical motion in sigma coordinates

=(σ − 1)(D̂ + V̂ · ∇q) + D̂σ + V̂ σ · ∇q,

Φ= geopotential height,

F= the horizontal frictional force per unit mass,

HT =the diabatic heating,

R= the gas constant for dry air,

Cp =the specific heat of dry air at constant pressure,

Td =the dew point temperature,

S = T − Td is the dew point depression,

ε=the ratio of the molecular weight of water vapor

to effective molecular weight of dry air (0.622),

L(Td) =the latent heat of vaporization of water or ice,

HM =represents moisture sources or sinks.

The moisture Eq. (4.12) results from the combination of the thermodynamic Eq.

(4.9) with an expression for the time rate of change of the dewpoint temperature [40].

To facilitate the application of the spectral transforms and the implementation

of the time differencing scheme, some manipulation of the basic Eqs. (4.7) through

(4.12) will be performed. First, let us introduce some notation. For eastward (zonal)

and northward (meridional) wind components u and v, respectively, we define

U = u cos θ/a

V = v cos θ/a, (4.13)

where a is the earth’s radius. With this transformation, the wind components become

true scalars, with no discontinuities at the north or south poles [176]. Also, the
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horizontal average over a global σ-surface is defined as,

F̄H(σ, t) =
1

4π

∫ π
2

−π
2

∫ 2π

0
F (λ, θ, σ, t) cos θdλdθ, , (4.14)

For implementation of the semi-implicit algorithm (discussed below), the temperature

is expressed as an initial horizontal (global) mean plus a deviation; hence,

T (λ, θ, σ, t) = T ∗(σ, t) + T ′(λ, θ, σ, t), , (4.15)

where T ∗(σ, t) = T̄H(σ, t) at t = 0. Likewise, we also have for static stability factor

γ = γ∗ + γ′. Furthermore, let us define a horizontal differential operator for two

functions A and B:

α(A,B) =
1

cos2 θ
[
∂A

∂λ
+ cos θ

∂B

∂θ
]. (4.16)

Now let us expand the governing Eqs. (4.7–4.12) from vector into scalar (spherical

coordinate) form, make use of Eqs. (4.16) and (4.6) and the definitions of U , V , T ∗,

T ′, γ∗ and γ′. With these manipulations, the governing Eqs. (4.7–4.12) become:

∂ζ

∂t
= −α(A,B), (4.17)

∂D

∂t
= ∇2(Φ +RT ∗q) = α(B,−A) − a2∇2E, (4.18)

∂T

∂t
− γ∗σ̇ − RT ∗

Cp

∂q

∂t
= −α(UT ′, V T ′) +BT , (4.19)

∂q

∂t
+ Ĝ+ D̂ = 0, (4.20)

∂S

∂t
= −α(US, V S) +BS, (4.21)

and the hydrostatic Eq. (4.11) is unchanged. Here,

A = (ζ + f)U + σ̇
∂V

∂σ
+
RT ′

a2
cos θ

∂q

∂θ
− cos θ

Fθ

a
, (4.22)

B = (ζ + f)V − σ̇
∂U

∂σ
− RT ′

a2

∂q

∂λ
+ cos θ

Fλ

a
, (4.23)

G =
1

cos2 θ
[U
∂q

∂λ
+ V cos θ

∂q

∂θ
], (4.24)
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E =
(U2 + V 2)

2 cos2 θ
, (4.25)

BT = T ′D + γ′σ̇ − RT ′

Cp

(Ĝ+ D̂) +
RT

Cp

G+HT , (4.26)

σ̇ = (σ − 1)(Ĝ+ D̂) + Ĝσ + D̂σ, (4.27)

BS = SD − σ̇
∂S

∂σ

+ [
RT

Cp

− RT 2
d

εL(Td)
][
∂σ̇

∂σ
+G− Ĝ− D̂] +HT −HM , (4.28)

Fθ and Fλ are the northward and eastward components of the frictional force, respec-

tively. ∇2 is the horizontal Laplacian operator in spherical coordinates.

We have transferred some of the terms to the left-hand side in Eqs. (4.18), (4.19)

and (4.20). These terms will be treated implicitly when the semi-implicit algorithm

is introduced. Following Robert et al. [176] we introduce two new variables, P and

W :

P = Φ +RT ∗q, (4.29)

W = σ̇ − σ(Ĝ+ D̂), (4.30)

From the hydrostatic law (4.11), we can used Eq. (4.29) to express T in term of

P :

T = qσ
∂T ∗

∂σ
− σ

R

∂P

∂σ
. (4.31)

With these new variables, we will be able to isolate those terms in the governing

equations which must be time averaged in the semi-implicit time differencing scheme

while simplifying the implementation of this scheme in the prediction. Substituting

these new variables into the left-hand side of the divergence, thermodynamic and

continuity equations, one obtains

∂D

∂t
+ ∇2P = α(B,−A) − a2∇2E, (4.32)

σ
∂2P

∂t∂σ
+Rγ∗W = Rα(UT ′, V T ′) − RBT , (4.33)
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and
∂q

∂t
−WS = 0. (4.34)

We now have one more variable than the number of equations and we therefore

generate a diagnostic equation for W from the definitions of σ̇ and W .

∂W

∂σ
+D = BW , (4.35)

where BW = −G.

Thus, the dependent variables of the model are now ζ, S, D, P and q, which are

governed by Eqs. (4.17), (4.21), (4.32), (4.33) and (4.34).

4.3 Spectral form of the governing equations

Now we shall cast the governing equations of the model into the spectral space.

D, T , Φ, W and S are expanded in the same manner as (4.2). The variable q is

similarly expanded except that the qm
l are functions of time only. In the expansion

of U and V there is one extra component for each m, in order to be consistent with

the expansions for ζ and D [57].

U =
J

∑

m=−J

|m|+J+1
∑

l=|m|

Um
l Y

m
l , (4.36)

V =
J

∑

m=−J

|m|+J+1
∑

l=|m|

V m
l Y m

l , (4.37)

The fields of U and V are derived from stream function, ψ, and the velocity potential,

χ. Since

ζ = ∇2ψ; D = ∇2χ, (4.38)

we can express these relations spectrally as

ψm
l = − a2

l(l + 1)
ζm
l , χm

l = − a2

l(l + 1)
Dm

l . (4.39)
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U and V are related to ψ and χ through

U =
1

a2
(
∂χ

∂λ
− cos θ

∂ψ

∂θ
); V =

1

a2
(
∂ψ

∂λ
+ cos θ

∂χ

∂θ
), (4.40)

Using these relations and the properties of spherical harmonics, it can be shown that

l(l + 1)Um
l = −(l + 1)εml ζ

m
l−1 + lεml+1ζ

m
l+1 − imDm

l , (4.41)

l(l + 1)V m
l = (l + 1)εml D

m
l−1 − lεml+1D

m
l+1 − imζm

l , (4.42)

where

εml =

√

√

√

√

l2 −m2)

(4l2 − 1)
, (4.43)

and U0
0 = ε01ζ

0
1 , V

0
0 = −ε01D0

1 are special cases.

The diagnostic relationships involving P , Φ T and q can be obtained from hydro-

static Eq. (4.31):

Tm
l = − σ

R

∂Pm
l

∂σ
+ σ

∂T ∗

∂σ
, (4.44)

and

Tm
l = − σ

R

∂Φm
l

∂σ
. (4.45)

Now the spectral form of the governing equations can be written as, for all m, l:

∂ζm
l

∂t
= −{α(A,B)}m

l , (4.46)

∂Dm
l

∂t
− a−2l(l + 1)Pm

l = {α(B,−A) − a2∇2E}m
l , (4.47)

σ
∂2Pm

l

∂t∂σ
+Rγ∗Wm

l = R{α(UT ′, V T ′) − BT}m
l , (4.48)

∂Wm
l

∂σ
+Dm

l = {BW}m
l , (4.49)

∂qm
l

∂t
− {WS}m

l = 0. (4.50)

∂Sm
l

∂t
= {−α(US, V S) +BS}m

l , (4.51)
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Integrals on the right-hand side of Eqs. (4.46) to (4.51) all fall into one of three

categories, typified by

{BT}m
l =

1

2π

∫ π
2

−π
2

∫ 2π

0
BT (Y m

j )t cos θdλdθ. (4.52)

{a2∇2E}m
l = − l(l + 1)

2π

∫ π
2

−π
2

∫ 2π

0

U2 + V 2

2 cos θ
(Y m

j )tdλdθ, (4.53)

{α(A,B)}m
l =

1

2π

∫ π
2

−π
2

∫ 2π

0

1

cos θ
[
∂A

∂λ
+ cos θ

∂B

∂θ
](Y m

j )tdλdθ. (4.54)

Now BT , E, A, B and α(A,B) are all nonlinear expressions. The integrals of type

(4.52), (4.53) and (4.54) are calculated using the methods of Eliassen et al. [57] and

Orszag [156]. That is all variables (ζ, D, U , V , T , S, ∂q/∂λ, and cos θ∂q/∂θ) required

in the calculation of the right-hand side of Eq. (4.46) to (4.51) are first synthesized

onto the real space transform grid. From the real space form of the variables, the non-

linear expressions, A, B, E, T ′U , T ′V , SU , SV , BW , BT and BS, can be calculated.

The integrals on the right-hand side of Eq. (4.46) to (4.51) are then calculated by

exact numerical quadrature. Integrals of type (4.52) and (4.53) are straightforward,

but integrals of type (4.54) employ an integration by parts in the manner of Bourke

[12, 13]. Thus if

A =
J

∑

m=−J

Ame
imλ; B =

J
∑

m=−J

Bme
imλ, (4.55)

then

{α(A,B)}m
l =

∫ π
2

−π
2

[imAmX
m
l − Bm cos θ

∂Xm
l

∂θ
]
dθ

cos θ
, (4.56)

where Am and Bm are the Fourier coefficients of A and B, respectively.

4.3.1 Grid to spectral transform

For a given field f , we define its Fourier coefficients at a given latitude as

fm(θ) =
1

2π

∫ 2π

0
f(θ, λ)e−imλdλ, (4.57)

89



which can be evaluated using a discrete Fourier transform, provided f is a trigono-

metric polynomial. In general, if f(x) is a trigonometric polynomial of degree not

exceeding J − 1,
∫ 2π

0
f(x)dx =

2π

J

J−1
∑

j=0

f(
2πj

J
), (4.58)

is an exact evaluation of the integral [100]. Since the model’s variables are assumed

to have a spherical harmonic expansion, they are represented in the zonal direction

by a trigonometric polynomial of degree J . Quadratic terms will contain powers of

at most 2J , and the integrand in Eq. (4.57) will be of degree not exceeding 3J . For

exact integration in the zonal direction, we therefore require at least 3J + 1 points

around a latitude circle.

The integration in the meridional direction is performed by Gaussian quadrature

[100]. That is,

∫ π
2

−π
2

g(θ) cos θdθ =
∫ 1

−1
g(x)dx =

N
∑

j=1

Wjg(xj), (4.59)

where N and xj are the number of the roots and the roots of the ordinary Legendre

polynomial X0
N , respectively. Eq. (4.59) is an exact integration of the function g,

provided that g(x) is a polynomial of degree not exceeding 2N − 1, and the function

g is known at the Gaussian points xj.

Using Eqs. (4.57) and (4.59), the grid to spectral transform may be written as

fm
l =

∫ 1

−1
fm(x)Xm

l (x)dx =
N

∑

j=1

Wjf
m(xj)X

m
l (xj). (4.60)

For rhomboidal truncation, we must have N ≥ (5J+1)/2 while for triangular trunca-

tion, N ≥ (3J+1)/2. For an arbitrary resolution, the maximum power of fm(x)Xm
l (x)

must be evaluated, and the condition imposed by the Gaussian quadrature require-

ment must be applied.
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4.3.2 Spectral to grid transform

The computation of grid values from spectral expansion given by Eq. (4.2) or Eq.

(4.3) is carried out in the following two steps,

fm(xj) =
N(m)
∑

l=|m|

fm
l X

m
l (xj), (4.61)

and

f(θj, λ) =
J

∑

m=−J

fm(xj)e
imλ, (4.62)

whereN(m) = J+|m| for rhomboidal truncation andN = J for triangular truncation.

The grid used in the present model was designed following the above principles,

however it should be realized that higher than quadratic (i.e. cubic) order terms are

involved, which results in some aliasing. For a T42 mode, the Gaussian (transform)

grid consists of 128 equally spaced (2.8125◦ increment) longitudes beginning at the

Greenwich Meridian and 64 Gaussian latitudes (the roots of X0
64). These latitudes

are tabulated in Table (4.1); note that they are symmetric with respect of equator

and are nearly equally spaced (roughly a 2.76◦ increment).

4.4 The semi-implicit algorithm

The semi-implicit formulation follows Robert et al. [176]. In Eqs. (4.46) to (4.51),

time derivatives are replaced by centered time differences (except at initial time where

forward differences are applied), i.e. ∂f/∂t are approximated by [f(t + ∆t) − f(t −
∆t)]/(2∆t) where ∆t is the time step. The remaining terms on the left hand sides

are handled implicitly by the application of the time averaging operator ( t) defined

by f
t
= [f(t+∆t)+ f(t−∆t)]/2, while the right-hand-sides are calculated explicitly.

Two equations remain fully explicit. They are the vorticity and moisture equa-

tions:

ζm
l (t + ∆t) = −2∆t{α(A,B)}m

l + ζm
l (t− ∆t), (4.63)
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Table 4.1: Gaussian latitudes of the T-42 model. + indicates north, and − south.

±2.14◦ ±24.42◦ ±46.75◦ ±69.07◦

±4.90◦ ±27.21◦ ±49.54◦ ±71.86◦

±7.69◦ ±30.00◦ ±52.33◦ ±74.65◦

±10.47◦ ±32.79◦ ±55.12◦ ±77.44◦

±13.26◦ ±35.58◦ ±57.91◦ ±80.23◦

±16.05◦ ±38.37◦ ±60.70◦ ±83.02◦

±18.84◦ ±41.16◦ ±63.49◦ ±85.81◦

±21.63◦ ±43.96◦ ±66.28◦ ±88.60◦

and

Sm
l (t + ∆t) = 2∆t{−α(US, V S) +BS}m

l + Sm
l (t− ∆t). (4.64)

The remaining equations are handled in a semi-implicit manner using the ( t)

operator:

Dm
l

t − a−2∆tl(l + 1)Pm
l

t
= ∆t{α(B,−A) − a2∇2E}m

l +Dm
l (t− ∆t), (4.65)

σ
∂Pm

l

∂σ

t

+ ∆tRγ∗Wm
l

t
= ∆t{Rα(UT ′, V T ′) − RBT}m

l + σ
∂Pm

l

∂σ
(t− ∆t), (4.66)

qm
l

t − ∆tWS
m
l

t
= qm

l (t− ∆t), (4.67)

∂Wm
l

∂σ

t

+Dm
l

t
= {Bw}m

l . (4.68)

The integrals on the right hand side are all evaluated at time t. Some of the terms

in the integrals are forcing terms and should really be calculated at time t − ∆t to

avoid the growth of a computational mode. In the case of non-linear forcing terms this

would necessitate the transform from spectral to real space of many t−∆t variables.
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This is undesirable from the point of view of computational efficiency, so we have

chosen to calculate certain forcing terms at time t and suppress the computational

mode with a very weak time filter [7].

In the manner of Robert et al. [176], Dm
l

t
is eliminated between Eqs. (4.65) and

(4.68). Then Wm
l

t
is eliminated between the resulting equation and Eq. (4.66) giving

a diagnostic equation for Pm
l

t

∂

∂σ

σ

γ∗
∂Pm

l

∂σ

t

− R∆t2

a2
l(l + 1)Pm

l

t
=

∂

∂σ

{CT

γ∗

}m

l
+ {CD}m

l , (4.69)

where

{CT}m
l = R∆t{α(UT ′, V T ′) − BT}m

l + σ
∂Pm

l

∂σ
(t− ∆t), (4.70)

and

{CD}m
l = R∆t{BW − ∆tα(B,−A) + a2∆t∇2E}m

l

+ R∆tDm
l (t− ∆t). (4.71)

Thus, Eqs. (4.65) to (4.68) have been reduced to a two-point boundary value

problem for each horizontal mode. If {CT}m
l and {CD}m

l are known at time t, the

Pm
l

t
can be calculated for each m, l provided the boundary conditions at σ = 0 and

σ = 1 are given. The remaining variables Dm
l

t
, Wm

l

t
, WS

m
l

t
, qm

l

t
can be calculated by

back substitution into Eqs. (4.65) to (4.68) and the same variables at t+∆t can then

be calculated from the definition of the ( t) operator. Discussion of the appropriate

boundary condition for the solution of Eq. (4.69) will be delayed until the vertical

discretization has been introduced in the next section.

It is appropriate at this time to comment briefly upon the semi-implicit algorithm

just derived, since it might appear that certain non-linear terms are being handled

implicitly. Thus, at first sight, it appears that the non-linear term G is being included

on the left hand (implicit) side of Eq. (4.33) because of the definition for W given in

Eq (4.30). This is not so, as was pointed out by Asselin [7], because the equation for

93



W that is actually used in the model is Eq. (4.35), in which the non-linear term G is

on the right-hand (explicit) side. Thus, the introduction of the variable W does not

allow the implicit treatment of some non-linear terms, but it is convenient, as will be

demonstrated subsequently.

4.5 Vertical discretization

The vertical finite-difference scheme is a somewhat more general form of the

scheme used by Robert et al. [176]. The basic feature of the scheme is that the

temperatures are carried at levels intermediate to the levels of the geopotentials. We

will dwell principally on the finite-difference analogues to the left-hand-sides of Eqs.

(4.65)-(4.69). The vertical finite-differencing involved in the right-hand-sides of these

equations is conventional and will not be discussed in length. It should be stated,

though, that logarithmic vertical differencing has generally been used, in particular
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Figure 4.1: Schematic representation of the vertical structure of the model. The
solid lines represents the levels σn. The dashed lines represents the layers σ̃n. σ = 0
is at the top of the atmosphere and σ = 1 is at the earth’s surface.
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with respect to the thermodynamic variables. To simplify the notation, the subscript

l and superscript m will be assumed. Thus, fm
l is written as f , and {f}m

l as {f}.
The levels (in σ) of the FSUGSM are placed as shown in Fig. 4.1. This is a twelve-

level model. Note (in Fig. 4.1) the vertical staggering of the levels, where ζ, D and

P (hence, also U , V and Φ) are defined at levels shown by solid lines (here after

referred to as the σ-levels) while T , S and W (also σ̇) are defined at levels indicated

by dashed lines (hence after referred to as the σ̃-levels). Second order accuracy for

the hydrostatics demands that the σ̃-levels be located midway between the σ-levels

in the ln σ coordinate, thus

ln σ̃k =
ln σk + ln σk+1

2
, (4.72)

which implies

σ̃k =
√
σkσk+1, k = 1, . . . , N (4.73)

where the subscripts refer to the level in question and N , the index of the bottom

model level, is equal to 12. Note also in Fig. 4.1 that the increment of the σ-levels is

0.1 above σ = 0.8 and becomes smaller below σ = 0.8, which affords greater vertical

resolution in the planetary boundary layer.

The thermodynamic equation is applied at intermediate levels. These levels are

obtained from a finite difference form of the hydrostatic equation. The following finite-

difference approximation to the hydrostatic equation (4.47) is second-order accurate,

provided that the layer temperatures T̃n are defined as the geometric mean of the

adjacent σ-level values, i.e. by

T̃n =
Φn − Φn+1

Rdn

, n = 1, . . . , N, (4.74)

where

Φn = Φ(σ = σn), dn = ln(σn+1/σn). (4.75)
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We will hereafter refer to the σ-values, defined by Eq. (4.73) where the thermody-

namic equation is applied, as the layer values. The tilde (∼) will be used to indicate

which variables are carried in the layers (σ = σ̃n); these are T̃n, S̃n, and W̃n. Note

that W̃N is not carried; instead we use Ws which is applied at a level σN+1 = 1 and

therefore appears without a tilde.

It is convenient to define vertical increments in σ; i.e.

δ̃n = σ̃n+1 − σ̃n, n = 1, . . . , N − 2. (4.76)

Both the top and bottom increments are special cases. Thus

δ̃0 = σ̃1 δ̃N−1 = 1 − σ̃N−1. (4.77)

Now Pn = Φn + RT ∗
nq is defined on the σn levels, whereas the temperatures T̃n

and thus T̃ ∗
n are carried in the σ̃n layers. We obtain T ∗

n and thus Pn from T̃ ∗
n and q

by simply taking the logarithmic average of the adjacent layer temperatures T̃ ∗
n and

T̃ ∗
n+1. To second order accuracy

T ∗
n =

dn−1T̃
∗
n + dnT̃

∗
n−1

dn−1 + dn

, 2 ≤ n ≤ N. (4.78)

T ∗
1 can not be calculated in this manner and is instead simply obtained by linear

extrapolation.

T ∗
1 = 1.5T̃ ∗

1 − 0.5T ∗
2 , (4.79)

The T ′
n are obtained in a similar manner.

The static stability γ∗ can be calculated at the σ̃n layers simply as

γ̃∗n =
1

σ̃n

(

RT̃ ∗
n

Cp

− T ∗
n+1 − T ∗

n

dn

)

, n = 1, . . . , N (4.80)

where T ∗
N+1 = T ∗

s . In the absence of an equation for Ts, it has been assumed that

γ̃∗N = γ̃∗N−1. This, in effect, formally defines T ∗
s in terms of T̃ ∗

N and T ∗
N . A similar

expression and assumption is used to relate γ̃ ′
n to T̃ ′

n, T ′
n and T ′

n+1.
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Vertically discretized analogues of the vertical integration operators (̂ σ) and (̂ )

defined in Eq. (4.6) are required for the calculation of Ĝ, D̂, Ĝσ, D̂σ and ultimately

σ̇ from σ̇ = (σ − 1)(D̂ + V̂ · ∇q) + D̂σ + V̂ σ · ∇q and Eq. (4.24) at σ̃n layers. The

vertical integral F̂ σ is approximated by F̂ n, a simple quadrature extending from the

surface (σ = 1) to σ̃n. F̂ is approximated by F̂ 0, the same quadrature extending from

σ = 1 to σ = 0. Thus, if F is a level variable, the approximation for F̂ σ at σ = σ̃n is

F̂ n =
N

∑

k=n+1

Fkδ̃k−1, n = 1, . . . , N − 1 (4.81)

and the approximation for F̂ is

F̂ 0 =
N

∑

k=1

Fkδ̃k−1. (4.82)

In this manner it is possible to obtain the quadrature analogues of Ĝ, D̂, Ĝσ,

D̂σ and thus σ̇ at each of the layers σn, 1 ≤ n ≤ N − 1. At σN we have assumed

˜̇σN = h ˜̇σN−1 where h is an empirical constant 0 ≤ h ≤ 1.

Similar approximations are used for any remaining terms on the right-hand-sides

of Eqs. (4.65-4.69).

All that remains to be discussed is the solution of the boundary value problem

(4.69). The consistent vertically discretized form of this equation for 2 ≤ n ≤ N − 1

is

1

δ̃n−1

[(

Pn+1
t − Pn

t

γ̃∗ndn

)

−
(

Pn − Pn−1
t

γ̃∗n−1dn−1

)]

− R∆t2

a2
l(l + 1)Pn

t
=

1

δ̃n−1

[

1

γ̃∗n
{C̃T}n − 1

γ̃∗n−1

{C̃T}n−1

]

+ {CD}n, (4.83)

where, as mentioned previously, n refers to level or layer, (˜) indicates a layer value,

and { } refers to a horizontal integration (Eq. (4.5)).

Eq. (4.83) yields N − 2 equations in the N unknowns Pn
t
, 1 ≤ n ≤ N . To close

the system it is necessary to obtain two additional equations involving respectively

P1
t
and PN

t
.
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The top boundary condition is straightforward to apply. At σ = 0, σ̇ = 0, which

implies W = 0 in the finite difference analogue of Eq. (4.68) applied at σ1. This leads

to the following equation relating W̃1

t

to D1
t
:

W̃1

t

δ̃0
+D1

t
= {Bw}1. (4.84)

Combining the above equations with finite difference analogues of equations (4.65)

and (4.66), applied at σ1 and σ̃1 respectively, yields an equation involving P1
t
and P2

t

only:

1

δ̃0

(

P2
t − P1

t

γ̃∗1d1

)

− R∆t2

a2
l(l + 1)P1

t
=

{C̃T}
δ̃0γ̃

∗
1

+ {CD}1. (4.85)

To close the system at the bottom boundary is less straightforward. Recalling

the definition of W and assumptions made for γ̃N and ˜̇σN and noting that ΦS is time

invariant, it can be shown that the finite difference analogue of Eq. (4.66) degenerates

into the following form when applied at σ̃N .

−PN
t

λ̃∗NdN

+
R∆t

λ̃∗N
hγ̃∗N−1W̃N−1

t

+R∆tW̃S

t

=
{C̃T}N

λ̃∗N
, (4.86)

where

λ̃∗N =
RT̃ ∗

N

Cp

+
T ∗

N

dN

− hγ̃∗N−1σ̃N−1, (4.87)

The finite difference analogues of Eqs. (4.65) and (4.68) applied at σN yield a relation

between WS
t
, W̃N−1

t

and PN
t
. A third relation between PN−1

t
, PN

t
and W̃N−1

t

can

be obtained by applying the finite difference analogue of Eq. (4.66) at ˜σN−1. This

yields 3 equations in 4 unknowns PN−1
t
, PN

t
and W̃N−1

t

and WS
t
which can be used

to obtain a single equation in PN−1
t
and PN

t
; i.e.

1

δ̃N−1

[−PN
t

λ̃∗NdN

−
(

PN − PN−1
t

λ̃∗N−1dN−1

)]

− R∆t2

a2
l(l + 1)PN

t
=

1

δ̃N−1

[

1

λ̃∗N
{C̃T}N − 1

λ̃∗N−1

{C̃T}N−1

]

+ {CD}N , (4.88)
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where

λ̃∗N−1 =
γ̃∗N−1λ̃

∗
N

λ̃∗N + hγ̃∗N−1

. (4.89)

Eqs. (4.83), (4.85) and (4.88) define a N ×N tridiagonal matrix relationship for

each horizontal mode (m, l) of the Pn
t
, 1 ≤ n ≤ N . These matrix problems are easily

solved by an efficient tridiagonal matrix algorithm of the Thomas algorithm variety.

Once the Pn
t

have been calculated, back substitution into the vertically discretized

forms of Eqs. (4.65) and (4.66) yields Dn
t
and W̃n

t

, respectively. Substitution of Pn
t

and W̃n

t

into Eq. (4.86) yields WS
t
, from which qt can be obtained using Eq. (4.67).

The definition of the ( t) operator then yields Pn(t+ ∆t), Dn(t+ ∆t) and q(t+ ∆t).

The remaining variables Φn(t+∆t) and T̃n(t+∆t) are calculated diagnostically using

vertically discretized forms of Eqs. (4.44) and (4.45). The explicit prognostic Eqs.

(4.63) and (4.64) yield ζn(t+ ∆t) and Sn(t+ ∆t).

This formulation of the semi-implicit method does have the advantage of yielding

a tridiagonal matrix in the vertical at the expense of some conceptual complication.

However, the extra calculations per time step due to the semi-implicit calculation are

completely negligible.

The physical processes included in the FSUGSM are described in Appendix F.
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CHAPTER 5

4-D VARIATIONAL DATA ASSIMILATION WITH THE FSU

GLOBAL SPECTRAL MODEL

5.1 Introduction

The numerical feasibility of variational data assimilation has been extensively

demonstrated for 2-D models, but has only recently been applied to 3-D models

[11, 38, 54, 157, 168, 169, 170, 171, 233]. The objective of the current chapter is to

demonstrate the feasibility of 4-D variational data assimilation applied to an adiabatic

version of the FSUGSM. The number of components of the control variables vector

(the initial conditions vector) is 303104. As stated before the numerical cost of the 4-

D VDA originates both from the model integration and the gradient calculation of the

cost function with respect to the control variables. With present numerical models,

numerical algorithms and presently available computer power, the only practical way

to carry out the 4-D VDA is through an appropriate use of the adjoint techniques in

calculating the gradient of the cost function with respect to the control variables [35].

The adjoint techniques were developed in the fields of optimal control theory of PDEs

of distributed parameters [116], and their application to 4-D VDA requires to obtain

the gradient of the cost function with respect to the control variables which is obtained

by one backwards integration of the adjoint model in time. Therefore, we first develop

the TLM and the adjoint model of a dry version (i.e., no physical effects are involved

except horizontal diffusion) of the FSUGSM and verify their accuracies in Section 5.2.

The dry version of the FSUGSM is used because we do not want to add, at this stage,
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the complexity inherent in the inclusion of effects of highly nonlinear and threshold on-

off diabatic physical parameterizations, which are still at the research stage [216, 231,

236]. The numerical algorithms employed in 4-D VDA and related scaling issues are

discussed in Section 5.3. In Section 5.4, various variational assimilation experiments

are conducted. The ability of 4-D VDA to retrieve observational fields is investigated

starting from either shifted or randomly perturbed initial conditions. We evaluate the

impacts of different observations distributed in space and time as well as the impact

of the horizontal diffusions. Through different scenarios of sets of observations, we

demonstrate the efficiency of 4-D VDA in extracting the information contained in the

dynamics of the model together with information in the observations. Conclusions

as well as topics for further research related to the 4-D VDA with FSUGSM are

presented in Section 5.5.

5.2 Model developments and numerical validation

5.2.1 The cost function and its gradient with respect to control variables

The cost function will be defined in physical space rather than in spectral space

because it is clearer and easier to implement proper scaling in physical space than

in spectral space. Therefore the cost function is still defined by Eq. 1.3 where W is

an N ×N diagonal weighting matrix with W~ζ
, W ~D, W~S, W~q, and W~T as its diagonal

sub-matrices entries of weighting factors for vorticity, divergence, moisture, surface

pressure, and temperature fields, respectively. Here N = L(4K + 1) is the number

of components of the state vector ~X, K is the number of vertical levels and L is the

number of Gaussian grid points. ~X = (~ζ, ~D, ~S, ~q, ~T )t denotes the state vector, where

~ζ, ~D, ~S, ~q, ~T contain values of vorticity, divergence, moisture, surface pressure, and

temperature over all grid points on all levels at time t. ~Xo = (~ζo, ~Do, ~So, ~qo, ~T o)t,

denotes the observation vector where ~ζo, ~Do, ~So, ~qo, ~T o are observational values of
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vorticity, divergence, moisture, surface pressure, and temperature over all grid points

on all levels at time t. F is a vector function with five components being the right

hand sides of vorticity, divergence, thermodynamic, surface pressure tendency and

moisture equations (4.7 – 4.7 and 4.12).

The 4-D variational data assimilation problem (1.1) is usually solved by using

large-scale unconstrained minimization algorithms such as LBFGS of Liu and Nocedal

[117], truncated-Newton [130], the adjoint truncated-Newton [219] and quasi-Newton

algorithms. All these minimization algorithms require the calculation of the gradient

of the cost function with respect to control variables. The current studies will ob-

tain the gradient of the cost function by using the adjoint model techniques. Other

alternatives for obtaining the gradient of the cost function such as automatic differ-

entiation ([55], [69]), analytical evaluation and finite-difference (FD) approximations

exist. However, they are either not feasible for this optimal control problem applied

to VDA or are too costly to apply.

The adjoint model of Eqs. (1.10) and (1.10) is defined as

−∂X̄
∂t

= (
∂F

∂ ~X
)∗X̄, (5.1)

X̄(tf) = U ′′, (5.2)

where X̄ is the adjoint variable and (·)∗ denotes the complex conjugate transpose.

The FOA model of Eqs. (1.10) and (1.11) is defined by Eqs. (2.2) and (2.3).

Clearly the FOA model given by Eq. (2.2) can be obtained by adding a forcing term

to the adjoint model given by Eq. (5.1) and setting the final condition (5.2) to zero.

One can prove that the gradient of the cost function with respect to the initial

conditions is equal to the value of the FOA model variable at the initial time

∇UJ = P (t0), (5.3)

(see Section 1.3 and [149, 202, 218]).
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5.2.2 The accuracy of the tangent linear model

The TLM model of the adiabatic FSUGSM was developed and its validity was

verified. The TLM model is the result of the linearization of the direct adiabatic

FSUGSM in the vicinity of a given model trajectory [113]. If we view the direct

adiabatic FSUGSM as, M , the result of multiplication of a number of matrices:

M = A1A2...AN , (5.4)

where each matrix Ai (i = 1, ..., N) represents either a subroutine or a single do loop,

then the TLM model can be viewed as T lm

T lm = B1B2...BN , (5.5)

where Bi = Ai if Ai is linear and Bi is a linearization of Ai in the vicinity of a basic

state of ~X if Ai is nonlinear for i = 1, ..., N .

Suppose that U ′
1 and U ′

2 are two initial conditions for the TLM model then

B1B2...BN (U ′
1 + U ′

2) = B1B2...BN (U ′
1) +B1B2...BN(U ′

2). (5.6)

Eq. (5.6) can be used as a preliminary criterion for the correctness-check of the TLM

model.

For a given state variable U , and a perturbation, U ′ on U , the real evolution of

the solution due to a perturbation αU ′ is given by

M(U + αU ′) −M(U) (5.7)

where α is a scalar and M(U) represents the numerical integration of the direct

adiabatic FSUGSM starting from the initial conditions U . If T lm(αU ′) represents

the numerical integration of the TLM models starting from the initial conditions αU ′,

then according to the definition of the TLM one obtains

ψ(α) =
‖M(U + αU ′) −M(U)‖

‖T lm(αU ′)‖ = 1.+O(α‖U ′‖), (5.8)
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where ‖ · ‖ denotes the Euclidean norm of “·”.

We take the fields of vorticity, divergence, moisture, surface pressure, and tem-

perature at 0 UTC 1 June 1988 as U , and choose U ′ = αU where α is small scalar

but not too close to the machine accuracy. The direct adiabatic FSUGSM and TLM

models are integrated for an hour with various α values. Fig 5.1 indicates that the

TLM model produced a good asymptotic approximation to the evolution of perturba-

tions for the forecast period when α varies from 10−7 to 1. It is surprising that even

for perturbations with magnitudes similar to that of U , the TLM model still yields

a relatively good approximation to the evolution of perturbations for the forecast

period.

When the forecast period is increased to 6 hours, the results shown in Fig 5.1 are

still correct. For instance, when α = 0.1, ψ(α) = 0.9995405246. Therefore the TLM

is correct for reasonable long forecast period and for perturbations with magnitudes

similar to that of the initial condition of the nonlinear model. So the correctness of

the TLM model has been verified.

5.2.3 The accuracy of the first order adjoint model

The adjoint model of Eq. (5.5) can be obtained by taking its complex conjugate

i.e.

T lmt = Bt
1B

t
2...B

t
N . (5.9)

In this way, the discrete adjoint model can be directly derived from the discrete linear

model, which in turn is derived from the FSUGSM by linearization around a basic

state. This simplifies not only the complexity of constructing the adjoint model but

also avoids the inconsistency generally arising from the derivation from the adjoint

equations in analytic form followed by the discrete approximation.
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The correctness of the adjoint model can be checked in three ways. First, at any

level of the code, the adjoint code can be checked by using the following identity

(BQ)t(BQ) = Qt[Bt(BQ)], (5.10)

where B and Q represent any code and its input in the discrete TLM model, respec-

tively. For example, if B = T lm, the initial condition Q of the TLM model is chosen

as the basic state ~X at 0 UTC 1 June 1988, the basic states at later times are ob-

tained by integrating the FSUGSM starting with the same initial condition Q and all

models are integrated for six hours, then Bt(BQ) denotes the backwards integration

of the adjoint model given by Eq. (5.1) with final condition taken as the output of

the TLM model integration, then one obtains

(BQ)t(BQ) = 1.0189576063747× 1013, (5.11)

Qt[Bt(BQ)] = 1.0189576063753× 1013, (5.12)

which prove the correctness of the discrete adjoint model given by Eq. (5.9) up to

the machine’s precision of 14 digits.

Second, the TLM describes the evolutions of perturbations in a forecast model.

Eq. (5.10) indicates that the accuracy of the TLM is the same as that of its adjoint

model given by Eq. (5.9) or (5.1)-(5.1). This can also be demonstrated intuitively by

the following experiment.

Let observations consist of a full-model-state vector at the end of the assimilation

period, then the cost function assumes the following form

J(U) =< W ( ~X(tf ) − ~Xo(tf)), ( ~X(tf) − ~Xo(tf)) > . (5.13)

If we denote ∆J(U) as a first order approximation to J(U + U ′) − J(U) due to the

change U ′ in the initial condition U , and T lm as the numerical integrations of the
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TLM, then

J(U + U ′) − J(U) ≈ ∆J(U) =
∂J( ~X(tf))

∂ ~X(tf )
· ∆ ~X(tf )

≈ ∂J( ~X(tf ))

∂ ~X(tf)
· T lm(U ′)

= U ′t · T lmt(
∂J( ~X(tf))

∂ ~X(tf )
) = U ′t · ∇UJ, (5.14)

where the superscript t denotes a transpose and ∆ ~X(tf) is the change in the state

variable ~X at the final time tf due to the change U ′ in the initial condition U , i.e.

given U and U ′ then identical values of ∆J(U) are obtained whether the TLM or its

adjoint model is applied, implying both values are equally accurate [58].

Still, it is worthwhile to provide an example of the accuracy of an adjoint calcula-

tion, especially since we will claim that the accuracy is much better than one would

have expected.

Suppose that the cost function is defined as the difference between the model

solution and the observation at the final time (six hours from the initial time) and

the observation is taken as a full-state vector solution at a time which is twelve hours

apart from the initial time. The weighting factor for divergence field is calculated

according to the following formula

W ~D =
1

4‖ ~D(tf ) − ~Do(tf )‖2
, (5.15)

with similar expressions for the moisture, temperature, surface pressure, and vorticity

fields. The term ∂J( ~X(tf ))/∂ ~X(tf ) in Eq. (5.14) is obtained by integrating the

forward model and using the above specified weighting factors, i.e.

∂J( ~X(tf))

∂ ~X(tf )
= 2W ( ~X(tf ) − ~Xo(tf)), (5.16)

The initial condition for the TLM model is taken as ∂J( ~X(tf))/∂ ~X(tf), i.e.

U ′ =
∂J( ~X(tf))

∂ ~X(tf )
(5.17)
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∂J( ~X(tf))/∂ ~X(tf) is also used as the final condition for the adjoint model given by

Eqs. (5.1)-(5.1). If the perturbation is applied to an six hour forecast, then

∂J( ~X(tf ))

∂ ~X(tf )
· T lmU ′

U ′t · T lmt(
∂J( ~X(tf ))

∂ ~X(tf ))

=
0.00040447305742735

0.00040447305742624
= 1.000000000003, (5.18)

which proves numerically that both the TLM and its adjoint model are correct and

have the same accuracy.

Third, the verification of the correctness of the gradient can be conducted as

described below. The Taylor formula applied in the direction U ′ = ∂J(U)/∂ ~X(tf)

yields

φ(α) =
J(U + αU ′) − J(U)

αU ′t · ∇UJ
= 1.+O(α‖U ′‖). (5.19)

For small α but not too close to the machine accuracy, the value of φ(α) should be

close to one if the gradient ∇UJ is correctly calculated. Fig 5.2 shows that for α in

the range between 10−3 and 10−14 an unit value of φ(α) is obtained.

5.3 Descent algorithms and scaling

5.3.1 The LBFGS algorithm of Liu and Nocedal

Liu and Nocedal [117] compared the combined conjugate-gradient quasi-Newton

method of Buckley and LeNir [14], the limited-memory quasi-Newton method de-

scribed by Nocedal [154] (called LBFGS method), and the partitioned quasi-Newton

method of Griewank and Toint [76]. Zou et al. [227] compared four of the state-

of-the-art limited-memory quasi-Newton methods on several test problems, including

problems in meteorology and oceanography. Their results show that the LBFGS al-

gorithm is the most efficient and particularly robust amongst the algorithms tested

for the set of problems considered here. Therefore the LBFGS algorithm is chosen

for this study since it deals with the critical issue of storage in large-scale problems.

108



In the LBFGS algorithm, the user provides a sparse symmetric and positive definite

matrix H0, which approximates the inverse Hessian of the cost function, and spec-

ifies the number m of the quasi-Newton up-dates, therefore controls the amount of

the storage required. The LBFGS algorithm updates the formula generated matrices

which approximate the Hessian by building curvature information using information

from the last m quasi-Newton iterations. After having used the m vector storage lo-

cations for m quasi-Newton updates of the Hessian, the quasi-Newton approximation

of the Hessian matrix is updated by dropping the oldest update vector and replacing

it with the newest update vector. A new line search direction, which is an estimate of

the relative change to the current variables vector that produces the maximum reduc-

tion in the cost function, is then computed. It employs a cubic line search required

to satisfy a Wolfe condition [224], and an unit step size is always tried first. For a

precise description of the LBFGS algorithm, please see [117].

5.3.2 Weighting and scaling

Weights in the cost function have a serious impact on the minimization algorithm

[26]. A poor set of weights may result in elongated contour lines of the cost function,

or even in a total failure of the VDA. There are several ways to determine weights

such as: (1) trial and error method [110], (2) the statistical method, i.e. taking the

reciprocal of the variance of the observation errors [32], and (3) temporal weighting

method [34]. The first method may be very costly since it depends on both luck

and experience. In the second method, the variances are difficult to specify properly,

and much more research work is necessary in this area. In the third method weights

are assigned to individual observations and vary linearly with time. The total sum

of the weights assumes the same value as the reciprocal of squared estimates of the

statistical root-mean-square observational error.
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In our experiments with FSUGSM, a diagonal weighting matrix

W = diag{W~ζ
,W ~D,W~S,W~q,W~T}, (5.20)

is used where W~ζ
, W ~D, W~S, W~q, and W~T are constant diagonal sub-matrices. The

diagonal elements of W ~D are calculated according to the following formula

(W ~D)jj =
1

4
∑M

i=0 ‖ ~D(ti) − ~Do(ti)‖2
, (5.21)

with similar expressions for the moisture, temperature, surface pressure, and vorticity

fields. Model solutions are obtained by integrating the model from an initial condition.

Weights given by Eq. (5.21) nondimensionalize the cost function, and result in an

unit cost function at the beginning of the variational data assimilation.

Scaling is a crucial issue in the success of nonlinear unconstrained optimization

problems, and considerable research has been carried out on scaling nonlinear prob-

lems. It is well known that a badly scaled nonlinear programming problem can be

almost impossible to solve [149, 34]. An effective automatic scaling procedure would

ease these difficulties and could also render problems that are well scaled easier to

solve by improving the condition number of their Hessian matrix [205]. Thus scaling

is a crude way of carrying out preconditioning. For more discussion about precondi-

tioning, please see Appendix C and references [134, 236]

In the FSUGSM, the variables in the control vector have enormously different

magnitudes varying over a range of eight orders of magnitude. Typical values of

vorticity, divergence, natural log of the surface pressure and temperature have the

magnitudes of 10−5, 10−6, 10−2 and 100, respectively. Scaling by variable transfor-

mation converts variables from units that reflect the physical properties to units that

display desirable properties for minimization process. Given a diagonal scaling ma-

trix S = diag{S~ζ
, S ~D

, S~S
, S~q, S~T

} where S~ζ
, S ~D

, S~S
, S~q, and S~T

are constant diagonal

sub-matrices, the general scaling procedure may be written as

~X = S ~Xs, (5.22)
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~gs = S~g, (5.23)

Hs = SHS, (5.24)

where H is the Hessian matrix. The constant diagonal elements of sub-matrix S ~D

will be calculated by

max
i,j

|Dj(ti) −Do
j (ti)|, (5.25)

and similarly for S~ζ , S~S, S~q, and S~T where Dj(ti) and Do
j (ti) are the j-th components

of vectors ~D and ~Do at time ti, respectively.

For complicated functions, difficulties may be encountered in choosing suitable

scaling factors. There is no general rule to determine the best scaling factors for

all minimization problems, and good scaling is problem dependent. A basic rule

is that the variables of the scaled problem should be of similar magnitude and of

order of unity because with in optimization routines convergence tolerances and other

criteria are necessarily based on an implicit definition of “small” and “large”, and,

thus variables with widely varying orders of magnitude may cause difficulties for

some minimization algorithms [73]. One simple direct way to determine the scaling

factor is to use the typical values for different fields. For some problems, the relative

magnitudes of the gradient field components of the cost function differ from each

other by several orders of magnitude. In such cases, it is better to scale the gradient

of the cost function [73, 115].

5.4 Numerical results of the variational data assimilation

Although the accuracies of the TLM and the adjoint model as well as the gradient

calculation of the cost function with respect to the control variables have been veri-

fied, it is of primary importance to ensure that the system as a whole was properly

constructed and that the minimization of the cost function can be performed using
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a reasonably high-resolution system. Hence, two sets of experiments were designed

using the LBFGS large-scale unconstrained minimization algorithm of Liu and No-

cedal [117]. Both shifted and randomly perturbed initial conditions are used in the

first set of experiments to investigate the efficiency of the 4-D VDA as well as the

impacts of the length of the assimilation on the convergence rate. In the second set of

experiments, the impacts of distributed observations and that of horizontal diffusion

are investigated.

In all experiments a horizontal truncation of T42 with 12 levels in the vertical

direction is used. For the exact variable transformation from spectral space to physical

grid space, or vice versa, a (128 × 64) Gaussian grid was used, and the dimension of

the vector of control variables is 303104. The length of the time assimilation window

is 6 hours unless indicated otherwise. All the routines are coded in single precision

FORTRAN. The runs were made on the CRAY-YMP supercomputer at Florida State

University, for which the relative machine precision ε is approximately 10−14.

5.4.1 Numerical results with shifted initial conditions

The experiments are devised as follows: the model-generated values starting from

an analysis of the real observational data at 6 UTC 1 June 1988 are used as observa-

tions and the initial guess is taken as an analysis of the real observational data at 0

UTC 1 June 1988. We know exactly what the solution is, and the value of the cost

function at the minimum must be zero.

Here we assume the observations are available at every time step of the assimilation

window and the cost function is defined by Eq. (1.3).

In the first experiment the length of the assimilation window is chosen as one

hour. The purpose of this experiment is to verify that all components of the VDA

work properly before we conduct any VDA for a longer window of assimilation.
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Fig. 5.3 (solid line) displays the variations of the log of the scaled cost func-

tion (Jk/J0) and scaled gradient norm (‖~gk‖/‖~g0‖) with the number of iterations in

the minimization process. It would appear initially that the VDA works numeri-

cally. Indeed, after 65 iterations, the normalized cost function is reduced by 8 orders

of magnitude while the normalized norm of the gradient is reduced by 4 orders of

magnitude.

It is a good idea to consider the difference fields between the retrieved and ref-

erence (observational) fields before and after the minimization process, since these

difference fields measure the ability of the VDA to retrieve the observational fields.

Fig 5.11 shows the difference fields between the retrieved fields of divergence, vorticity,

temperature and natural log of the surface pressure and the reference (observational)

fields at the beginning of the assimilation window after the minimization process.

Comparing with the same difference fields (Fig. 5.6) before the minimization pro-

cess, it is observed that after the minimization the maximum difference values are

reduced by four orders of magnitude in all difference fields of divergence, vorticity,

temperature and natural log of the surface pressure.

If the length of the assimilation is increased to 6 hours, the VDA also works

successfully. The results in Fig 5.3 (dash line) indicate that after 65 iterations, the

normalized cost function is reduced by 2.3 orders of magnitude while the normalized

norm of the gradient is reduced by 1.5 orders of magnitude.

In Fig 5.4, dotted and long dash lines denote the variation of the log of the rms

error between the initial (guess) and exact temperatures with model levels at the

beginning and end of time assimilation window before assimilation. The solid and

dash lines denote the variation of the log of the rms error between the retrieved and

exact temperatures with model levels at the beginning and end of time assimilation

window after carrying out VDA. It is interesting to notice that the above rms error

is reduced by one order of magnitude at the beginning of time assimilation window
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while by 1.5 orders magnitude at the end of time assimilation window. The different

reduction in rms errors indicates that our metric for the cost function is not optimal.

The consequence is that the shape of the cost function can become strongly elliptic

with respect to the metric used and the gradient of the cost function can even become

almost orthogonal to the direction of the minimum.

The above experiments imply that the longer the assimilation period, the slower

the convergence rate. The slower convergence rate of the minimization in the case

of longer assimilation window results from the worsening of the conditioning of the

Hessian matrix due to the longer model integration. Thus the use of a longer as-

similation window will require more computation not only due to a longer model

integration interval but also due to a slower convergence rate. There should exist an

optimal assimilation length such that the minimization can retrieve the best initial

condition from the observations and the dynamics in the model equations. An inves-

tigation in this direction will be very useful for operational implementation of 4-D

VDA in NWP, along with selective time weighting of the observations.

5.4.2 Numerical results with randomly perturbed initial conditions

The experiments are devised as follows: the model-generated values starting from

an initial condition taken as an analysis of the real observational data at 0 UTC 1 June

1988 are used as observations and the initial guess is obtained by adding a random

perturbation of the above initial condition to itself. The random perturbations are

obtained by using a standard library randomizer RANF on CRAY-YMP and the

magnitudes of the perturbations are at most 10% of the original. Again, we know

exactly what the solution is, and the value of the cost function at the minimum

must be zero. All the random perturbations used in this chapter are of an uniform

distribution.
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As in the previous subsection we first consider a case where the length of the

assimilation is only one hour and the observations are available at every time step. Fig.

5.8 shows that the VDA performs successfully. After 65 iterations, the normalized

cost function is reduced by more than 8 orders of magnitude while the normalized

norm of the gradient is reduced by 3.8 orders of magnitude.

From Figs. 5.9 and 5.10 it is observed that after the minimization the maximum

difference values are reduced by four orders of magnitude in all difference fields of

divergence, vorticity, temperature and natural log of the surface pressure. It is also

observed that the reductions in the maximum difference values are different at the

beginning and end of the assimilation window. That is the 4-D VDA is more capable

to retrieve information in the observations and in the dynamics of the model at the

end of the assimilation window for our test problem. It is clear that the 4-D VDA

works equally well with either shifted or randomly perturbed initial conditions.

5.4.3 Impact of horizontal diffusion

We have mentioned that the FSUGSM is used in its adiabatic version without

any physical parameterizations package. Only horizontal diffusion of vorticity, diver-

gence and temperature terms is retained. The horizontal diffusion terms impact the

minimization process [114, 207]. We describe now the impact of these terms on the

VDA.

A Laplacian-type of horizontal diffusion is included in the prognostic equations for

the vorticity, divergence and temperature fields, respectively. Thus the diffusion is of

the form K∇2Q, where K is the diffusion coefficient and Q is vorticity or divergence

or temperature. This diffusion is included primarily for numerical reasons, to suppress

the growth of the amplitudes of higher wavenumber components during the forecast.

This phenomenon, called spectral blocking, has been discussed by Machenhauer [125].

It is caused by neglecting the interactions between waves within the truncation limit

115



with those waves which lie outside the truncation limit. The diffusion is applied in

spectral space, in an implicit manner (i.e. to the prognostic variables at time level t+

∆t) to avoid the growth of a computational mode (linear instability). The numerical

values of the diffusion coefficients for vorticity, divergence and temperature fields are

6.0 × 1015 and 6.0 × 1016 for weak and strong horizontal diffusions, respectively.

The same experiments as described in Section 5.4.4 where observations are avail-

able at every time step were performed again with strong horizontal diffusion terms

and without horizontal diffusion terms. The experimental results obtained without

the horizontal diffusion terms and with the strong horizontal diffusion terms present

are very similar to these experimental results obtained with weak horizontal diffusion

terms. The variations (Fig. 5.3) of the log of the scaled cost function (Jk/J0) and

scaled gradient norm (‖~gk‖/‖~g0‖) with the number of iterations in the minimization

process are almost identical to these (also see Fig. 5.3) obtained when weak hori-

zontal diffusion terms are applied to the model. Table 5.1 indicates that rms errors

of temperature at different model levels when no diffusion, weak or strong horizontal

diffusion terms are applied in the model, respectively. It is observed that the rms

errors obtained when weak horizontal diffusion terms are applied in the model are

uniformly smaller than these obtained with no diffusion or strong horizontal diffusion

terms present in the model. When strong horizontal diffusion terms are applied in

the model, the rms errors are the largest amongst the rms errors obtained in the three

cases. The maximum and minimum errors occur at the top and the bottom levels,

respectively.

All these results indicate that when weak horizontal diffusion terms are included

in the adiabatic version of the FSUGSM the minimization yields a more accurate

solution of the VDA problem, but when the horizontal diffusion terms become large,

the minimization may yield a less accurate solution of the VDA problem (see Fig.5.3).
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5.4.4 Impact of observations distributed in time

Here we will investigate the impact on the VDA of having a set of observations

distributed in time. Indeed, this experiment allows us to evaluate the ability of 4-D

VDA to use information contained in the dynamics.

The experiments carried out below follow the same pattern as those described in

Subsection 5.4.1 except that the number of observations is different. The impacts of

three different sets of observations, those available at every time step, those available

at the beginning and end, and those available at the end of assimilation window are

investigated.

If the observations are available at the beginning and end of the assimilation

period, then the cost function assumes the following form

J(U) =
1

2
{W < ~Xk(tf ) − ~Xo(tf), ~Xk(tf ) − ~Xo(tf) >

+ W < ~Xk(t0) − ~Xo(t0), ~Xk(t0) − ~Xo(t0) >}, (5.26)

Fig 5.13 indicates that after 65 iterations, the normalized cost function and the

normalized norm of the gradient are reduced by 3.5 and 1.7 orders of magnitude,

respectively. These reductions are larger than the reductions observed in the case

where the observations are available at every time step (See Fig. 5.3).

As shown in Fig 5.14, the rms errors between the retrieved and exact temperatures

at different levels are reduced by two orders of magnitude at the beginning of time

assimilation window and by slightly more than two orders of magnitude at the end

of time assimilation window. Similar reductions at the beginning and end of time

assimilation window indicate that the cost function defined by Eq. (5.26) leads to

more balanced retrievals than the one defined by Eq. (1.3).

It is noted that in Figs. 5.12 and 5.6, after the minimization the maximum differ-

ence values of all difference fields of divergence, vorticity, temperature, and natural

log of surface pressure are uniformly reduced by two orders of magnitude. The de-
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creases in the maximum difference values are one order more than these observed in

Fig. 5.5 where the observations are available at every time step.

We also carried out one experiment where the observations are available every two

hours, i.e. the observations are available at times 0, 2, 4 and 6h UTC June 1 1988.

The results (not shown) are very similar to the results when the observations are

available at every time step. This indicates that the impact of having observations

during the middle of the assimilation window is weak.

The above results imply that the more observations we add, the smaller is the

saturation in the retrieval of the reference fields. This phenomenon has also been

observed by Thépaut et al. [207].

5.5 Conclusions

4-D VDA with an adiabatic version of the FSUGSM T-42 is presented here. First,

we demonstrated the numerical feasibility of the 4-D VDA with a realistic spectral

model with horizontal resolution (triangular truncation) T-42 and 12 vertical levels.

Second, we investigated both the impact of horizontal diffusion and that of obser-

vations distributed in time. The experimental results reported here together with

the results of Navon et al. [141], Thépaut et al. [210] and Courtier and Talagrand

[36] indicate the great potential of 4-D VDA for application to operational 3-D NWP

models.

In this chapter, the weighting and scaling matrices were calculated from the ob-

servational fields and the initial guess fields. A reasonable reduction in cost function

was achieved, and the quality of the retrieval (i.e., the retrieved initial conditions

based on both observational and dynamical information) is satisfactory. The results
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where horizontal diffusion terms are retained in the adiabatic FSUGSM yield an im-

provement of the accuracy of the retrieved initial condition since the diffusion terms

suppress the growth of the amplitudes of higher wavenumber components.

Through different initial conditions and different scenarios of sets of observations

distributed in time, we demonstrate the efficiency of the 4-D VDA in extracting the

information contained in the dynamics of the model together with the information

contained in the observations. Conditioning is an important factor for an operational

implementation. The dynamics of the model may lead to different reductions of rms

errors at different times and the loss of the conditioning of the problem, i.e. the shape

of the cost function may become strongly elliptic with respect to the non-optimal

metric used and the gradient can even become almost orthogonal to the direction of

the minimum. The solution to this problem is to obtain an adequate knowledge of

the structure of the Hessian of the cost function. It seems that the SOA application

may be an efficient but very costly way to obtain information about the spectrum of

eigenvalues of the Hessian of the cost function with respect to the control variables.

Many issues related to the 4-D VDA are currently under investigation, such as its

formulation [37], the relationship of the 4-D VDA and sequential estimation methods

[170] and the definition of the cost function etc. A report on the state of art of

these research issues may be found in the proceeding of a workshop on variational

assimilation, with special emphasis on three-dimensional aspects (ECMWF, U.K.,

1993).
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Figure 5.1: Verifications of the correctness of the tangent linear model: (a) variation
of ψ with logα, (b) variation of log |ψ − 1| with logα.
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Figure 5.2: Verifications of the correctness of the gradient calculation using Taylor
expansion: (a) variation of φ with logα, (b) variation of log |φ− 1| with logα.
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Figure 5.3: Variations of the log of the scaled cost function (Jk/J0) and scaled gradi-
ent norm (‖~gk‖/‖~g0‖) with the number of iterations. The lengths of the assimilation
window are one (solid line) and six (dash (with weak diffusion), dotted (with strong
diffusion) and long dash (without diffusion) lines) hours and the observations are
available at every time step.
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Figure 5.4: Dotted and long dash lines denote the log of rms errors between the
initial (guess) and exact temperatures at the beginning and end of time assimilation
window before variational data assimilation. Solid and dash lines denote the log
of rms errors between the retrieved and exact temperatures at the beginning and
end of time assimilation window after variational assimilation. The observations are
available at every time step and the initial guess is the analysis of the observational
fields at 0 UTC 1 June 1988.
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Figure 5.5: Divergence (top left), vorticity (top right), temperature (bottom left)
natural log of surface pressure (bottom right) difference fields between the retrieved
and reference fields at level 8. The reference and starting fields are the analysis of the
observational fields of divergence, vorticity, temperature and natural log of surface
pressure at 0 and 6 UTC 1 June 1988, respectively. The observations are available
at every time step.
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Figure 5.6: Divergence (top left), vorticity (top right), temperature (bottom left)
natural log of surface pressure (bottom right) difference fields between starting and
reference fields at level 8. The starting and reference fields are the analysis of the
observational fields of divergence, vorticity, temperature and natural log of surface
pressure at 0 and 6 UTC 1 June 1988, 1988, respectively.
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Figure 5.7: Same as Fig. 5.5 except the observations are available at the end of the
assimilation window and the length of the assimilation is 1 hour.
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Table 5.1: Rms errors of temperature at different model levels. Results in the second,
third and fourth columns are the rms errors when no, weak and strong horizontal
diffusions are included in the model, respectively.

Model levels rms1 rms2 rms3

1 0.25333 0.22312 0.23611

2 0.12962 0.11712 0.12267

3 0.85620 × 10−1 0.86900 × 10−1 0.64824 × 10−1

4 0.81224 × 10−1 0.83431 × 10−1 0.65400 × 10−1

5 0.81658 × 10−1 0.88145 × 10−1 0.67527 × 10−1

6 0.91402 × 10−1 0.98518 × 10−1 0.82567 × 10−1

7 0.12172 0.11732 0.12770

8 0.14343 0.13726 0.14319

9 0.15139 0.14624 0.15058

10 0.15543 0.15202 0.15642

11 0.18852 0.18093 0.19081

12 0.23645 0.22469 0.24192
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Figure 5.8: Same as Fig. 5.3 except the initial fields are randomly perturbed fields.
The length of the assimilation window is 1 hour and the observations are available
at every time step of the assimilation window.
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Figure 5.9: Divergence (top left), vorticity (top right), temperature (bottom left)
natural log of surface pressure (bottom right) difference fields between randomly
perturbed and reference fields at level 8. The randomly perturbed fields are the
randomly perturbed fields of the analysis of the observational fields of divergence,
vorticity, temperature and natural log of surface pressure at 0 UTC 1 June 1988.
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Figure 5.10: Same as Fig. 5.5 except the length of the assimilation window is one
hour starting from the randomly perturbed initial conditions.
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Figure 5.11: Same as Fig. 5.5 except the length of the assimilation window is one
hour.
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Figure 5.12: Same as Fig. 5.5 except the observations are available only at the
beginning and end of assimilation window.
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Figure 5.13: Same as Fig. 5.3 except the observations are available only at the
beginning and end of assimilation window and the length of the assimilation window
is six hours.
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Figure 5.14: Same as Fig. 5.4 except The observations are available only at the
beginning and end of the assimilation window.
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CHAPTER 6

VARIATIONAL NUDGING DATA ASSIMILATION

6.1 Introduction

Among the 4-D data assimilation approaches, variational data assimilation (VDA)

nudging data assimilation (NDA) [195], variational continuous assimilation (VCA)

[52, 235], Kalman-Bucy and extended Kalman-Bucy filtering methods [29, 30, 31, 43,

163, 90, 91, 212] are considered to be five of the most promising techniques capable

of utilizing the ever growing number of asynoptic observations. Briefly, the VDA

method seeks to find an optimal initial condition and /or boundary conditions which

minimizes in the least square sense the differences between the model solution and

observations in a certain assimilation time interval [36, 44, 108, 151, 175, 218, 215].

It uses an optimal control approach based on adjoint model integration to obtain the

gradient of the cost function, with respect to the control variables for the minimization

procedure efficiently [177]. This approach is cheaper than that of using an explicit

finite-difference approximation for the gradient when large-dimensional models are

involved. Nevertheless, the cost of the VDA method for real distributed data is still

prohibitive for operational applications. Additional research is required to improve

the rate of convergence of the minimization part of the algorithm by proper scaling

and weighting as well as developing efficient parallel algorithms for VDA. Other issues

related to VDA concern determining the optimal length of the assimilation window,

the treatment of on-off physical processes such as large-scale precipitation and deep

cumulus convection [9, 231, 237, 216], and the control of high-frequency gravity-wave

oscillations [226, 230], to mention but a few. Moreover, the adjoint VDA method may

also be used to perform parameter estimation and sensitivity analysis.
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The NDA method relaxes the model state towards the observations during the

assimilation period by adding a non-physical diffusion-type term to the model equa-

tions. The nudging terms are defined as the difference between the observation and

model solution multiplied by a nudging coefficient. The size of this coefficient is cho-

sen by numerical experimentation so as to keep the nudging terms small in comparison

with the dominant forcing terms in the governing equations, in order to avoid the re-

bounding effect that slows down the assimilation process, yet large enough to impact

the simulation. NDA has been successfully used on global scale ([98, 122, 124]) and

in a wide variety of research applications on mesoscale models ([47, 88, 172, 217] etc).

The NDA method can be thought of as an iterative simplified approximation to the

Kalman filter (KF) [119, 122]. The NDA method is a flexible assimilation technique

which is computationally much more economical than the VDA method. However,

results from NDA are quite sensitive to the ad hoc specification of the nudging relax-

ation coefficient, and it is not at all clear how to choose a nudging coefficient so as to

obtain an optimal solution (the theory and examples of NDA are provided in section

6.2).

VCA [52, 235] considers the forecast model error by adding to the right hand sides

of the model equations given by Eq. (1.4) a correction term λφ, i.e. a product of a

prespecified time dependent variable λ and a spatially dependent variable φ,

∂ ~X

∂t
= F ( ~X) + λφ. (6.1)

The form of λ controls the distribution of the correction over the assimilation window.

The objective of the VCA technique is to find the optimal φ which minimizes the cost

function. Note that φ contains the same number of degrees of freedom as the initial

state. The VCA is similar to the NDA. However, in the VCA, the correction varies in

time only in a prespecified manner. The correction is calculated to optimally fit the
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data throughout the assimilation window, rather than relaxing the solution toward

the values at the observation time.

Variational nudging data assimilation (VNDA, which is called optimal nudging

data assimilation in the work of Zou et al. [229]) combines the aforementioned data

assimilation schemes in the most efficient way. The original idea of optimal nudg-

ing data assimilation was put forward by Le Dimet (personal communication). A

parameter-estimation approach is used in the framework of the VDA algorithm to

simultaneously determine the best initial conditions for numerical weather prediction

(NWP) and optimal coefficients for the NDA scheme. The goal is to find the best

initial conditions and optimal nudging coefficients which best assimilate the given

observations. It is well known that the best nudging coefficients are those related

to a KF in a linear system of equations. Applications of the KF technique to the

assimilation of meteorological (or oceanographical) observations has been studied by

several authors [31, 43, 163, 65, 66, 67, 68, 171], and present operational NDA proce-

dures can be described as degraded forms of the KF. However, the KF is very costly

to implement in practice [31, 56]. In Appendix E, the extended KF [163] and the

relationship amongst the KF, VNDA and NDA approaches are described.

We can obtain optimal nudging coefficients in a much more economical way by

using the VDA method in a parameter estimation mode; this allows the adjusting

of variables other than the initial conditions for either linear or nonlinear systems

and employs an adjoint model for gradient calculation. Parameters in the numerical

weather prediction model can easily be incorporated in the adjoint VDA procedure

and serve as additional control variables. The variational algorithm is formulated here

using the nudging coefficients as the control parameters. The nudging coefficients are

estimated so that the model solution is as close as possible to the observations.

In this chapter, we present the results of an application of the VNDA to the

FSUGSM in its full-physics diabatic operational form. The gradient of the cost func-
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tion with respect to the initial conditions is approximately obtained by integrating

the adjoint model of the adiabatic version of the FSUGSM [219]. This introduces

an error in the gradient calculation but also opens a door for data assimilation of

the most sophisticated forecast models by employing imperfect adjoint models. The

nudging term included in the model equations takes the model error into account.

The nudging term also plays a role in improving the conditioning of the cost function

and thus results in a faster convergence of the minimization process.

The FSUGSM and all its physical processes have been described in Chapter 4

and Appendix F, respectively. In subsections 6.2 and 6.2.3, some simple examples

of the NDA are first presented and then the NDA and VNDA are described for a

general model, respectively. Computational details and numerical results are shown

in section 6.3. A comparison of estimated nudging, optimal nudging and variational

data assimilation is provided in section 6.3.3. Conclusions as well as topics for further

research related to the 4-D VDA with FSUGSM are presented in section 6.4.

6.2 Nudging data assimilation

6.2.1 Some simple examples

In order to get a feeling for the effects of nudging, we consider a few very simple

cases in this subsection.

In NDA there is a preforecast integration period during which model variables are

driven toward the observations by extra forcing terms (nudging terms) in the model

equations. When the actual initial time is reached, the nudging terms are dropped

from the model equations and the forecast proceeds. The principal objective is to

bring the data and the model in harmony and provide a relatively noise-free start

[81]. The schematic representation of the assimilation-forecast cycle of the NDA is

provided in Fig. 6.2.
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The equations for a particular gridpoint variable α may be expressed in the form

∂α

∂t
= F +N(α, t)ε[α(0) − α], (6.2)

where F represents the usual terms in the model equations; N(α, t) is a nonnegative

nudging coefficient; and ε, a positive weight factor ≤ 1, is a confidence factor with

respect to accuracy of the gridpoint value α(0)(t) which is a best estimate based upon

observations. If α(0)(t) is assumed to be the true value, ε would be 1.

First assume that the physical forcing is zero, and further that N is constant and

ε = 1. Then (6.2) reduces to
∂α

∂t
= N [α(0) − α], (6.3)

or

α = α0e
−Nt +Ne−Nt

∫ t

0
NeNtα(0)dt, (6.4)

where t = 0 represents the beginning of the preforecast period and α0 is the value of

α at t = 0. If α(0)(t) is assumed to be constant in time toward which α is nudged,

the solution of (6.4) is

α = α(0) + (α0 − α(0))e−Nt. (6.5)

Thus α approaches the observed value α(0) as time passes, though of course never

reaching it in a finite time T .

As a second case assuming the atmosphere and also the observations are changing

linearly with time [i.e., α(0)(t) = α
(0)
0 + at]. Then the solution for this case is

α = α(0)(t) + [α0 − α
(0)
0 ]e−Nt − a

N
(1 − e−Nt). (6.6)

In this instance it is seen that the initial error, if such exists, is damped toward zero

with increasing time (second term on right-hand side) but the third term approaches

−a/N . Thus at best α approaches the observationally determined value α(0)(t) only

to within the constant a/N , which is the ratio of the rate of change of α(0) to nudging

constant. Also for a large N , the last term will be small.
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The preceding simple cases have been mainly concerned only with a simple vari-

able rather than a complete system of equations and the physical forcing has been

omitted. In order to treat a more complete system analytically, shallow water equa-

tions with nudging terms added are linearized about a state of rest with constant

Coriolis parameter f and no variation in the y-direction [88]. Assuming periodic

disturbances of the form

X̄ ′ =
∑

m

X̂m exp(ikmx),

where X̄ ′ is a column vector of the perturbation quantities u′, v′ and h′, km = 2π/Lm,

is the mth wavenumber, Lm is the wavelength and the X̂m are the corresponding

amplitudes, the equations for the amplitudes take the form
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ĥm













=













Nuû
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(6.7)

or
∂X

∂t
+ AX = B. (6.8)

Assuming the nudging coefficients and “observations” do not vary in time, the matrix

A and vector B are constants, and the solution is given by a constant vector, A−1B,

and a time-varying part:

X = A−1B +
3

∑

j=1

Cje
−σj t, (6.9)

where σj are the eigenvalues of A and the Cj are constant vectors that depend on

the initial conditions X(0) and A−1B. The Cj can be determined given X(0) and

X(0) by placing t = 0 in (6.9). In the case where the constant “observations” are in

geostrophic balance, that is, û(0)
m = 0 and v̂(0)

m = (igkm/f)ĥ(0), then X (0) = A−1B;

hence

X −X (0) = C1e
−σ1t + C2e

−σ2t + C3e
−σ3t, (6.10)
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Assuming further that the nudging coefficients are all equal to N , Eq. (6.10) leads to

a stationary mode σ1 = N , σ2 = N + iν and σ3 = N− iν, where ν2 = ω2 +f 2. Here ν

is the frequency of inertial gravity waves and ω2 = k2
mgH. Thus there is a stationary

mode damped by nudging coefficient and two damped inertial gravity modes with a

resulting approach toward the observational values X (0).

6.2.2 The basic theory of nudging data assimilation

An implicit assumption made in VDA is that the model exactly represents the

state of the atmosphere. However, this assumption is clearly not true because any

numerical model only approximately represents the state of the atmosphere.

The nudging data assimilation (NDA) technique introduced by Anthes [4] consists

in achieving a compromise between the model and observations by considering the

state of the atmosphere to be defined by

∂ ~X

∂t
= F ( ~X) +G( ~Xo − ~X), (6.11)

where G is a diagonal matrix with Gq, GT , GD, Gζ and GS as its diagonal sub-

matrix entries representing adjustable nudging coefficients for the surface pressure,

temperature, divergence, vorticity and moisture fields, respectively.

Together with the initial condition

~X(t0) = U, (6.12)

the system (6.11) has an unique solution ~X(U,G).

Let us consider a perturbation U ′ on the initial condition U in Eq. 6.12. The

resulting perturbation on the variable ~X, X̂ is obtained from Eqs. (6.11) and (6.12)

as

∂X̂

∂t
=
∂F

∂ ~X
X̂ −GX̂, (6.13)

X̂(t0) = U ′. (6.14)
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The main difficulty in the NDA scheme resides in the estimation of the nudging

coefficient G [194]. If G is too large, the fictitious diffusion term will completely dom-

inate the time tendency and will have an effect similar to replacing the model data

by the observations at each time step. Should a particular observation have a large

error that prevents obtaining a dynamic balance, an exact fit to the observation is

not required since it may lead to a false amplification of observational errors. On the

other hand, if G is too small, the observation will have little effect on the solution.

In general, G decreases with increasing observation error, increasing horizontal and

vertical distance separation, and increasing time separation. In the experiment of

Anthes [4] a nudging coefficient of 10−3 was used for all the fields for a hurricane

model and was applied on all the domain of integration. In the experiment of Krish-

namurti et al. [98] the relaxation coefficients for the estimated NDA experiment were

kept invariant both in space and time, and their values were simply determined by

numerical experience. The following values were used:

Gζ , Gq = 10−4s−1 (6.15)

GD = 0.5 × 10−4s−1,

i.e. the vorticity, divergence and the pressure tendency fields are subjected to the

Newtonian relaxation. The implicit dynamic constraints of the model then spread

the updated information to other variable fields (temperature and moisture fields)

resulting eventually in a set of balanced conditions at the end of the nudging period.

We employ a parameter-estimation approach [8] designed to obtain the best initial

conditions and optimal nudging coefficients G∗ [229]. They are optimal in the sense

that the difference between the model solution and the observations will be small.

The values in (6.16) will be used both as the nudging coefficient for estimated NDA

experiment (usual NDA using ad hoc nudging parameters) and as the initial guess
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in a variational parameter-estimation approach aimed at obtaining the best initial

conditions and optimal nudging coefficients.

6.2.3 Variational nudging data assimilation

By fitting the model solutions to the observational data, the unknown parameters

of the model can be obtained simultaneously by minimizing a cost function that

measures the misfit between the model results and observations, in which the model

parameters are the control variables along with the initial condition vector in our case

[45, 104, 188]. For example, the barotropic gravity-wave speed in a two-dimension

reduced-gravity, linear-transport model for the equatorial Pacific Ocean was used as

a parameter control variable [193]. In the work of Panchang and O’Brien [159] the

friction coefficient for a one-dimension tidal-flow model was the parameter optimally

estimated from observations. In the work of Lardner et al. [104], the bottom drag

coefficient and depth correction for a two-dimensional hydrodynamical model of the

Arabian Gulf were the parameters optimally estimated.

The application of the variational approach to determine model parameters is

conceptually similar to that of determining the initial conditions. In the following we

will present a brief illustration of the method.

For the VNDA, the cost function J can be defined as

J(U,G) =
1

2

M
∑

i=0

< W ( ~Xi − ~Xo
i ), (

~Xi − ~Xo
i ) > + < K(G− Ĝ), G− Ĝ >, (6.16)

where Ĝ denotes the estimated nudging coefficients and the K is specified weighting

matrix. Here observations are assumed to be available everywhere on all model grid

points for simplicity. For a more realistic case, a transform operator C from ~X to ~Xo

should be included in (6.16) and hence G will no longer be a diagonal matrix with

constant terms in each block. The second term plays a double rule. On one hand it

ensures that the new values of the nudging parameters are not too far away from the
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estimated quantity. On the other hand it enhances the convexity of the cost function

since this term contributes a positive term, K, to the Hessian matrix of J [193].

The solutions of the VNDA procedure can be defined by the best initial condition

U∗ and optimal nudging coefficients G∗ such that

J(U∗, G∗) ≤ J(U,G), ∀G, U. (6.17)

The problem of extracting the dynamical state from observations is now identified as

the mathematical problem of finding initial conditions or external forcing parameters

that minimize the cost function.

Owing to the dynamical coupling of the state variables to the forcing parameters,

the dynamics can be enforced through the use of a Lagrange function constructed by

appending the model equations to the cost function as constraints, thus avoiding the

repeated application of the chain rule when differentiating the cost function. If the

implicit time differencing equations of Eq (6.11) are given by the following equations

~X1 = ~X0 + ∆tF ( ~X0) + ∆tG( ~Xo
1 − ~X1), (6.18)

~Xi+1 = ~Xi−1 + 2∆tF ( ~Xi) + 2∆tG( ~Xo
i+1 − ~Xi+1), (6.19)

for i = 1, ..., M − 1, then the Lagrange function may be defined by

L = J(U)

+ < P0, ~X1 − ~X0 − ∆tF ( ~X0) − ∆tG( ~Xo
1 − ~X1) >

+
M−1
∑

1

< Pi, ~Xi+1 − ~Xi−1 − 2∆tF ( ~Xi) − 2∆tG( ~Xo
i+1 − ~Xi+1), (6.20)

where Pi is a vector of Lagrange multiplies, which are identical to the adjoint model

variables [206]. The Lagrange multiplies are not specified but computed in determin-

ing the best fit. At the minimum point the gradient of the Lagrange function must

be zero. This leads to the following first-order condition:

∂L

∂Xi

= 0, (6.21)
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∂L

∂Pi

= 0, (6.22)

∂L

∂G
= 0, (6.23)

The solution of Eqs (6.21-6.23) is called the stationary point of L. Eq (6.23) results

in (the notation here has some problems)

∇GJ − ∆tP0( ~X
o
1 − ~X1)

−
M−1
∑

1

2∆tPi( ~X
o
i+1 − ~Xi+1), (6.24)

which yields the gradient of the cost function with respect to G

∇GJ = ∆tP0( ~X
o
1 − ~X1)

+
M−1
∑

1

2∆tPi( ~X
o
i+1 − ~Xi+1), (6.25)

Eq (6.22) recovers discrete form of the original model Eq (6.11), while (6.21) yields

the adjoint equations

PM−1 + 2∆tG∗PM−1 +W ( ~XM − ~Xo
M) = 0, (6.26)

PM−2 + 2∆tG∗PM−2 − 2∆t
( ∂F

∂ ~XM−1

)∗
PM−1 +W ( ~XM−1 − ~Xo

M−1) = 0, (6.27)

and

Pi−1 + 2∆tG∗Pi−1 − 2∆t
( ∂F

∂ ~Xi

)∗
Pi − Pi+1 +W ( ~Xi − ~Xo

i ) = 0, (6.28)

for i = M − 2, M − 3, ..., 1.

As we know from previous chapters, the value of the adjoint variable vector at the

initial time is the gradient of the cost function with respect to the initial conditions

∇UJ = P (t0). (6.29)

Therefore the gradient of the cost function with respect to both the initial conditions

and the nudging coefficients is

∇J = (∇UJ,∇GJ)t. (6.30)
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Having obtained the value of the cost function J by integrating the model (6.11)

forward, and the value of the gradient by integrating the adjoint Eqs (6.26, 6.27,

6.28) backwards in time, any efficient large-scale unconstrained minimization method

may be employed to minimize the cost function with respect to the vector of control

variables and finally obtain the best initial conditions and an optimal parameter

estimation.

It is worth noting that if G is zero the Eqs (6.26, 6.27, 6.28) reduce to the usual

first order adjoint equations and the VNDA reduces to the VDA. In the case in which

the cost function is defined as an integral, the derivation of the gradient of the cost

function with respect to the nudging coefficients is provided in Appendix D.

6.2.4 Identifiability and stability of parameter estimation

If the parameter estimation is going to be successful, an important question must

be addressed; under what conditions can one expect the proposed estimation method

to yield unique and stable results [22, 23, 24, 104, 153, 159, 193]? Now we discuss

these issues.

Strictly speaking, if the method is going to work, the problem should be well-

posed. The inverse problem is often ill-posed, but there are situations under which

a meaningful solution can be found, although in a limited sense. It will be therefore

important to be able to recognize the circumstances which allow a solution of the

problem to be found. The inverse problem can be defined as follows: let a functional

relationship ~X = f(G) be given between a parameter vector G which in our case is

the nudging coefficients and ~X where ~X represents the state variable of our problem.

The inverse problem will then be to determine the nudging coefficients G on the basis

of ~X and the inverse relationship G = R( ~X). This problem is said to be well-posed

if and only if (1) to every ~X there corresponds a solution G; i.e. a solution exists; (2)

the solution is unique for any given ~X; and (3) the solution depends continuously on
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~X; i.e. the solution is stable. If the inverse problem fails to satisfy one or more of

these three requirements, it is said to be ill-posed.

Uniqueness and parameter identifiability [93] can be defined in the following way.

Let ~X1 = f(G1) and ~X2 = f(G2) be two solutions of the forward problem, and

G1 = R( ~X1) and G2 = R( ~X2) be two solutions of the inverse problem, then

‖ ~X1 − ~X2‖ = 0 ⇔ ‖G1 −G2‖ = 0, (6.31)

where ‖ · ‖ represents a norm over the appropriate space. In practical problems ~X is

only given at discrete points in space and time, and R represents a minimization of a

functional J as given in previous subsection. While uniqueness refers to the inverse

problem, R, identifiability refers to the forward problem, f . If two sets of parameters

lead to the same function ~X, the parameters are said to be unidentifiable. Uniqueness

on the other hand is concerned with the problem whether different parameters may

be found from a given ~X, if so the parameters are nonunique.

Stability can be defined in the following way. For every ε > 0 there exists a δ such

that for G1 = R( ~X1) and G2 = R( ~X2) one has

‖ ~X1 − ~X2‖ < δ ⇒ ‖G1 −G2‖ < ε. (6.32)

Eq. (6.32) states that small errors in the variables must not lead to large changes in

the computed parameter. Tarantola [203] discusses the concepts of uniqueness and

stability in more detail.

The problems of identifiability and stability can be solved by reducing the number

of parameters to be estimated. In the hydrological literature the most common way

to do this is to approximate the parameters by a known class of functions depending

on a finite number of parameters. If the parameter dimension is not reduced, it may

be difficult or even impossible to determine the spatial structure of the parameter

field. Instability is often characterized by the fact that during the solution process
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the parameter values are bouncing back and forth between high and low values [193].

Lardner et al. [104] pointed out that in most cases it was necessary to include a term

in the cost function that penalizes large variations in the estimated parameters.

The uniqueness of the solution implies that the cost function J is convex. The

requirement for this condition is that the Hessian matrix is positive definite [73].

Writing the cost function as

J = JU + JG, (6.33)

where JU represents the first term in Eq. (6.16), while JG represents the last term or

the term representing prior information about the parameters (nudging coefficients).

The Hessian is represented by

∂2J

∂G2
=
∂2JU

∂G2
+
∂2JG

∂G2
. (6.34)

The first term gives

∂2JU

∂G2
=

M
∑

i=0

< W
∂ ~Xi

∂G
,
∂ ~Xi

∂G
> + < W ( ~Xi − ~Xo

i ),
∂2 ~Xi

∂G2
>, (6.35)

which can be positive or negative. So the first term in the minimization criterion does

not guarantee that the cost function is convex. The last term in Eq. (6.34) gives

∂2JG

∂G2
= K, (6.36)

which is clearly a positive term. Adding prior information about the parameters

therefore increases the chance that the cost function will be convex. Of course there

is no guarantee that the term in Eq. (6.36) will make the Hessian positive definite.

Carrera and Neuman [23] discuss the effect of prior information in a few simple

examples of estimation of aquifer parameters. Their examples clearly show that the

addition of prior information leads to unique solutions.
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6.3 Numerical results of the variational data assimilation

The algorithmic procedure of the VNDA assumes the following form:

1. Set the iteration number k = 0 and initialize the state variable ~X and the

nudging coefficient vector G as U0 and G0, respectively, where G0 is given by

(6.16).

2. Test (Uk, Gk) for convergence. If the following convergence criterion is satisfied

‖Gk‖ ≤ ε‖Uk‖, (6.37)

where ε is a predetermined small number, then stop. Otherwise continue.

3. Integrate the model (6.11) forward in time and calculate the value of the cost

function defined by

J(U,G) =
1

2
{W < ~Xk(tf ) − ~Xo(tf ), ~Xk(tf ) − ~Xo(tf ) >

+ W < ~Xk(t0) − ~Xo(t0), ~Xk(t0) − ~Xo(t0) >}, (6.38)

if the observations are available only at the beginning and end of the assimila-

tion window , or defined by Eq (6.16) if the observations are available at every

time step.

4. Integrate the adjoint Eqs (6.26, 6.27, 6.28) backwards in time and calculate

the gradient of the cost function with respect to the control variables U and G

using (6.30).

5. Apply the limited-memory quasi-Newton (LBFGS) large-scale unconstrained

minimization algorithm of Liu and Nocedal [117] to obtain a set of new values

for U and G: Uk+1 and Gk+1. Set k = k + 1 and go to step 2.
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In our experiments, no prior information was presumed (K = 0).

For the nudging terms added to the model, an implicit time-differencing scheme

was used in order to ensure computational stability for any value assumed by the

nudging coefficients. The time integrations are carried out in two steps. The tendency

without the nudging term, ~X∗(t + ∆t), is first calculated. The Newtonian term is

then expressed in finite difference form using the relation

~X(t+ ∆t) − ~X∗(t + ∆t)

2∆t
= G[ ~XO(t+ ∆t) − ~X(t+ ∆t)], (6.39)

or

~X(t+ ∆t) =
~X∗(t + ∆t) + 2∆tG ~XO(t+ ∆t)

1 + 2∆tG
. (6.40)

It is first necessary to obtain the correct gradient of the cost function with respect

to the nudging coefficients in the parameter-estimation procedure before carrying out

the minimization of the cost function. Since otherwise all our calculations will be

erroneous. The Taylor formula applied in the direction G′ = ∇GJ(G) yields

ψ(α) =
J(G+ αG′) − J(G)

αG′t · ∇GJ
= 1.+O(α‖G′‖). (6.41)

For small α but not too close to the machine accuracy, the value of ψ(α) should

be close to one if the gradient ∇GJ is correctly calculated. Fig. 6.1 indicates that

for α between 10−11 and 10−22 an unit value of φ(α) is obtained and therefore the

correctness of the gradient calculation has been verified.

6.3.1 Variational nudging data assimilation with the adiabatic version of

the FSU global spectral model

Before conducting the VNDA with the FSUGSM in its full-physics operational

form, it is important to ensure that the VNDA performs successfully with the adia-

batic version of the FSUGSM since the adjoint model is derived from the adiabatic
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version of the FSUGSM. As stated previously, the gradient calculation is exact except

for computational errors.

The experiments are devised as follows: the model-generated values starting from

an analysis of the real observational data at 6 UTC 1 June 1988 are used as obser-

vations and the initial guess for initial conditions is taken as an analysis of the real

observational data at 0 UTC 1 June 1988. The initial guess for nudging coefficients

is given by (6.16).

The experiments carried out here involved nudging the surface pressure, diver-

gence and vorticity. Figs. 6.6 (dash line) and 6.4 display the variations of the log

of the scaled cost function (Jk/J0) and scaled gradient norm (‖~gk‖/‖~g0‖) with the

number of iterations in the minimization process when the observations are available

at every time step and only at the beginning and end of the assimilation window,

respectively. After either 24 or 18 iterations, the normalized cost function and the

normalized norm of the gradient are reduced by more than 2.5 and 2 orders of mag-

nitude, respectively, irrespective which set of observations is used. At this stage the

prescribed convergence criterion given by (6.37) with ε = 10−5 is satisfied. In the case

where the observations are available at every time step of the assimilation window,

by continuing the minimization process, the scaled cost function and scaled gradient

norm decreased another 2 and 1 orders of magnitude after 65 iterations, respectively.

Both the cost function and the gradient norm continue to decrease even after 65

iterations. We note that due to the nudging effect, it appears that when more obser-

vations are added, the convergence rate becomes faster. The opposite is true for the

VDA experiments carried out in Chapter 5. Comparing Figs. 6.6 and 6.4 with Figs.

5.3 and 5.13, it is observed that the VNDA is indeed much faster than the VDA for

our test problem. In both of VNDA experiments the minimization requires less than

25 iteration to satisfy the prescribed convergent criterion while the minimizations

requires more than 65 iterations to converge in both of the VDA experiments. This
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is due to the fact that the conditioning of the Hessian is improved when a nudging

term is added to the forecast model. These figures indicate that VNDA yields higher

quality solutions requiring much less iterations. If we notice that the only additional

cost for VNDA is three more control variables (nudging coefficients) and the calcula-

tion of the gradient of the cost function with respect to these variables, the VNDA is

really cost effective in obtaining a speed up of the convergence of the minimization

process.

It is a good idea to consider the difference fields between the retrieved fields

and the observation fields before and after the minimization process, since these

difference fields measure the ability of the VNDA to retrieve the observational fields.

Figs. 6.8 and 6.5 show the difference fields between the retrieved fields of divergence,

vorticity, temperature and natural log of the surface pressure and the corresponding

reference (observational) fields at the beginning of the assimilation window after the

minimization process for the two experiments. Comparing with the same difference

fields (Fig. 5.6) before the minimization process, it is observed that after minimization

the maximum difference values are reduced by one order of magnitude in all difference

fields of divergence, vorticity, temperature and natural log of the surface pressure in

both cases.

Figs. 6.3 and 6.7 display the evolution of the nudging coefficients, Gln p, Gζ and

GD, in the VNDA procedure. During the first 15 iterations, all the nudging coefficients

experience a dramatic increase for both cases. After 15 iterations the increases level-

off. The optimal values of the nudging coefficients are provided in Table 6.1.

It is observed that the optimal nudging coefficients are two orders of magnitude

bigger than the initial guesses given by (6.16), which were suggested by Krishnamurti

et al. [98]. By noticing that the horizontal truncation of our experiment (T42) is

smaller than theirs (T106), the values obtained appear to be very reasonable since it
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is general experience that the nudging coefficients increase with decreasing horizontal

resolution.

We note here that the optimal nudging coefficients do not tend to infinity as the

minimization proceeds. This is due to the fact that when the minimization process

proceeds, both the initial state U and the nudging coefficients G are updated and the

optimal solution of the minimization problem is obtained due to the combined effect

of the model dynamics and the nudging term.

We also carried out an experiment starting from the randomly perturbed initial

conditions described in section 5.4.2 with the observations available at every time

step. The results are similar to the results described above and are displayed in Figs.

6.9, 6.10 and 6.11.

All previous experiments were carried out starting from an analysis of the obser-

vational fields of divergence, vorticity, temperature and natural log of surface pressure

at 0 UTC 1 June 1988. These analysis fields are not initialized. One may assume the

existence of spurious gravity waves (high frequency “noise”) in them. The nonlinear

normal mode initialization (NNMI) permits an explicit filtering of the unwanted high

frequency oscillations (implied by the initial data) consistent with the framework of

the particular dynamical prediction model being used. Therefore, in order to inves-

tigate the impact of gravity oscillations on the VNDA, we apply the NNMI to the

above analysis fields and perform the same experiments starting from the resulting

fields of the NNMI. The results are similar to the results described above. Fig. 6.6

(solid lines) shows the results of VNDA when the observations are available at every

time step of the assimilation window. It is clear that there are no sizable differences

whether the VNDA starts from either the analysis of the observational fields or from

the fields initialized by the NNMI, which means there are almost no spurious gravity

waves in the analysis of the observational fields.

152



6.3.2 Variational nudging data assimilation with the FSU global spectral

model in its full-physics operational form

In this subsection, we will apply the VNDA to the FSUGSM in its full-physics

operational form while using the same adjoint model of the adiabatic version of the

FSUGSM to calculate the gradient of the cost function. An implicit assumption

made here is that the gradient of the cost function thus calculated is a reasonable

approximation to the exact gradient such that the VNDA could proceed successfully.

The same experiments as described in subsection 6.3.1 are performed when ob-

servations are available at every time step and only at the beginning and end of the

assimilation window, respectively. In Fig. 6.12 the cost function and the gradient

norm are shown as functions of the number of iterations for all the experiments. The

values of the cost function and gradient norm are normalized by their initial values,

respectively. After 9 iterations the cost function and gradient norm are reduced by

more than 1.8 and 1.7 orders of magnitude, respectively, in the case where obser-

vations are available at every time step of the assimilation window. Based on the

behaviour of the gradient norm and the cost function, the minimization is satisfac-

tory, i.e. the cost function and gradient norm do not decrease significantly after 8

iterations.

In all aforementioned assimilation experiments we have also calculated the cost

functions corresponding to each variable (divergence, vorticity, temperature and pres-

sure). It is noticed that the decreases of the different components of the cost function

are uniform and similar to the decrease in the total cost function.

The nudging coefficients as a function of the number of iterations from the present

experiment are shown in Fig. 6.13. The optimal nudging coefficients obtained in this

case are Gln p = 0.9553 × 10−3, Gζ = 0.6081 × 10−2 and GD = 0.3159 × 10−2. They

are very similar to the corresponding optimal nudging coefficients obtained in the

previous subsection. The behavior of the nudging coefficients as a function of the
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number of iterations is also very similar in all the experiments performed in this

thesis.

It is important to note that, even though an approximate gradient is used in the

minimization, the VNDA works successfully. This may lead to a possible operational

implementation of the 4-D VDA for sophisticated operational models while using a

simplified adjoint model to calculate the gradient. If full adjoint models of the most

complex models in their full-physics operational form were used, the convergence rate

would be improved and the minimum would be different from that obtained using

simplified adjoint models. But it is reasonable to assume that they will not be far

from each other. All these results indicate that the assumption mentioned at the

beginning of this subsection seems to be very reasonable. Courtier et al. [37] and

Zupanski [235] also employed simplified adjoint models to obtain the gradient of the

cost function with respect to control variables while integrating the nonlinear model

in its full-physics operational form. Their results agree with ours.

The moisture field is not part of the control variables vector in the present ex-

periment. Only divergence, vorticity, temperature and natural log of surface pressure

fields are updated explicitly during each iteration of the minimization process. The

moisture field is implicitly updated through the forecast model integrations, i.e. the

impact of the improved fields of divergence, vorticity, temperature and natural log of

surface pressure progressively propagates to the moisture field through the forward

model integrations.
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6.3.3 Comparisons of estimated nudging, optimal nudging and variational

data assimilation

In this section we compare the NDA and VNDA techniques when observations are

available at every time step of the assimilation window. The FSUGSM is used in its

full-physics operational form. The basic experiments that follow consist of four types

of assimilation:

1. A control assimilation without nudging,

2. An assimilation with estimated nudging coefficients as suggested by Krishna-

murti et al. [98],

3. An assimilation with optimal nudging coefficients obtained in subsection 6.3.2

by an optimal parameter-estimation procedure using the adjoint technique,

4. VNDA minimizing a cost function measuring the distance between the model

solution and observations. An overview of the aforementioned assimilations are

displayed in Fig. 6.2.

With the estimated and optimal nudging coefficients we may carry out two parallel

NDAs. For the sake of comparison, and with a view to obtain a better insight into the

ability of the VNDA procedure, we also carried out a similar VNDA experiment. The

ensuing 12 hour integrations from the retrieval are used for carrying out a comparison

with the corresponding results of NDA schemes.

We do not intend to compare the NDA with the VNDA approaches directly since

the two models have their own arbitrariness in the definition of the cost function, the

choice of the minimization algorithm, the determination of the stopping criteria, the

length of assimilation window and the choice of nudging coefficients. However, the

ability to reconstruct as accurately and economically as possible the state of the flow

is of paramount importance.
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Rms errors are computed for the aforementioned assimilation experiments. Dis-

tributions of the rms differences for temperature fields between true solution and the

forecast at the end of the forecast period are displayed in Figs. 6.14, respectively.

As expected [229], the NDA with estimated nudging coefficients yields the poorest

results while the VNDA yields the best results.

6.4 Conclusions

In this chapter we took advantage of the VDA’s ability to perform an optimal

parameter estimation to obtain both optimal nudging coefficients and the best initial

conditions simultaneously. That is the nudging coefficients are part of the control

variables vector. Both the initial conditions and the nudging coefficients are updated

after each iteration of the minimization process. Since at every iteration the model

integration is carried out with current estimated nudging coefficients used in the

nudging term, the conditioning of the Hessian is improved. Thus variational nudg-

ing assimilation results in faster convergence rate compared with the 4-D VDA. The

resulting optimal nudging coefficients can be applied in NDA, thus the term optimal

NDA. The optimal NDA is practically implementable and performs very well in as

far as the convergence and quality of the resulting assimilation state are concerned.

This procedure is much more economical than the VDA approach due to tremendous

computational cost of the VDA. Therefore the optimal NDA is also a good candidate

as a future data assimilation scheme where the observations in a certain period of time

can be effectively incorporated into the model so as to obtain the best initial condi-

tions. The relationship amongst the KF, VNDA and NDA approaches is described in

Appendix E, can also be found in reference [229].

In subsection 6.3.2, we carried out VNDA experiments using the FSUGSM in its

full-physics operational form and using a simplified adjoint model of the adiabatic
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version of the FSUGSM to calculate the gradient approximately. The results thus

obtained are realistic and both the cost function and the gradient norm in all experi-

ments show sufficient decreases. Although the moisture field is not explicitly updated,

the resulting moisture field from VNDA is satisfactory. The main conclusion of this

chapter is that the VNDA could be performed successfully using most sophisticated

models while using a simplified adjoint model to calculate the gradient.

It might be desirable for nudging coefficients G varying both in time as well as

over the horizontal domain and on the different vertical levels. Zou et al. [229]

demonstrated the ability of the VNDA to obtain optimal nudging coefficients varying

in space in the framework of a parameter-estimation approach. In their experiment,

the spatial variability of the optimal nudging coefficients is very small. Therefore,

using constant optimal nudging coefficients for each variable is satisfactory for perfect

observations’ assimilation. When the nudging coefficients have too many degrees of

freedom, physical constraints should be added to the choice of the nudging coefficients.

We will pay special attention to this topics in the future.
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Table 6.1: Optimal nudging coefficients obtained by variational nudging data assim-
ilation when the observations are available at every time step (case 1), and when
the observations are available only at beginning and end (case 2) of the assimilation
window, respectively.

Cases Gζ GD Gln p

1 0.5869 × 10−2 0.3915 × 10−2 0.1730 × 10−2

2 0.5437 × 10−2 0.3921 × 10−2 0.2467 × 10−2
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Figure 6.1: Verification of the correctness of the gradient calculation using Taylor
expansion: (a) variation of φ with logα, (b) variation of log |φ− 1| with logα.
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Figure 6.2: Schematic representation of the assimilation-forecast cycle.
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Figure 6.3: Variation of the nudging coefficients, Gln p (dash line), Gζ (solid line) and
GD (long dash line), with the number of iterations. Both the initial conditions and
the nudging coefficients Gln p, Gζ and GD serve as control variables. The observations
are available only at the beginning and end of the assimilation window.
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Figure 6.4: Variation of the log of the scaled cost function (Jk/J0) and the scaled
gradient norm (‖~gk‖/‖~g0‖) with the number of iterations using LBFGS algorithm.
The observations are available only at the beginning and the end of the assimilation
window.
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Figure 6.5: Divergence (top left), vorticity (top right), temperature (bottom left) and
natural log of surface pressure (bottom right) difference fields between the retrieved
fields and the reference fields at level 8. The starting fields are the analysis fields
of divergence, vorticity, temperature and natural log of surface pressure at 0 UTC 1
June 1988. Both the initial conditions and the nudging coefficients Gln p, Gζ and GD

serve as control variables. The observations are available only at the beginning and
end of the assimilation window.
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Figure 6.6: Same as Fig. 6.4 except that the observations are available at every time
step of the assimilation window. Solid and dash lines indicate the results obtained
starting from the analysis of the observational fields and the resulting fields after
applying the NNMI to it, respectively.
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Figure 6.7: Same as Fig. 6.3 except that the observations are available at every time
step of the assimilation window.
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Figure 6.8: Same as Fig. 6.5 except that the observations are available at every time
step of the assimilation window.
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Figure 6.9: Same as Fig. 6.4 except that the initial guess is the randomly per-
turbed initial conditions, and the observations are available at every time step of the
assimilation window.
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Figure 6.10: Same as Fig. 6.3 except that the initial guess is the randomly per-
turbed initial conditions, and the observations are available at every time step of the
assimilation window.
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Figure 6.11: Same as Fig. 6.5 except that the initial guess is the randomly per-
turbed initial conditions, and the observations are available at every time step of the
assimilation window.
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Figure 6.12: Same as Fig. 6.4 except that the Florida State University global spectral
model in its full-physics form is used, and the observations are available at every time
step of the assimilation window.
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Figure 6.13: Same as Fig. 6.3 except that the Florida State University global spectral
model in its full-physics form is used, and the observations are available at every time
step of the assimilation window.
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Figure 6.14: Solid, long dash and dash lines denote the rms errors between the
forecast and exact temperatures at the end of the forecast period using the VNDA,
ONDA and NDA methods, respectively.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, we have systematically studied 4-D VDA applied to numerical

weather prediction problems, i.e. solving the problems related to finding the best ini-

tial conditions such that the sum of weighted squares of the difference between model

solution and the observations is minimized over a period of time. The 4-D VDA

uses iterative large-scale unconstrained minimization algorithms in the framework of

optimal control theory of PDEs to iteratively find aforementioned best initial condi-

tions to a forecast model. Each iteration of the minimization algorithm requires the

calculation of the gradient of the cost function with respect to the control variables.

Theoretically, this gradient could be calculated by finite-difference approximation or

automatic differentiation. But these approaches are too costly. Here the gradient of

the cost function with respect to the control variables is found by integrating a first

order adjoint model backwards in time from the final time to the initial time of the

assimilation window while introducing the weighted differences between the model

solution and the observations into the adjoint model whenever the observations are

available. This gradient is then used to find a descent direction along which the cost

function could be reduced. A step size will be calculated such that a maximum re-

duction in the cost function in the descent direction is obtained. From the step size

and the descent direction, the approximate initial conditions to the forecast model are

updated and the process of determining the gradient, descent direction, step size and

the updated initial conditions is repeated until the minimization algorithm converges,

i.e. satisfies a prescribed convergence criterion. The updated initial conditions at the
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end of iterative minimization procedure are the best initial conditions minimizing the

cost functional, while satisfying the forecast model equations as a strong constraint.

In Chapters 2 and 3, the thesis focuses on the analysis of the minimization pro-

cess and the improvement of large-scale unconstrained minimization algorithms. Since

these issues are strongly related to the structure of the Hessian of the cost function, a

SOA theory is developed and applied to a shallow water equations model. The SOA

model is similar to the FOA model in form (see Fig. 2.1). Given a perturbation vector

U ′ on the initial condition vector U , the Hessian (H) vector product HU ′ is obtained

by integrating the SOA model backwards in time from the final time to the initial time

of the assimilation window while introducing the first order adjoint variables and the

weighted tangent linear variables into the SOA model at each time step. Comparing

with the finite-difference scheme (3.19), the above adjoint Hessian/vector calculation

strategy yields a more accurate Hessian/vector product since it does not require the

user to select a finite-difference parameter h as the finite-difference scheme does. The

numerical cost of using the SOA approach is roughly the same as that of using the

finite-difference approach, i.e. both approaches require four model integrations and

the numerical cost of each model integration is approximately the same as any other

model integrations. There are many applications of the SOA approach in calculating

the Hessian/vector product. In this thesis, we applied the SOA approach to (a) the

calculation of eigenvalues of the Hessian; (b) the calculation of the sensitivity of the

cost function with respect to observational errors; (c) the implementation of the large-

scale truncated Newton method [134] using a two dimensional limited-area shallow

water equations model. The results presented here demonstrate that (a) the power

method can be efficiently implemented to obtain estimates of the eigenvalues and the

condition numbers of the Hessian matrix with the matrix/vector product calculated

using SOA approach. The variation of the extremal eigenvalues with the number of

the iterations indicates that most changes of the largest eigenvalue occur during the
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first few iterations of the minimization procedure, which might explain why most of

large-scale features are reconstructed earlier than the small scale features in the VDA

retrieval solution during the minimization process [149]. The fact that the smallest

eigenvalues of the Hessians of the cost function remain positive during the minimiza-

tion process indicates the uniqueness of the optimal solution; (b) the sensitivity of

the cost function with respect to observational errors depends on the time when the

errors occur, the specific field containing the errors, and the spatial location where

the errors occur. The cost function is more sensitive to the observational errors occur-

ring at the beginning of the assimilation window, to errors in the geopotential field,

and to errors at these grid point locations where intensive events occur; (c) although

the ATN algorithm and TN algorithm of Nash [134] differ from each other only in

the use of a more accurate Hessian/vector product for carrying out the large-scale

unconstrained optimization required in VDA, the ATN algorithm yields results which

are twice as fast as these obtained by the TN algorithm both in terms of number of

iterations (i.e. convergence rate) as well as in terms of CPU time. Further the ATN

algorithm turns out to be faster than the LBFGS method in terms of CPU time for

the problem tested.

In Chapter 4 we described the FSUGSM in both physical and spectral spaces, its

semi-implicit time differencing algorithm and its vertical discretization. In Chapter

5, the TLM and FOA models of the FSUGSM were first developed and then were

verified for their correctness. The FOA model was then used to obtain the gradient

of the cost function with respect to the control variables. The correctness of the

calculation of this gradient was verified by using a Taylor expansion. Finally, we

conducted a series of experiments to demonstrate the numerical feasibility of 4-D

variational data assimilation with the FSUGSM. The 4- VDA in this chapter starts

from two types of initial conditions: an analysis of the real observational data and a

randomly perturbed initial condition of the above analysis. It is demonstrated that
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the VDA performs successfully with different scenarios of observations distributed in

time irrespective which type of initial conditions is used. The impact of observations

being available at the beginning of the assimilation window is dramatic in so far as

the decrease of the cost function is concerned since information on the entire field is in

effect available. When observations are available both at the beginning and the end of

the assimilation window, adding more observations in the middle of the assimilation

window has only a weak impact on the convergence rate of the minimization process.

It is also demonstrated that the presence of horizontal diffusion in the model yields

a more accurate solution to the variational data-assimilation problem.

In Chapter 6, the model forecast error is considered by adding a non-physical

diffusion-type term (i.e. the nudging term) to the model equations. The magnitude

of this nudging term is also optimally estimated in the process of the minimization

of a cost functional. We took advantage of the VDA’s ability to perform optimal

parameter estimation to obtain both optimal nudging coefficients and the best initial

conditions simultaneously, i.e. the nudging coefficients are part of the control variables

vector. Both the initial conditions and the nudging coefficients are updated after each

iteration of the minimization process. Since at every minimization iteration a model

integration has to be carried out with current estimated nudging coefficients used

in the nudging term, the conditioning of the the Hessian matrix is improved. Thus

variational nudging assimilation results in a faster convergence rate compared with

4-D VDA. The resulting optimal nudging coefficients are applied in the NDA, thus

the term optimal NDA. The optimal NDA is practically implementable and performs

very well in as far as the convergence and quality of the resulting assimilation state

are concerned. This procedure is much more economical than the VDA owing to the

tremendous computational cost of the VDA. Therefore the optimal NDA constitutes

a good candidate for future data assimilation schemes where observations in a certain

time window can be effectively incorporated into the model so as to obtain the best
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initial conditions, i.e. physical initialization. Zou et al. [229] proved this method to

be related to the KF method.

In subsection 6.3.2, we carried out VNDA experiments using the FSUGSM in its

full-physics operational form and using a simplified adjoint model of the adiabatic

version of the FSUGSM to calculate the gradient approximately. The results thus

obtained are realistic and both the cost function and gradient norm in all experiments

show a sufficient decrease. When the physical processes are included in forecast

models, the numerical cost of model integration increases dramatically. Calculation

of the gradient of function using a simplified model reduces the computational cost

of the 4-D VDA at the cost of an error in the gradient. The main conclusion of this

chapter is that the VNDA could be performed successfully using most sophisticated

models while using a simplified adjoint model to calculate the gradient.

The VNDA converges faster than the VDA. It is also easy to implement. But

the numerical cost is still prohibitive for operational implementation of the method.

Preconditioning is an alternative to speed up the minimization process, but it is not

easy to implement in practice. Due to the large dimension and high nonlinearity

of the VDA problems, it is only possible to improve the conditioning to a limited

extent. Therefore it is important to study new ways to formulate the problem and

new algorithms to perform the minimization. Courtier et al. [37] has proposed to

update the perturbations on the basic state instead of updating the state variable

itself (incremental approach). It should be pointed out that the evolution of the per-

turbations is approximately described by the TLM. Thus the formulation is not exact.

But it might be scientifically acceptable. To develop new algorithms, one should con-

sider how to implement Newton’s algorithm in the VDA. Newton’s algorithm has a

quadratic convergence rate. Thus it might be the only algorithm which could lead

to operational implementation of the 4-D VDA before a generation of significantly

faster high performance parallel computers being developed.
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Developing high performance parallel computing algorithms is another alternative

[21, 150]. For instance, in the adjoint truncated Newton algorithm, there are four

model equations involved, namely, nonlinear model integration, TLM integration,

FOA model integration and SOA model integration. Once the basic model integration

is carried out, the TLM integration and FOA model integration can be carried out

in a parallel manner. This strategy will improve the efficiency of the ATN algorithm.

It is also possible to partition the computational domain into subdomains (domain

decomposition) and carry out the VDA in each subdomain in parallel [21, 150], both

for the forward nonlinear model as well as for the linear adjoint model.

177



APPENDIX A

A SIMPLE EXAMPLE WITH EXACT SOLUTIONS

In this appendix we will illustrate the whole process of using adjoint model tech-

niques in the 4-dimensional data assimilation by presenting a very simple linear exam-

ple. Because the example has exact solutions for the model equation, TLM, FOA and

SOA models, the theory introduced in the Chapters 1 and 2 will be clearly illustrated.

Let us consider the following 1-dimensional model equation

∂X

∂t
= −X, (A.1)

X(0) = U, (A.2)

where the time t runs from 0 to 1. Using a direct integration the solution of the model

can be obtained as

X = Ue−t. (A.3)

Let us further suppose that the observations are model generated with the initial

condition

X(0) = 1, (A.4)

then from Eq. (A.3), the observation may be written as

Xo = e−t. (A.5)

Let us define the cost function as

J(U) =
1

2

∫ 1

0
< (X −Xo), (X −Xo) > dt, (A.6)

then

J(U) =
(U − 1)2

4
(1 − e−2). (A.7)
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The first order adjoint model of Eqs. (A.1) and (A.2) may be written as

−∂P
∂t

= −P + (X −Xo), (A.8)

i. e.

−∂P
∂t

= −P + (U − 1)e−t, (A.9)

P (1) = 0, (A.10)

where P is the adjoint variable. The gradient of the cost function with respect to the

initial conditions is given by

∇UJ = P (0). (A.11)

Eq. (A.9) has an analytic solution of the following form

P (t) = Pet − et
∫ t

0
e−τ (U − 1)e−τdτ, (A.12)

= Pet +
(U − 1)

2
(e−t − et), (A.13)

where P is a constant to be determined by the final condition (A.10). Therefore

P = [(U − 1)/2](1 − e−2), and Eq. (A.10) yields

P (t) =
(U − 1)

2
(1 − e−2)et +

(U − 1)

2
(e−t − et), (A.14)

and

P (0) =
(U − 1)

2
(1 − e−2). (A.15)

Eq. (A.15) is exactly the gradient of the cost function (A.7) with respect to the initial

condition U .

Let us now consider a perturbation, U ′, on the initial condition for X, U . The

resulting perturbations for the variables X and P , X̂ and P̂ , are obtained from Eqs.

(A.1), (A.2) and (A.9) as

∂X̂

∂t
= −X̂, (A.16)
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X̂(0) = U ′, (A.17)

−∂P̂
∂t

= −P̂ + X̂, (A.18)

P̂ (1) = 0, (A.19)

Eqs. (A.18)-(A.19) and (A.16)-(A.17) are the SOA equations and the TLM for

the model Eqs. (A.1) and (A.2), respectively. They have the following exact solutions

X̂ = U ′e−t, (A.20)

and

P̂ (t) =
U ′

2
(1 − e−2)et +

U ′

2
(e−t − et), (A.21)

respectively. P̂ (0) = U ′(1−e−2)/2 is exactly the product of the second order derivative

of the cost function with respect to the initial condition X(0) = U and the small

perturbation U ′.

It should be pointed out that only when the original model equations are linear,

the TLM and SOA model yield an exact evolution of the perturbation due to the

perturbation U ′ on the initial condition U and an exact Hessian/vector product,

respectively, but the FOA model always yields an exact gradient of the cost function

with respect to the control variables.

Since the model is linear with respect to the state variable X, the cost function

J is a quadratic function of the initial condition U . If the model is not linear with

respect to the state variable, then the cost function is generally not quadratic in the

initial condition. Say for instance in the above example, let F (X) = −X2, while the

other conditions remain the same, then the model solution is

X(t) =
U

(tU + 1)
, (A.22)

and the cost function may then be written as

J(U) =
1

2

∫ 1

0
(

U

(tU + 1)
− 1

(t+ 1)
)2dt
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=
1

2
[1 + U +

2U

(1 − U)
ln

(U + 1)

2
− (1 + 3U)

2(U + 1)
], (A.23)

which is absolutely not a quadratic function in the initial condition U .
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APPENDIX B

A NONLINEAR MODEL WITH EXACT SOLUTIONS.

This appendix will illustrate the adjoint process by using a quadratic model. It is

emphasized that when the model equations are nonlinear, the corresponding TLM is a

second order accurate approximation to the true evolution of the perturbations due to

the perturbation on the initial condition of the model equations, the FOA model yields

an exact gradient of the cost function with respect to the control variables, and the

SOA model yields a second order accurate approximation to the exact Hessian/vector

product.

Let us now consider the following 1-dimensional nonlinear model equation

∂X

∂t
= −X2, (B.1)

X(0) = U, (B.2)

where time t changes from 0 to 1. The exact solution of the model is

X(t) =
U

(tU + 1)
. (B.3)

If the observations are model generated with the initial condition

X(0) = 1, (B.4)

then from Eq. (B.3), the observations may be written as

X(t) =
1

(t+ 1)
. (B.5)

Let us define the cost function as

J(U) =
1

2

∫ 1

0
< (X −Xo), (X −Xo) > dt, (B.6)
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i.e.

J(U) =
1

2

∫ 1

0
(

U

(tU + 1)
− 1

(t+ 1)
)2dt

=
1

2
[1 + U +

2U

(1 − U)
ln

(U + 1)

2
− (1 + 3U)

2(U + 1)
]. (B.7)

The first order adjoint model of Eqs. (B.1) and (B.2) may be written as

−∂P
∂t

= (−2X)∗P + (X −Xo), (B.8)

i. e.

−∂P
∂t

= − 2U

Ut + 1
P +

U

(tU + 1)
− 1

(t+ 1)
, (B.9)

P (1) = 0, (B.10)

where P is the adjoint variable. The gradient of the cost function with respect to the

initial conditions is given by

∇UJ = P (0). (B.11)

Eqs. (B.9-B.10) have an analytic solution of the following form

P (t) = (tU + 1)2[
∫

(
1

(t+ 1)
− U

(tU + 1)
)

1

(tU + 1)2
dt+ c]

= (tU + 1)2[
∫

dt

(t+ 1)(tU + 1)
+

1

2(tU + 1)2
+ c]

= (tU + 1)2[
1

(1 − U)(tU + 1)
+

1

2(tU + 1)2
+ c], (B.12)

where c is a constant to be determined by the final condition (B.10). Therefore

c = − 1

1 − U2
− 1

(1 − U)2
ln(

2

U + 1
) − 1

2(U + 1)2
, (B.13)

and Eq. (B.12) yields

P (0) =
1

1 − U
+

1

2
− 1

1 − U2
− 1

(1 − U)2
ln(

2

U + 1
) − 1

2(U + 1)2
. (B.14)

Eq. (B.14) is exactly the gradient of the cost function (B.7) with respect to the

initial condition U .
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Let us now consider a perturbation, U ′, on the initial condition for X, U . The

resulting perturbations for the variables X and P , X̂ and P̂ , are obtained from Eqs.

(B.1), (B.2) and (B.9-B.10) as

∂X̂

∂t
= −2XX̂, (B.15)

X̂(0) = U ′, (B.16)

−∂P̂
∂t

= (−2X)∗P̂ + X̂, (B.17)

P̂ (1) = 0, (B.18)

Eqs. (B.15-B.16) and (B.17)-(B.18) are the TLM and SOA model of the model

Eqs. (B.1) and (B.2), respectively. Substituting X = U/(tU + 1) into Eq. (B.15) one

obtains the following exact solution of the TLM (B.15)

X̂ =
U ′

(tU + 1)2
, (B.19)

which is a quadratic approximation to

U + U ′

t(U + U ′) + 1
− U

t(U) + 1
, (B.20)

the exact evolution of the perturbation due to the perturbation U ′ on the initial

condition U . Table B.1 summarizes the errors between the true evolution given by

Eq. (B.20) and the approximation given by Eq. (B.19) at U = 0.9 and t = 0.5 due

to different perturbations on the initial condition U . Table B.1 clearly indicates that

U + U ′

t(U + U ′) + 1
− U

t(U) + 1
=

U ′

(tU + 1)2
+O(‖U ′‖2). (B.21)

Substituting X = U/(tU + 1) and the TLM solution (B.19) into SOA Eq. (B.17),

one obtains

−∂P̂
∂t

=
−2U

(tU + 1)
P̂ +

U ′

(tU + 1)2
. (B.22)
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Table B.1: Errors between the true evolution given by Eq. (B.20) and the approx-
imation given by Eq. (B.19) at U = 0.9 and t = 0.5 due to different perturbations

on the initial condition U . ~X2 and ~X1 denote the model solutions starting from the
initial conditions U + U ′ and U , respectively.

| ~X2 − ~X1 − X̂| U ′

1.2195493765050× 10−1 1.

1.5854141894547× 10−3 0.1

1.6344476184732× 10−5 0.01

1.6395183253561× 10−7 0.001

1.6400272229676× 10−9 0.0001

1.6399903435054× 10−11 0.00001

1.6206145007512× 10−13 0.000001

1.2021521456654× 10−15 0.0000001

Eqs. (B.22) and (B.18) have an analytical solution of the following form

P̂ (t) = (tU + 1)2[
∫

− U ′

(tU + 1)2
)

1

(tU + 1)2
dt+ c]

= U ′(tU + 1)2[
∫

− dt

(tU + 1)4
+ c]

=
U ′(tU + 1)2

U
[

1

3(tU + 1)3
+ c] (B.23)

where c = −1/3(U + 1)3 is a constant determined by the final condition (B.18).

Therefore the exact solution of the SOA model is

P̂ (t) =
U ′(tU + 1)2

U
[

1

3(tU + 1)3
− 1

3(U + 1)3
], (B.24)

which yields

P̂ (0) =
U ′

3U
[1 − 1

(U + 1)3
], (B.25)

185



According to the SOA theory, Eq. (B.25) should be an approximation to the exact

Hessian/vector product, [∂2J/∂U2]U ′,

∂2J

∂U2
U ′ = { 1

(1 − U)2
− 2U

(1 − U2)2

− 2

(1 − U)3
ln

2

(U + 1)
+

1

(1 − U)2(1 + U)
+

1

(1 + U)3
}U ′, (B.26)

i.e.
∂2J

∂U2
U ′ = P̂ (0) +O(‖U ′‖2). (B.27)

Table B.2 displays the errors defined by [∂2J/∂U2]U ′ − P̂ (0) for the present ex-

ample. This Table indicates that the Hessian/vector product calculated by the SOA

integration is second order accurate.

Table B.2: The absolute errors between the exact and approximate (obtained by
second order adjoint integration) Hessian/vector product.

| ∂2J
∂2U

U ′ − P̂ (0)| U ′

5.866191613327× 10−1 0.99

1.2915525817253× 10−3 0.1

1.1592929336223× 10−5 0.01

1.1350261520048× 10−7 0.001

5.0755928533783× 10−8 0.0001
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APPENDIX C

TN: NASH’S TRUNCATED NEWTON METHOD.

The Truncated Newton algorithm of Nash [130, 134] is one of the most efficient

large-scale unconstrained minimization algorithms. Schlick and Fogelson [185, 186]

modified the truncated Newton algorithm and developed a FORTRAN package to

solve problems for which some separability and sparsity structure of the Hessian is

available. Here we give a general description of the truncated Newton algorithm of

Nash [130, 134]. The algorithmic form of Nash’s T-N method is:

1. Supply ~X0, an initial approximation to the minimizer ~X and set k=0.

2. Test ~Xk for convergence. Terminate if the following criteria are satisfied:

‖~gk‖ < 10−5 · ‖~g0‖, (C.1)

where ‖~gk‖ is the Euclidean norm of the gradient of the cost function Jk with

respect to the control variables, then stop. Otherwise continue.

3. Solve the Newton equations system

Gk
~dk = −~gk, (C.2)

where Gk is an approximation to the Hessian matrix, using a modified-Lanczos

algorithm with preconditioning [134] (also see the additional remarks at the

end of this appendix). If the Hessian matrix is positive definite, the modified-

Lanczos method is equivalent to the linear conjugate-gradient algorithm of

Hestenes and Stiefel [84]. The modified-Lanczos method can be described

briefly as follows:
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(a) Start the Lanczos process with some vector ~v1, which is chosen as a mul-

tiple of −~g and has ~vT
1 ~v1 = 1. Set

~d1 = −~gk. (C.3)

(b) For q = 1, 2, . . ., calculate the matrix-vector product G~vq which is approx-

imated by a finite-differencing scheme along the gradient ~g (we omit the

subscripts k for clarity):

G~vq =
~g

(

~X + h~v
)

− ~g
(

~X
)

h
, (C.4)

where h is some small positive value such as the cubic root of machine

precision. Note that this formula requires only one additional evaluation

of the gradient in each inner iteration.

(c) Using the Lanczos recurrence relations

βj+1~vj+1 = G~vj − αj~vj − βj~vj−1, j = 1, 2, . . . , q − 1 (C.5)

After q-th step this expression may be written as

GVq = VqTq + βq+1~vj+1~e
T
q (C.6)

where

Tq =

















































α1 β2

β2 α2 β3

β3 α3 ·

· · ·

· · ·

· · β

βq αq

















































(C.7)
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is a tridiagonal matrix approximating G and αj = ~vTG~vj. The value

βj+1(≤ 0) is chosen so that ‖~vj+1‖2 = 1, ~eq is the q-th column of the q× q

identity matrix.

(d) Calculate the Cholesky factorization factors of Tq, Lq and Dq, where

Tq = LqDqL
T
q . (C.8)

(e) Determine the (q + 1) -th approximation for the kth iterate of the search

direction by the expression

~dq+1 = ~dq −
~rT

q ~vq

Dq

~uq. (C.9)

The value of ~uq is computed from the recurrence relations

~u1 = ~v1, ~uq = ~vq − lq~uq−1, (C.10)

where lq is subdiagonal element (q − 1) of the lower bidiagonal matrix

Lq, Dq is the qth diagonal element and ~rq is the residual of the Newton

equations, ~rq = G~dq + ~g.

(f) If the prescribed truncation criteria

1 − ~g~dq + ~rq
~dq

~g~dq+1 + ~rq+1
~dq+1

≤ 0.5

q
(C.11)

is satisfied, stop the inner iteration; otherwise continue the inner loop

from step b).

4. Set k = k + 1 and update

~Xk+1 = ~Xk + αk
~dk, (C.12)

where αk is the step-size obtained by conducting a line search

J( ~Xk + αk
~dk) = min

α
J( ~Xk + α~dk), (C.13)
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using Davidon’s cubic interpolation method for the line search of the step size

and which satisfies the following Wolfe conditions:

f( ~Xk + αk
~dk) ≤ f( ~Xk) + β ′αk~g

T
k
~dk, (C.14)

and
~gk( ~Xk + αk

~dk)
T ~dk

~gT
k
~dk

≤ β, (C.15)

where β ′ = 0.0001, β = 0.9. Go to step 2.

Additional Remarks: In the TN method the Newton equation (C.2) is solved

by performing a limited number of iterations of the linear conjugate-gradient method.

The iterations are terminated (“truncated”) before the system is solved exactly. If

a single linear iteration is used, ~dk will be the steepest-descent direction −~gk; if the

sequence is not truncated, ~dk will be the Newton direction. Thus, the algorithm

computes a vector that interpolates between the steepest-descent direction and the

Newton direction.

The TN method will be successful only when a good direction can be produced

in a rather small number of linear conjugate-gradient iterations, and hence the use

of a good preconditioning is essential. Because the number of iterations required to

solve the Newton’s equation is equal to the number of distinct eigenvalues in exact

arithmetic, the idea of preconditioning transforms the Newton equations to a related

system possessing a more favorable eigenvalue structure. Ideally, the condition num-

ber will be low, and the eigenvalues will cluster near 1. Theoretically, this facilitates

the convergence of the C-G method. Newton’s equations (C.2) are equivalent to the

following equation

(M− 1

2GM− 1

2 )M
1

2 ~X = −M− 1

2~g. (C.16)

Let R denote the matrix M− 1

2 GM− 1

2 ; then R has the same eigenvalues as M− 1

2 G,

since M− 1

2 RM− 1

2 = M−1G.
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The preconditioning matrix M may be chosen in several ways. One source is from

the limited memory quasi-Newton method, where the matrix Hk+1 is an approxima-

tion to the inverse of the Hessian and satisfies the “quasi-Newton condition” for k

pairs of vectors {~pk, ~qk}:

~pj = Hk+1~qj, j = 1, 2, . . . , k. (C.17)

where ~pj = ~Xj+1 − ~Xj, ~qj = ~gj+1 − ~gj. Since G~pj = ~qj,

~pj = Hk+1G~pj, j = 1, 2, . . . , k. (C.18)

and the matrix Hk+1G has k unit eigenvalues with eigenvectors {~pj}. Therefore, this

QN Hk+1 may be used as the preconditioning matrix M−1. In this case, the vector

−Hk+1~gk will be the first nontrivial member of the sequence
{

~dq

}

and this search

direction may be used to obtain a better reduction in the function than −~gk. Thus

the search direction will interpolate between the Newton direction and a quasi-Newton

direction.

Since the matrix H is never stored explicitly, Nash [134] uses an approximation

to the diagonal of the Hessian matrix.
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APPENDIX D

THE CONTINUOUS FORM OF THE ADJOINT EQUATIONS

For the parameter estimation of nudging coefficients, the cost function J can be

defined as an integral

J =
1

2

∫ tf

t0

{< W ( ~X − ~Xo), ~X − ~Xo > + < K(G− Ĝ), G− Ĝ > dt. (D.1)

The dynamical model Eq. (6.11) viewed as strong constraints can be enforced by

introducing a set of undetermined Lagrange multipliers. This leads to the following

Lagrange function

L( ~X,G, P ) = J +
∫ tf

t0

< P,−∂
~X

∂t
+ F ( ~X) +G( ~Xo − ~X) > dt, (D.2)

where P is a vector of Lagrange multiplies to be determined.

The constrained optimization problem is then replaced by a series of unconstrained

minimization problems with respect to the variables U and G. By doing so, the

problem of minimizing the cost function, subject to the model equations, becomes a

problem of finding the stationary points of the Lagrange function. This in turn is

equivalent to the determination of U and G subject to the condition that the gradient

of the Lagrange function vanishes. This leads to the following first-order condition:

∂L

∂X
= 0, (D.3)

∂L

∂P
= 0, (D.4)

∂L

∂G
= 0, (D.5)
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The solution of Eqs. (D.3-D.5) is called the stationary point of L. Eq. (D.5) results

in

∇GJ +
∫ tf

t0

< ( ~Xo − ~X), P > dt = 0, (D.6)

which yields the gradient of the cost function with respect to G

∇GJ = −
∫ tf

t0

< ( ~Xo − ~X), P > dt. (D.7)

Eq. (D.4) recovers the original model Eq. (6.11), while (D.3) yields the adjoint

equations

∂J

∂X
− ∂

∂X

∫ tf

t0

< P,
∂ ~X

∂t
− F ( ~X) −G( ~Xo − ~X) > dt = 0, (D.8)

Substituting (D.1) into (D.8) and using integration by parts one obtains

∫ tf

t0

W ( ~X − ~Xo)dt − ∂

∂X
{P (tf) ~X(tf) − P (t0) ~X(t0) −

∫ tf

t0

< ~X,
∂P

∂t
>}

+
∫ tf

t0

<
∂F

∂ ~X
−G,P > dt = 0. (D.9)

If we notice that

∂

∂X
{P (tf) ~X(tf) − P (t0) ~X(t0)} = 0, (D.10)

Eq. (D.9) becomes

∫ tf

t0

{∂P
∂t

+
( ∂F

∂ ~X

)∗
P −G∗P +W ( ~X − ~Xo)}dt = 0, (D.11)

for any length of assimilation window tf − t0. Thus the integrand should be zero,

which results in the first order adjoint equation, given by the following equations

−∂P
∂t

=
(∂F

∂ ~X

)∗
P −G∗P +W ( ~X − ~Xo), (D.12)

P (tf) = 0, (D.13)

where P is the adjoint variable in the first order adjoint model and is identical to the

vector of Lagrange multipliers.
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APPENDIX E

KALMAN FILTERING, VARIATIONAL DATA ASSIMILATION AND

VARIATIONAL NUDGING DATA ASSIMILATION

In this section we give a brief description of the Kalman filtering [68] and the

connection among the KF, nudging, VNDA and VDA.

Starting from the forecast model Eqs. (1.4) and (1.5) which are advanced in

discrete time step ∆t, ~Xn = ~X(tn), tn = n∆t, i.e.

~Xf
n = Mn−1

~Xa
n−1, (E.1)

where the superscript f denotes the forecast and the superscript a stands for analysis,

and M is the discretized form of the system matrix, describing the model dynamics.

A linear unbiased data assimilation scheme for the analysed model state can be

written as

~Xa
n = ~Xf

n +Gn( ~Xo
n −Hn

~Xf
n−1), (E.2)

where H represents the fact that only certain variables or combinations are observed

as a set of points smaller than the total number of model grid points. The weight

matrix Gn is often called the gain matrix, and the KF approach uses an optimal Gn

to carry out such a linear unbiased data assimilation. The optimality is defined in

the context of the following assumptions.

First assume the true evolution of the atmosphere, ~X t
n, is governed by

~X t
n = Mn−1

~X t
n−1 + btn−1, (E.3)

where btn−1 is a Gaussian white-noise sequence, i.e.

Ebtn = 0, Ebtn(btl)
∗ = Qnδnl, (E.4)
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with E being the expectation operator and δnl being the Kronecker delta function.

The second assumption used in optimizing the weight matrix Gn concerns the error

model for the observations

~Xo
n = Hn

~X t
n + bon, (E.5)

where bon, the observational noise, satisfies

Ebon = 0, Ebon(bol )
∗ = Rnδnl. (E.6)

The third assumption is that system noise and observational noise are uncorrelated

to each other:

Ebtn(bon)∗ = 0. (E.7)

Using Eqs. (E.1)-(E.7), one can derive the time evolution of the error covariance

matrix

W a
n ≡ E( ~Xa

n − ~X t
k)

∗( ~Xa
n − ~X t

k)

= (I −GnHn)W f
n (I −GnHn)

∗ +GnRnG
∗
n, (E.8)

where

W f
n ≡ E( ~Xf

n − ~X t
k)

∗( ~Xf
n − ~X t

k) = Mk−1W
a
n−1M

∗
k−1 +Qk−1. (E.9)

Hence, by advancing W f
n and W a

n along with ~Xf
n and ~Xa

n, one can know how well the

true state ~X t
n is estimated by ~Xa

n for any weight matrix Gn. This in turn permits one

to determine the optimal Gn by minimizing

JKF (Gn) = tr(W a
n ), (E.10)

where tr denotes the trace of the matrix.

The optimal weight matrix Gn at the n-th time step is obtained by using Eq.

(E.8) for the matrix W a
n and setting the derivative of JKF (Gn) with respect to each

element of Gn equal to zero. The minimum is obtained at

G∗
n ≡ W f

nH
∗
n(HnW

f
nH

∗
n +Rn)∗. (E.11)
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The above linear unbiased data assimilation scheme given by Eqs. (E.1) and (E.2)

with optimal gain matrix G∗
n is called the KF [90].

There are two problems which arise in the KF. The first is the computational

complexity of advancing in time the error covariance matrices. While Eqs. (E.1) and

(E.2) represent O(N) computations per time step, Eqs. (E.8) and (E.9) represent,

at face value, O(N 2) computations where N is the dimension of the control variable.

Second, the noise covariance matrices Qn and Rn are assumed to be known in the

subsequent derivation of the optimal Gn. This is not so in practice, and finding the

actual magnitude of system and observational errors is an important function of the

data assimilation process.

The nudging scheme is carried out in the following procedure

~Xa
n = Mn−1

~Xa
n−1 +Gn( ~Xo

n −Hn
~Xa

n). (E.12)

The optimal nudging coefficients Gn are obtained by minimizing a cost function mea-

suring the distance between the analysis and the observations.

J(U) =
1

2

M
∑

n=0

< W (C ~Xa
n − ~Xo

n), (C ~Xa
n − ~Xo

n) >, (E.13)

From Eqs. (E.1) and (E.10) we see that the core of the KF is the optimal merging

of observation and forecast information in the sense that the expected mean-square

estimation error is minimized at every time step. The VNDA, on the other hand, is

the optimal merging of observations and analysis in the sense that the total differences

between them in a certain window of assimilation is minimized (see Eqs. (1.3) and

(E.12)). The main differences between the KF and the VNDA are:

1. observation errors at different times are assumed to be uncorrelated;

2. the weight matrix Gn at each time step is determined sequentially in the KF,

while the nudging coefficients at each time step in the window of assimilation
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are obtained simultaneously. However, the two problems of the KF described

above disappear in the VNDA. The computational cost is reduced by using an

adjoint model integration in the parameter-estimation mode of VDA. Moreover,

the VDNA does not require any knowledge of the noise covariance matrices.

Therefore, the estimate NDA, the VNDA and the KF differ from each other mainly

in the choice of the weight matrix Gn. The VDA, on the other hand, takes both the

model forecasts and the observations as perfect, i.e. bfn = 0 and no
n = 0 when n 6= 0.

It attempts to obtain an optimal initial condition which minimizes the cost function

J(U) =
1

2

M
∑

n=0

< W (C ~Xf
n − ~Xo

n), (C ~Xf
n − ~Xo

n) >, (E.14)

The theoretical framework of estimation and control theory provides the founda-

tion of data assimilation techniques. The estimated NDA and the KF are closer to

the estimation theory, the VDA to the optimal control aspect, while the VNDA is a

combination of both [119].

In the nonlinear case, an extended Kalman filter (EKF) [163, 66] can be used.

The EKF differs from the KF in that is uses a nonlinear model to make a forecast

~Xf
n = Nn−1

~Xf
n−1, (E.15)

where N represents the discretized form of the nonlinear system matrix; and the

forecast error covariances are integrated with the tangent linear model, i.e. Eq. (E.9)

is replaced by

W f
n ≡ E( ~Xf

n − ~X t
k)

∗( ~Xf
n − ~X t

k) = Ak−1W
a
n−1A

∗
k−1 +Qk−1. (E.16)

where A is the Jacobian matrix ∂N/∂ ~X . The EKF brings new features concerning the

time evolution of the forecast error covariances since the nonlinear model is linearized

around a time and space dependent flow configuration to yield the tangent linear

model.
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For the sake of completeness, the entire extended KF algorithm is included here.

It reads as follows:

~Xf
n = An−1

~Xa
n−1, (E.17)

W f
n ≡ E( ~Xf

n − ~X t
k)

∗( ~Xf
n − ~X t

k) = Ak−1W
a
n−1A

∗
k−1 +Qk−1. (E.18)

G∗
n ≡ W f

nH
∗
n(HnW

f
nH

∗
n +Rn)∗. (E.19)

W a
n = (I −G∗

nHn)W
f
n , (E.20)

~Xa
n = ~Xf

n +Gn( ~Xo
n −Hn

~Xf
n−1). (E.21)

where Eq. (E.20) is obtained from Eq. (E.8) under the assumption Gn = G∗
n.
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APPENDIX F

PHYSICAL PROCESSES

The FSUGSM contains parameterizations of a variety of physical effects; these

attempt to simulate diabatic heating, water vapor sources and frictional forces. Di-

abatic heating, due to long wave and short wave radiation, deep cumulus and dry

convection, large scale condensation and sensible heat flux from the (land and sea)

surface are all incorporated into this model. The model contains water vapor sources,

due to deep cumulus convection, large scale condensation and (land and sea) surface

flux. Frictional forces are included through calculations of the surface stress and a

vertical diffusion of momentum and water vapor are also included in the FSUGSM,

although not entirely for physical reasons.

F.0.1 Radiative processes

Forcing due to long wave and short wave radiation has been found to be important

for tropical NWP [126]. The method used for the calculation of the radiative processes

in the FSUGSM is essentially the same as that of Chang [25]. It was originally

implemented in a limited area, multi-level grid point primitive equation model at

FSU. The highlights of this scheme are a specification of the diurnal change (in the

incoming short wave radiation) and a parameterizations of the effects of clouds (on

both the long wave and short wave radiation).

Diurnal change in the incoming solar radiation So (the solar constant: here we

use a value of 1393 Wm−2) is effected by computing the zenith angle (Z) of the sun
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as a function of local time of day (as well as its latitudinal and seasonal dependent).

The total insolation, So cosZ, is assumed to consist of two components, one which

is scattered by the earth’s atmosphere and another which is absorbed by it. The

scattered and absorbed amounts are assigned to be 65.1% and 34.9% of the total,

respectively. For the absorbed part of the short wave radiation (i.e., that part which

is capable of being absorbed) an absorptivity function, dependent on water vapor

content, temperature, pressure and zenith angle, is defined. This function determined

the amount of depletion the solar radiation undergoes before reaching a given reference

level. Both direct and reflected solar radiation are considered in the model’s radiation

package. The albedo of the earth’s surface for summer season was tabulated from the

works of Posey and Clapp [166] and Kondratyev [94] and interpolated to the Gaussian

grid.

The presence (or lack) of single or multiple layers of clouds is empirically deter-

mined for the radiative computations. Three basic cloud types are permitted: low

(centered at 850 mb), middle (centered at 700 mb) and high (centered at 500 mb).

Clouds are specified from the relative humidity distribution, with minimum threshold

values of 66%, 35% and 26%, respectively, for the presence of the above 3 cloud types.

The fractional coverage of each of the types is then deduced from linear empirical func-

tions of the relative humidity. The presence of clouds increases the absorptivity and

causes partial reflection of the short wave radiation (the cloud albedos are empirically

specified).

The scattered part of the total insolation is assumed to be unimportant in the

atmospheric heating. However, in the heat balance of the earth’s surface, to be

discussed below, the scattered component is included in the total short wave radiation

reaching the ground. Thus, the scattered short wave radiation does play a role in

determining the ground temperature.
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To compute the net long wave radiation (emitted by the earth’s surface and the

atmosphere) which reaches some reference level, the emissivity method is utilized.

The emissivity of a given atmospheric layer is a function of optical depth (which in

turn is taken to be a function of water vapor content, temperature and pressure). The

long wave radiation emitted from the earth’s surface is determined from the computed

(or, in the case of oceanic points, specified) surface (ground or water) temperature.

The net infrared radiation reaching some reference level is obtained from the emission

of the atmospheric layers above and below that level, plus the terrestrial radiation

(modified by the emissivity between the reference level and the surface).

Clouds are treated as black bodies for long wave radiation calculations. Thus,

clouds modulate the long wave radiation in the model’s atmosphere by producing

enhanced long wave irradiance above and below the cloud layers. If a model level

lies within a cloud, then the long wave irradiance at that level is set to zero. Future

details on long wave (as well as short wave) radiation scheme are found in Chang [25].

The diabatic heating due to short wave and long wave radiation is determined

from the convergence of the flux of radiant energy. Hence, the total (long wave plus

short wave) radiative heating is given by

[
∂T

∂t
]rad =

−g
Cpps

(
∂FS

∂σ
+
∂FL

∂σ
), (F.1)

where FS and FL are the net short wave and long wave irradiances, respectively.

Equation (F.1) is applied at the σ̃-levels of the FSUGSM; thus, the net irradiances

are computed at the σ-levels. Finite differences in the vertical then yield the diabatic

heating at the σ̃-levels.

F.0.2 Cumulus convection and large scale condensation

The diabatic heating caused by deep cumulus convection is recognized as a major

energy source in the tropics. Deep convection also acts as a prominent sink of the
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moisture in the large scale water vapor budget. Therefore, it is essential to include the

effects of cumulus convection in a global prediction model, even if only in a parametric

sense. An implicit treatment of the life cycles of the individual cumulus clouds and

their interaction with the large scale fields is not practical for models such as the

FSUGSM due to limitations of horizontal resolution. There are a number of existing

schemes for the parameterization of cumulus convection in large scale prognostic

models. The schemes which are most widely used are those of Arakawa and Schubert

[6] and Kuo [101]. At FSU, a slightly modified version of Kuo’s [101] parameterization

method has been used in grid point, tropical prediction models with a fair degree of

success ([92, 96]). The tractability of Kuo’s method also makes it appealing for use

in NWP. This method has therefore been adapted for the FSUGSM.

In the current model, the basic variables which are required for cumulus parame-

terizations are temperature, specific humidity and vertical motion (σ̇, from which we

can evaluate the vertical p-velocity, ω). These variables are available on the Gaussian

grid points (at the σ̃-levels) at every time step. The large scale moisture supply, I,

available for convective heating (or, equivalently, rainfall) is defined by

I = −1

g

∫ pcb

pt

ω
∂

∂p
dp, (F.2)

where pt is the cloud top pressure (i.e., the pressure at which the moist adiabat,

originating from pcb, intersects the model sounding) and pcb is the pressure of the cloud

base. The cloud base is defined by the first model level (proceeding upward from the

bottom) where the relative humidity equals or exceeds 70%. At any time step (for

each Gaussian grid point), parameterized cumulus convection will be invoked if all of

the following conditions are met: (a) the moisture supply, I, is positive; (b) the cloud

base relative humidity criterion is satisfied; and (c) the atmosphere is conditionally

unstable. Conditional instability exits if

∂θ

∂p
+
θ

T

L(Td)

Cp

∂rS

∂p
≥ 0, (F.3)
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where θ is the potential temperature (although the same notation is used for latitude

and potential temperature, there is no confusion if read consistently) and rS is the

saturation specific humidity.

Following Kuo [102], Kanamitsu [92] and Krishnamurti et al. [96] if the above

condition are satisfied, the convective heating rate is given by

∂T

∂t
|conv = aT {

TS − T

∆τ
+
T

θ
ω
∂θ

∂p
}, (F.4)

and the convective moistening rate is

∂r

∂t
|conv = ar{

rS − r

∆τ
}. (F.5)

In (F.4) and (F.5), TS and rS correspond to the saturation values of T and r (water-

vapor mixing ratio), respectively, on the moist adiabat, which passes through pcb, and

∆τ is the cloud time scale (here, following earlier studies using Kuo’s parameterization

scheme with a grid-point model, ∆τ is set to 1800 seconds). The coefficients aT and

ar are determined by means of the following relations:

aT =
(1 − b)I

Cp

L(Td)g

∫ pcb

pt
{TS−T

∆τ
+ T

θ
ω ∂θ

∂p
}dp

, (F.6)

ar =
bI

1
g

∫ pcb

pt
{ rS−r

∆τ
}dp, (F.7)

where the parameter b specifies the partitioning of the total moisture supply (I) into

heating and moisture. The determination of b has been a subject of great interest

to those scientists working with Kuo’s method of convective parameterization. Kuo

[102] presented observational evidence which suggests that b should be quite close to

zero. Kanamitsu [92] proposed an ad hoc specification of b for use in a prognostic

model. Anthes [5] gave a formula for b which is based on the large scale relative

humidity distribution (in the vertical). However, none of the above formulations were

entirely satisfactory from a physical point of view.
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Krishnamurti et al. [97] utilized Kuo’s method with the GATE phase III data

(Sept. 1 through 18, 1974 over the eastern tropical Atlantic) to compute convective

rainfall rates. In that study, the available moisture supply (I) was defined as in (F.2)

and Kuo’s [102] scheme was employed in a semi-prognostic manner (i.e., a series

of single time step predictions). It was found that a very close agreement between

observed and computed rainfall rates could be obtained by setting b to be a constant

value of zero. In view of this and the inadequate physical justification for other types

of closure, it was decided to set b to zero for present study. It should be noted that this

implies that the convective moisture is zero in this case (by virtue of (F.5) and (F.7)).

In other words, all of the large scale moisture supply defined by I is condensed out as

rainfall. However, horizontal advection and diffusion of moisture (discussed below)

can still contribute to moistening when the convective parameterization is invoked.

Large scale condensation heating (and rainfall) is simulated in the present model

by the removal of supersaturation whenever it is observed in the prediction. This

phenomenon typically occurs in regions of large scale ascent of air having absolutely

stable (with respect to moist adiabatic) lapse rates, although other processes (such as

radiative cooling) can also cause supersaturation. The numerical procedure for calcu-

lation of the supersaturation heating in the FSUGSM is the same as that described

by Daley et al. [40]. At each time step, the model soundings of temperature and

moisture are adjusted (if supersaturation is found) before any of the other physical

forcing effects are evaluated. Any excess oversaturation is assumed to be condensed

out as rain.

F.0.3 Boundary layer processes

A fairly simply treatment of the planetary boundary layer is used for the FSUGSM.

Over the oceanic Gaussian grid points, the surface fluxes of sensible heat and water va-

por and the surface stresses are calculated from bulk aerodynamics principles. Hence,
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the sensible heat flux is given by

Fsen = 1.6 × 10−3Cpρa(To − Ta)|~Va|, (F.8)

while the water vapor flux is specified by

Fvap = 1.4 × 10−3ρa(rSTo − ra)|~Va|, (F.9)

and the surface stress is determined by

Fmom = |~τ | = 1.1 × 10−3ρa|~Va|2, (F.10)

where To is monthly climatological sea surface temperature (in this study, for June)

taken from the work of Alexander and Mobley [1] while ρa, Ta, ~Va and ra are the

surface (anemometer level) air density, temperature, wind and specific humidity, re-

spectively. These quantities are obtained by extrapolation from the lowest model

level, assuming a well mixed surface layer (in terms of potential temperature, wind

and relative humidity). The numerical values of the surface exchange coefficients in-

dicated in (F.8) through (F.10) are those suggested by Businger and Seguin [18] from

GATE data.

Over land, the surface fluxes of sensible and latent heat are computed in con-

junction with a determination of heat balance of the earth’s surface. Daytime and

nighttime are treated as separate cases in this formulation. If the net radiation (i.e.,

short wave plus long wave radiation) at the surface is negative (i.e. upward), then

nighttime conditions are presumed. In this case, an empirically determined fraction

of net radiation is used to lower the ground temperature. The remaining radiative

deficit is assumed to be a downward flux of sensible heat which cools the surface

air. The flux of latent heat is set to zero over land areas at night. The calculation

of nighttime surface stress essentially follows the stable surface layer formulation of

Businger et al. [17], which makes use of similarity theory.
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For the daytime situation, the sensible and latent heat fluxes and the ground

temperature are determined via the iterative solution of an explicit heat balance

equation for the earth’s surface, with the storage term neglected:

0 = Rnet − σBT
4
o − Fsen − L(Td)Fvap, (F.11)

where Rnet is the net surface radiance (excluding the upward long wave irradiance)

and σB is the Stefan-Boltzmann constant. The fluxes of sensible and latent heat, Fsen

and L(Td)Fvap, are given by relations similar to (F.8) and (F.9). However, rather

than using the saturation specific humidity rS at the ground temperature To in the

calculation of Fvap, a ground wetness (saturation ratio) is used to modify rS. This

ground wetness, gW , is an empirical function of αS, the surface albedo,

gW = 0.85[1 − e−200(0.25−αS)2 ]. (F.12)

For a low albedo (less than 10%) the ground wetness approaches 0.85. For

albedo values greater than 25%, gW is set to zero. This formulation has been ex-

tensively tested and was found to avoid excessively high water vapor fluxes over

tropical land areas. Eq. (F.11) is solved iteratively for the ground temperature To by

Newton-Raphson technique. The daytime surface stress calculation essentially follows

Businger et al. [17].

Above the surface level (over both land and ocean), the fluxes of heat, moisture

and momentum are specified by the mixing length theory, as in Smagorinsky et al.

[191]. That is, the fluxes of sensible heat, water vapor and momentum are respectively

given by

Fsen = −ρ`2m|∂
~V

∂z
|∂θ
∂z
, (F.13)

Fvap = −ρ`2m|∂
~V

∂z
|∂r
∂z
, (F.14)

Fmom = −ρ`2m|
∂~V

∂z
||∂

~V

∂z
|, (F.15)
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where `2m is the mixing length, which is a linear function of height. Above 3 km (from

the surface topography), `2m vanishes and the fluxes are therefore zero. However, in

the moisture prediction an additional flux, over that implied by (F.14), is used. This

added flux is defined by an explicit vertical diffusion of water vapor. It is expressed

by
∂r

∂t
|diff = Kr(σ)

∂2r

∂σ2
, (F.16)

where the diffusion coefficient Kr(σ) is given by

Kr(σ) = (5σ − 1.25) × 10−7s−1, (F.17)

Above the σ = 0.25 level, Kr(σ) is set to zero. Thus, the diffusion of moisture is

stronger near the surface level. As noted earlier, in the discussion of the convec-

tive parameterization, all of the large (model) scale vertical advection of moisture is

consumed for the convective rainfall. Here the inclusion of the vertical diffusion of

moisture in vertical column, prevents excessive drying due to the cumulus convection.

F.0.4 Dry convective adjustment

Whenever the lapse rate of potential temperature is found to be dry unstable

(superadiabatic) over a model grid point, a dry convective adjustment is carried out.

This situation typically occurs at the lower levels, over land areas possessing relatively

high ground temperatures (i.e., deserts). The adjustment procedure removes heat to

the top of the layer, while conserving dry static energy (gz+CpT ). The end result of

dry convective adjustment is a dry adiabatic lapse rate in the layer. In practice, this

is done iteratively, checking the model’s atmospheric column from top to bottom for

the occurrence of superadiabatic layers. This is because the adjustment of a given

layer may produce dry instability in the layer below.
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F.0.5 Surface topography

Since the FSUGSM is a σ-coordinate model in the vertical direction, it allows

for the realistic inclusion of the surface topography (since the earth’s surface is a

coordinate surface). The effects of orography in the prognostic equations appear

mainly through the horizontal variations of q (i.e., ln ps, which is strongly dependent

upon topography). ΦS (the earth’s topography) is spectrally truncated as the other

variables in the model.

F.0.6 Computational requirements

The implementation of the transform technique in the FSUGSM requires that

(in the computer code) memory storage be allocated to both grid-point and spectral

coefficient representations of the dependent variables. All the spectral coefficients

reside in the core simultaneously; however, only one latitude of the grid-point values

(for all model levels) is stored at any instant. Contributions from each latitude to

the spectral transforms are accumulated successively in the computer program, thus

negating the need to store the entire grid in memory. Physical effects computations

make use of column models, and therefore only require storage for the vertical levels.
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Zhang, 1991: Global observing system experiments on operational statistical
retrievals of satellite sounding data. Mon. Wea. Rev., 199, 1851-1864.

[3] Andersson, E., J. Pailleux, J. N. Thépaut, J. R. Eyre, A. P. McNally, G. A. Kelly
and P. Courtier, 1992: Use of radiance in 3D/4D variational data assimilation.
In Proc. of ECMWF Workshop on variational assimilation with emphasis on
three-dimensional aspects, Shinfield Park, Reading RG2 9AX, UK, 123-156.

[4] Anthes, R. A., 1974: Data assimilation and initialization of hurricane prediction
models. J. Atmos. Sci., 31, 702-719.

[5] Anthes, R. A., 1977: A cumulus parameterization scheme utilizing an one di-
mensional cloud model. Mon. Wea. Rev., 105, 270-286.

[6] Arakawa, A. and Schubert W. H., 1974: Interaction of a cumulus cloud ensemble
with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.

[7] Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100,
487-490.

[8] Banks, H. T. and K. Kunisch, 1989: Estimation techniques for distributed pa-
rameter systems. Birkhauser, Boston (Systems & Control: Formulations & Ap-
plications), Vol. 11, 315 pp.

[9] Bao, J. W. and T. T. Warner, 1993: Treatment of On/Off switches in the adjoint
method: FDDA experiments with a simple model. Tellus, in press.

[10] Bertsekas, D. P. 1982: Constrained optimization and Lagrange multiplier meth-
ods. Addison-Wesley, 491 pp.

[11] Bernardet, P., S. Farges and K. Yassine, 1992: Adjoint of non-hydrostatic model.
In Proc. of ECMWF Workshop on variational assimilation with emphasis on
three-dimensional aspects, Shinfield Park, Reading RG2 9AX, UK, 339-374.

209



[12] Bourke, W. 1972: An efficient one level primitive equation spectral model. Mon.
Wea. Rev., 100, 683-689.

[13] Bourke, W. 1974: A multi-level spectral model. I –Formulation and hemisphere
integrations. Mon. Wea. Rev., 102, 687-710.

[14] Buckley, A. G. and A. Lenir, 1983: QN-like variable storage conjugate gradients.
Math. Prog., 27, 155-175.

[15] Burger, J., J. L. Brizaut and M. Pogu, 1992: Comparison of two methods for the
calculation of the gradient and of the Hessian of the cost functions associated
with differential systems. Mathematics and Computers in Simulation, 34, 551-
562.

[16] Bus, J. C. P., 1977: Convergence of Newton-like methods for solving systems of
nonlinear equations. Numerische Mathematik, 27, 271-281.

[17] Businger, J. A.,J. C. Wyngaard, Y. Izumi and E. F. Bradley, 1971: Flux-profile
relationship in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.

[18] Businger, J. A. and W. Seguin, 1977: Transport across the air-sea interface:
air-sea surface fluxes of latent and sensible heat and momentum. In Proc. of the
GATE Workshop, published by the National Center for Atmospheric Research,
Boulder, Colorado, 80303, 441-453.

[19] Cacuci, Dan G., 1981: Sensitivity theory for nonlinear systems. I: Nonlinear
functional analysis approach. J. Math. Phy. 22 (12),2794-2803.

[20] Cacuci, Dan G., 1981: Sensitivity theory for nonlinear systems. II. Extensions
to additional classes of responses. J. Math. Phy. 22 (12), 2803-2812.

[21] Cai, Y. and I. M. Navon, 1993: Iterative domain decomposition algorithms:
Theory and application. High performance computing in the geoscience, edited
by F.X. Le Dimet, Klumer Academic Publishers B.V. 000-000.

[22] Carrera, J. and P. S. Neuman, 1986: estimation of aquifer parameters under
transient and steady state conditions, 1: Maximum likelihood method method
incorporating prior information. Water Resources Research, 22 (2), 199-210.

[23] Carrera, J. and P. S. Neuman, 1986: estimation of aquifer parameters under
transient and steady state conditions, 2: Uniqueness, stability and solution
algorithms. Water Resources Research, 22 (2), 211-227.

210



[24] Carrera, J. and P. S. Neuman, 1986: estimation of aquifer parameters under
transient and steady state conditions, 3: Application to synthetic and field
data. Water Resources Research, 22 (2), 228-242.

[25] Chang, C. B., 1979: On the influences of solar radiation and diurnal varia-
tion of surface temperatures on African disturbances. Rept. No. 79-3, Dept. of
Meteorology, Florida State University, Tallahassee, FL 32306, 157 pp.

[26] Chao W. C. and L. Chang, 1991: Development of a 4-dimensional analysis
system using the adjoint method at GLA. part 1: dynamics. Mon. Wea. Rev.,
120, 1661-1673.

[27] Charney, J. G., R. FjØrtoft and J. Von Neumann, 1950: Numerical integration
of the barotropic vorticity equation. Tellus, 2, 237-257.

[28] Charney, J. G., M. Halem and R. Jastrow, 1969: Use of incomplete historical
data to infer the present state of the atmosphere. J. Atmos. Sci., 2, 1160-1163.

[29] Cohn, S. E., 1982: Methods of sequential estimation for determining initial data
in numerical weather prediction. Ph.D Thesis, New York University, 183 pp.

[30] Cohn, S. E. and D. F. Parrish, 1991: The behavior of forecast error covariances
for a Kalman filter in two dimensions. Mon. Wea. Rev., 119, 1757-1785.

[31] Cohn, S., 1993: The Kalman filtering versus variational analysis debate. Per-
sonal communication.

[32] Cohn, S, 1993: Dynamics of short-term univariate forecast error covariances.
Mon. Wea. Rev., 121 (11), 3123-3149.

[33] Courtier, P.,1985: Experiments in data assimilation using the adjoint model
technique. Workshop on High-Resolution Analysis ECMWF (UK) June 1985.

[34] Courtier, P. and O.Talagrand, 1987: Variational assimilation of meteorologi-
cal observations with the adjoint equations Part 2. Numerical results.Q. J. R.
Meteorol. Soc., 113, 1329-1347.

[35] Courtier, P., 1987: Application du contrôle optimal à la prévision numérique en
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