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ABSTRACT: The shallow-water equations have been extensively used for a wide variety of coastal
phenomena, such as tide-currents, pollutant- dispersion storm-surges, tsunami-wave propagation,
etc., to mention but a few. In meteorology the shallow-water equations also known as the prim-
itive barotropic equations have been extensively used to test new numerical solutions for numer-
ical weather prediction models as they posses the same mixture of fast gravity waves and slow
Rossby waves as the more complex three dimensional baroclinic primitive equations. In the present
survey we will review the application of finite-element methods for solving the shallow-water equa-
tions. Various issues such as variable resolution, integral invariant conservation, etc. will be ad-
dressed.

1. INTRODUCTION

The solution of the shallow-water equations
is of considerable importance for a variety
of problems of coastal and environmental
engineering such as periodic (tidal) flow,
transient wave phenomena (tsunami or
shock waves), transient pollutant transport,
seiches in ports, etc.

We will review the different finite-
element techniques used for coastal phenom-
ena and briefly discuss them in Section 2.

In meteorology use of the finite-element
method was initiated by Wang et al., (1972)
and the method has since then evolved
substantially and is now considered a tool
of preference by a sizable number of re-
searchers seeking to solve the two dimen-
sional shallow-water equations. The use of
the finite-element method for solving the
shallow-water equations in meteorology will
be discussed in Section 3.

In Section 4 we will briefly address
computational issues related to the use of
the finite-element method for solving the
shallow-water equations, such as conserva-
tion of integral invariants use of different
types of elements, variable resolution and

the use of finite-element codes on vector su-
percomputers.

2. SHALLOW-WATER EQUATIONS FOR
COASTAL MODELLING

It is commonly known that current flow in
estuaries and coastal seas can be described
by the shallow-water equations. Assuming
vertical density gradients and fluid accelera-
tions are negligible the shallow-water equa-
tions can be derived by integrating over the
water-depth and assuming hydrostatic pres-
sure.

The equations are

∂ξ
∂t

+∇ · (HV) = 0

(conservation of mass) (1)
∂(HV)

∂t
+∇ · (HVV) + τHV

+ fk×HV + gH∇ξ − A = 0 (2)
(conservation of momentum)



Where

ξ−is the surface elevation over mean sea level
h−is bathymetry

H =h + τ is the total depth of flow
V−vertically averaged flow velocity
τ−nonlinear bottom friction (Chezy’s formula)
f−Coriolis parameter
g−acceleration of gravity
A−atmospheric wind forcing
k−unit vector in vertical direction

Early finite-element tidal models suf-
fered from severe spurious oscillations. The
early applications of these were controlled
by large bottom friction coefficients (see
Brebbia and Partridge, (1976)) or addition
of damping to the model via time-stepping
schemes (Kawahara et al., (1978)).

Gray and Lynch (1979) used semi-
implicit procedures to partially eliminate
spurious modes.

Lynch and Gray (1979) presented a
method called the wave equation approach
which is in general insensitive to short
wavelength oscillations primarily due to
good phase speed response.

It is by now accepted that the wave
equation approach is capable of noise sup-
pression in finite-element models without
the need for artificial or unrealistic damping.

Using different choices of basis functions
for elevation and velocity (mixed interpola-
tion) has been suggested by Hood and Tay-
lor (1974) to eliminate 2∆x oscillations in
an attempt to imitate the use of staggered
grids in finite-difference approximations.

Kinnmarck and Gray (1984) found
that use of a two time-level time-difference
approximation, symmetrical but for the non-
linear convective terms can also eliminate
spurious 2∆t oscillations, in the velocity
solutions, where the wave equation scheme
is used.

Triangular and quadratic Lagrangian
isoparametric finite-elements are generally
used, (Kinnmarck (1985)). Tidal and storm
surge computations using triangular ele-
ments and quadratic interpolation were car-
ried out by Dalsecco et al., (1986) with vari-
able resolution. A harbour resonance prob-
lem for irregularly shaped harbours using

automatic mesh generation was given by
Praagman (1986).

A conservative finite-element model of
the shallow-water equation with linear tri-
angular elements using a two-step econom-
ical algorithm was proposed by Peraire,
Zienkiewicz and Morgan (1986), similar
to one proposed by Navon and Riphagen
(1979) for a compact fourth-order conser-
vative finite-difference approximation of the
shallow water equations. The method is eas-
ily amenable for vectorization.

Apart from the basic work of Fix (1975),
little attention has been paid by coastal
and ocean modelers to conservation of
integral invariants by finite-element models
of the shallow-water equations. A selective
lumping finite-element method for shallow-
water flow has been extensively tested by
Kawahara et al., (1982). Platzman (1981)
has considered some response characteristics
of finite-element tidal models with the view
to partially eliminate small scale errors due
to the spatial discretization.

3. SHALLOW WATER EQUATIONS FOR
METEOROLOGICAL FLOWS

In meteorology the first application of the
finite-element method to the shallow-water
equations is due to Wang et al., (1972).
They solved the 1–D gravity-wave equations

ut + uux + ghx =0
ht + uhx + hux =0 (3)

where u is the velocity of the fluid in the x-
direction, h is the depth of the fluid, and
g is the acceleration of gravity. Cubic Her-
mite functions were used on a uniform grid
with a Crank-Nicolson time discretization
method. Cullen (1974) used linear equilat-
eral triangles and a leap-frog time scheme to
solve the shallow-water equations written in
the form:

ut + uux + vuy + φx − fv = 0
vt + uvx + vvy + φy + fu = 0

φt + (uφ)x + (vφ)y = 0
(4)

where u and v are the velocity compounds
in the x and y directions, φ = gh is the
geopotential, f is the Coriolis parameter,
and h is the depth of the fluid, in a periodic
channel on a β-plane where

f = f0 + βy . (5)



Cullen (1974) and Hinsman (1975) used
linear equilateral triangles to solve the
shallow-water equations on the sphere for
the Rossby-Haurwitz waves. Staniforth and
Mitchell (1977) used a two dimensional Cha-
peau basis function to solve the shallow-
water equations on a polar stereographic
projection. They used vorticity-divergence
formulation of the shallow-water equations.
A variable resolution integration was per-
formed by Staniforth and Mitchell (1978).

Navon (1979) used an extrapolated
Crank-Nicolson scheme with linear trian-
gular elements to solve the shallow-water
equations on a β-plane. A selective lump-
ing technique was implemented. Williams
(1981) has shown that finite-element formu-
lation of the shallow-water equations using
vorticity and divergence as predictive vari-
ables on an unstaggered grid does not suffer
from the same problems as unstaggered for-
mulations in terms of velocity components
(i.e., primitive forms of the equations). He
also concluded that if one uses velocity com-
ponents formulation, one should use them
on a staggered grid.

Williams and Zienkiewicz (1981) exam-
ined a new formulation of the shallow- water
wave equations using different basis func-
tions for the velocity and height fields. They
tested a staggered 1–D version of the lin-
earized shallow-water equations.

Based on a proposal by Cullen and
Morton (1980), Navon (1983) proposed a
Numerov-Galerkin highly accurate finite-
element approach to the nonlinear advection
operator of the shallow-water equations. A
lucid review on the formulation of efficient
finite-element codes for flows in regular do-
mains was provided by Staniforth (1987).
Neta et al., (1985) studied the linearized
shallow-water equations with bilinear rect-
angular elements for a flow with variable
bottom topography.

Neta and Williams (1986) studied var-
ious finite-element formulations of the ad-
vection equation and found that isoceles
triangles and rectangles with bilinear ba-
sis functions have better stability and phase
speeds. Zienkiewicz and Heinrich (1979) and
Zienkiewicz et al., (1986) proposed a finite-
element-penalty approach. Steppeler (1987)
proposed an energy conserving finite-element
scheme for the shallow-water equations.

An in-depth research into the integral

invariant conservation properties of different
finite-element schemes for the shallow-water
equations was conducted by Steppeler,
Navon, and Lee (1988). Determination of
finite time “blow-up”, critical dissipativity
required to maintain nonlinear stability
and long-term integrations of the finite-
element shallow-water equations models
were researched.

4. COMPUTATIONAL ASPECTS

While converge and accuracy estimates for
Galerkin finite-element methods applied to
hyperbolic partial differential equations have
been extensively studied (see Dupont (1973)
and Thomee and Wendroff (1974)), specific
evaluation of different issues for the finite-
element methods which solve the shallow-
water equations were addressed by Cullen
(1976) and Navon (1977).

A Fourier analysis for evaluating the ac-
curacy of finite-element methods for the lin-
earized shallow-water equations, extended
to include group velocity was presented by
Foreman (1982). His approach was based
on similar work by Schoenstadt (1980) and
Vichnevetsky and Peiffer (1975). In his re-
search, accuracy was the only consideration
in determining a good method–an approach
which is good for 1-D considerations. His
conclusions point out that the most accurate
methods for wave amplitude, phase velocity,
and group velocity may not coincide.

He found that for a Galerkin finite-
element method with piecewise linear basis
functions the most accurate and stable
two step method was the Crank-Nicolson
method. In a second study Foreman (1984)
compared the accuracy and computational
cost of three finite-element methods for
solving the linearized, two-dimensional
shalow-water equations.

He concluded that a finite-element
scheme due to Thaker (1978) had some ad-
vantage. For triangular elements his anal-
ysis indicates that equilateral triangles are
the better choice–as they seem to produce
isotopic waves when the wave resolution is
high.

Weare (1976) considered the computa-
tional cost of finite-element and finite differ-
ence methods for solving the shallow-water
equations. He concluded that finite-element



methods are computationally more expen-
sive due to the band algorithms used to
solve the sparse matrix equations resulting
from this method of discretization. He sug-
gested iterative methods and lumping the
mass matrix as possible solutions.

Staniforth (1987) shows that efficient
solution algorithms are more easily derived
for the rectangular element case than for
the triangular element case using a tensor
product method. In such a case he shows a
way to vectorize the Gaussian elimination
procedure. Staniforth (1987) makes also
the remark that rectangular elements are
inherently more vectorizable because they
are well-ordered in memory and easily
accessed.

Cullen and Morton (1980) and Navon
(1983) applied a two-stage process (com-
pute the derivative, then the product) for
calculating the advection term u∂v

∂x , and
have shown that the two-stage method has a
smaller coefficient for the asymptotic O(h4)
truncation error .

General conclusions concerning the best
solution of the shallow-water equations
with Galerkin linear elements point out
to the fact that it is necessary either to
use velocity components as momentum
variables and stagger the nodal points for
the free-surface height or to use vorticity
and divergence as momentum variables
and no staggering (Williams (1981) and
Williams and Zienkiewicz (1981)).

As far as stability properties are con-
cerned, finite-element schemes are behaving
in a similar way to finite-difference schemes.
Generally the same CFL conditions apply,
the finite-element schemes having more re-
strictive coefficients. As they also are the
most accurate–there is here a conservation
of cost, i.e., the price of increased accuracy
is increased cost in terms of more time-steps
(Staniforth (1987)).

Conservation of integral invariants of
the shallow-water equations related to
finite-time “blow-ups”, control of non-linear
instability due to aliasing of that part of
the spectrum generated by the advection
product that cannot be resolved by the
mesh and the minimal amount of smoothing
(filtering) necessary to control this aliasing
is treated by Steppeler, Navon and Lu
(1988).

As far as time-discretization is con-
cerned, explicit time-differencing schemes
are not efficient for stiff sets of equations
such as the shallow-water equations.

Navon (1979, 1983) used a Crank-
Nicolson method. Semi-implicit methods
were used by Staniforth and Daley (1979)
for a baroclinic model and by Staniforth and
Mitchell (1977) for the finite-element solu-
tion of the shallow-water equations. Semi-
implicit time-differencing constitutes a good
compromise for the shallow-water equations
as they require fewer time-steps than ex-
plicit methods while their computational
cost per time-step is not significantly higher.

As far as variable resolution is con-
cerned, Older (1981) as well as Kelley
and Williams (1976) have found that the
smoother and slower the change in resolu-
tion, the better the forecast; and that one
obtains improvement by concentrating high
resolution areas in the region of strongest
gradients. Also the resolution should be
varied with the flow rather than across it.
However a smooth transition between fine
and coarse resolution is essential.
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