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A new ADI method is proposed for the approximate solution of the shallow-water equa- 
tions. Based on a perturbation of a linearized Crank-Nicolson-type discretization, this method 
is algebraically linear and also locally second-order correct in time. Its performance on a test 
problem given in [ 11 demonstrates that it requires less computer time per time step than the 
fastest quasi-Newton method proposed in [ 1 1, and for given mesh parameters it appears to be 
marginally more accurate. The results of several long runs are also reported, and phenomena 
similar to those described in [ 141 are exhibited. In particular, it is shown that neither the new 
method nor the best of the methods of 111 conserves potential enstrophy and, as a result, after 
a finite time, these methods always “blow up.” 

1. INTRODUCTION 

To avoid the Courant-FriedrichsLevy (CFL) stability condition, restricting the 
time step in explicit finite-difference approximations to quasi-linear hyperbolic partial 
differential equations, implicit methods must be used. It is known [ 2, 3 ] that in hyper- 
bolic problems any dynamical degree of freedom that is stabilized by an implicit 
scheme in time, is treated inaccurately, viz., its phase speed is slowed down so that 
the explicit stability criteria are satisfied. On the other, hand, in meteorology, the 
high-speed oscillations which impose the severe upper limit on the time interval are 
unimportant, so that the deceleration of their phase speed poses no problem. 

The numerical solution of nonlinear hyperbolic initial/boundary value problems in 
two space dimensions using an implicit method constitutes a formidable 
computational task. However, when the spatial region is rectangular this task can be 
simplified by using an alternating-direction implicit (ADI) method. Such methods 
reduce multidimensional problems to systems of one-dimensional problems [S, 8, 91. 
In this paper a new ADI method is proposed for the approximate solution of the 

0021-9991/80/100001-189602.00/O 
CopyrIght t 1980 by Aoadcmx Press. In‘. 

All rtghts of reproduction in any form rercrred 



2 FAIRWEATHER AND NAVON 

shallow-water equations, the primitive equations for an incompressible, inviscid fluid 
with a free surface, using the /?-plane approximation on a rectangular domain. Based 
on a perturbation of a linearized Crank-Nicolson-type discretization, this method is 
algebraically linear, that is, at each time step it requires the solution of systems of 
linear algebraic equations whereas the method of [ 1 ] involves systems of nonlinear 
equations. Like the method of [ 11, the new procedure is locally second-order correct 
in time. 

An outline of the remainder of the paper is as follows. The differential equations 
and boundary conditions are given in Section 2. The salient features of Gustafsson’s 
method [ 1 ] are described in Section 3, and in Section 4 the new AD1 method is 
derived. In Section 5 the new method is tested on the same problem as that 
considered in [l] and using the same computer system (CDC 6600). It is shown that 
the new method requires less computer time per time step than the best of 
Gustafsson’s methods [ 11, QNEXl, and is marginally more accurate. The results of 
several long runs are of particular interest since they exhibit phenomena similar to 
those described in [ 141. In particular it is shown that neither the new method nor 
Gustafsson’s method, QNEXl, conserve potential enstrophy, and, as a result, after a 
certain time, which can be delayed by increasing the resolution, these methods “blow 
up.” 

2. THE DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

Throughout this paper we shall adopt the notation used in [ 11. We denote by w  the 
vector function 

w = (u, u, @)‘; (1) 

where (w)’ denotes the transpose of w; U, 2, are the velocity components in the x and 
y directions, respectively; and 

# = 2( g/z)“*, 

where h is the depth of the fluid and g is the acceleration due to gravity. The shallow- 
water equations can then be written in the form (see [4]) 

aW 
-= A(w) g + B(w) Jg + C(y)w, at 

O<x<L, O<Y<D, t > 0. 

In (2) A, B, and C are matrices given by 

A=-[it ; ‘f] B=-[H j2 i2] c= 

[ 

Of0 
-f 0 0 
0 00 

(2) 

I 9 (3) 
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where f is the Coriolis term given by 

.f=P+ NY - WI \‘: 

with 3 and p constants. Periodic boundary conditions are assumed in the x-direction. 

w(x, y, t) = w(x + L, y, t), (5) 

while in the y-direction 

u(x, 0, t) = u(x, D, t) = 0. (6) 

Initially 
W(& YT 0) = w(4 Y)* (7) 

It is easy to see (cf. 13, 41) that 

E=; (u2 + u* + e/4) @‘/(4g) dx dy (8) 

is independent of time, i.e., the total energy is conserved. Also, the average value of 
the height of the free surface, h; is independent of time, i.e., 

is conserved, A being the area of the spatial domain. 

3. GUSTAFSSON’S AD1 METHOD 

In order to describe Gustafsson’s method and the new AD1 method we require the 
following notation. 

Let N, and N, be positive integers and set 

Ax = L/N,, Ay = D/N,. (10) 

We shall denote by w$ an approximation to w(jAx, kdy, ndt) and by DoX, D, X, D. .1 
the basic difference operators 

DoPi;, = <WY+ I ,/c - wi”- , .,)/(2,4x), 

D+xwj”k =+‘;+ ,.k - w;&& 

DLw$ = (wj;i - WY,,J/Ax, 

(11) 
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respectively, with similar definitions for Day , D,, , and D_,. Also define the 
operators P$ and Qyk by 

where 

(12) 

(13) 

(14) 

and, because of the boundary conditions in the y-direction, 

1 
DO, for k = 1, 2,..., N, - 1; 

D/c= D+, for k = 0; (15) 

D-Y for k=N,. 

For the approximate solution of the initial/boundary value problem consisting of 
(2) and (5)-(7), Gustafsson [ 1 ] proposed an ADI difference scheme, which takes the 
form 

(1 - pi;: 1’2) wj:: Iv2 = (1 + Qjnk) w;~, (16a) 
(1 -Q,::‘)$+‘=(l +P;;1’2)w$.+“2 (16b) 

where j = l,..., N,Y, k = 0 ,..,, N,,, and n > 0. (Because of boundary condition (6), 
Eqs. (16) do not apply to the u-component when k = 0, NY). The first step of this 
procedure (16a) requires the solution of a sequence of one-dimensional problems in 
the x-direction, i.e., along the grid lines k = constant, while the second (16b) gives 
rise to a sequence of one-dimensional problems in the y-direction, i.e., along the grid 
lines j = constant. However, at each time step of this scheme, several systems of 
nonlinear algebraic equations must be solved. Two methods of solution are proposed 
in [ 11. In the first, the systems are written in the form 

w  = r(w), 

and solved by a simple iteration technique 

W(m+ 1) = r(W(m)), m = 0, 1, 2 ,...) p, (17) 

where the superscript denotes iteration index. The number of iterations in each half 
time step has to be chosen from the sequence 3, 4, 7, 8, 11, 12,..., in order to avoid 
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instability for the linear case, (cf. ] 151). In [ 11, the iterative procedure (17) is called 
the GIp method. 

The second method is a quasi-Newton method. If a system of nonlinear equations 
is written in the form 

g(a) = 0, 

then Newton’s method takes the form 

a(mt I) = a(m) - .P- ‘(a’“‘) g(cP)), 

where the superscript again denotes iteration index, and .Y(a) is the Jacobian 

X(a) = a( g, a). 

In order to determine .P-‘g, an LU decomposition of ,P is performed and .P- ‘g is 
then computed by back substitution (see [ 1 I). The quasi-Newton method considered 
in [ 1 ] consists in performing the LU decomposition only every Mth time step, where 
M is a fixed integer. The quasi-Newton iterative procedure is then 

a’mt 1) = a’m’ _ y-yaw) g(a”), (18) 
where 

2 = f(aco’) + O(b). 

One of the most satisfactory of the quasi-Newton procedures examined in [ 1 ] is the 
method QNEXl, which consists of (18) with only one iteration. In this procedure a”’ 

is obtained by linear extrapolation in time using the solutions at the two latest time 
levels [ 1 ]. 

4. THE NEW AD1 METHOD 

The new AD1 method is derived by first constructing a scheme which is locally 
second-order correct in both space and time (at least at all interior nodes). The 
technique of Douglas and Gunn [5] is then used to generate a perturbation of this 
scheme which can be factored into a sequence of one-dimensional problems. 

For convenience we introduce the operators P$ and Q$ defined by 

Pi;: = $ [A($$) Do, + C:“], 

respectively, where 
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Consider the method defined by 

wjk '+' - wTk = (I';; + Q$)(wj"k" + wyk), 

j = 1 ,.. ., N, , k = 0 ,..., N, , n >o, 

with 

(194 

Wn Ok = W;rkr k=O ,..., N,, n>O, 

u,i”u = z&, = 0, 

wyk = v(ij? Yk)r 

j=O ,..., N,, n>O, (19b) 
j= l,..., N,, k= 0 ,..., N,. 

(Note that because of boundary condition (6), (19a) does not apply to the u- 
component when k = 0, N,,.) It is easy to see that the finite-difference method (19a), 
which resembles the method of Lees [6] for nonlinear parabolic problems, is locally 
second-order correct in time for the approximate solution of (2) and, moreover, is 
algebraically linear. However, it does have one major drawback. Although the 
totality of difference equations at each time step gives rise to a linear algebraic 
system with a sparse coefficient matrix, the system is difficult to solve. But if the dif- 
ference equations are perturbed by a term which gives rise to a O((df)*) error locally, 
the resulting procedure has the same local accuracy as (19a) and it can be written as 
a system of one-dimensional problems. To determine an appropriate perturbation 
which will yield such a procedure we use the techniques proposed in [5]. Following 
(2.7) of [.5] we obtain the following AD1 method: 

(l-pj”,‘)w;;+‘)‘= (1 + p;; + 2Q;;) w$, 
(1 -Q;;) w;;’ = ,j,+‘)* - Q,;w,“,, (20) 

where w!““‘* is an auxiliary solution (cf. wyk+“* of (16), which is considered as an 
approximkation to w(jdx, kdy, (n + -f)dt)). On eliminating this quantity from (20) 
we obtain 

(1 - P,$)( 1 - Q;;) wj:: ' = (1 + P,",')( 1 + Q,i",') w,;k (21) 

or 

wjk ’ + ’ - wik = (P;; + Q,n,‘)( wj:: ’ + wjnk) - I’;; Q,;; ( w,Jk+ ’ - wink), (22) 

which is clearly a perturbation of (19a). 
A procedure which is more convenient than (20), or the usual 

Peaceman-Rachford-type splitting of (21) for the computation of wyLt ‘. is 

Pa) 

Pb) 

where 

I’yk=(l +Q;;)wi;. (24) 
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Upon eliminating w!” + ‘)’ between (23a) and (23b) we obtain Eq. (21) after some 
manipulation, Note ;Lat because of boundary condition (6) the Eqs. (23a) and (23b) 
do not apply to the u-component when k = 0, NY. In the following this new ADI 
method is called ADIF. 

When system (2) is linear with time-independent coefficients, the new AD1 method 
(21) and Gustafsson’s method (16) (with r~i;:“* eliminated) are identical. Conse- 
quently the linear stability analysis given in [I ] for (16) also applies to (21). 

Consider now the algebraic problem associated with ADIF, (23). Because of the 
form of the matrices A and B, no more than two variables are coupled to each other 
on the left-hand sides of the equations in (23). When the unknowns are ordered along 
horizontal rows for w(“+‘)‘, we first solve for the coupled variables (u$+ I)‘, Qj$‘+‘)‘), 
j= l,..., N,, k = O,..., N,, and only then for the variables uj,+ I)‘, j = I,..., N,, 
k = l,..., NY - 1. The elements of the vector w”‘+‘)’ are determined by solving for 
(u/$-t I”, @j;+ 1)‘) a sequence of linear systems whose coefficient matrices are cyclic 
block-tridiagonal matrices, each block being (2 X 2), and then solving for ujtt I)’ a 
sequence of linear systems whose coefficient matrices are scalar cyclic tridiagonal. 
The cyclic form of the tridiagonal matrices arises from the assumption of periodic 
boundary conditions in the x-direction. The scalar cyclic tridiagonal systems are 
solved using a routine from [ 131 which is based on the algorithm described in [7] 
while a generalization of the algorithm of [7] is used for the block cyclic tridiagonal 
systems. 

When solving for wi;: ’ from (23b), the unknowns are ordered along vertical lines. 
The coupled variables (~7~’ i, @ykt ‘), k = 0 ,..., NY, j = l,..., N, are determined first, by 
solving block-tridiagonal systems using the subroutine BT of [IO]. The quantities 
u?“, k = 0 ,..., N,, j = 1 I..., N,, are then obtained by solving 
&terns using the standard routine; see, for example, [ 121. 

scalar tridiagonal 

5. NUMERICAL RESULTS 

5.1. The Test Problem 

To compare the computational efficiency and accuracy of the new AD1 method 
(23) with those of the method called QNEXI in [ 11, the test problem of [I] was 
used, viz., the initial height field condition No. 1 used by Grammeltvedt [ II] 

h(x,J’)=H,,+H,tanh (““f;‘j) +H,sech2(9(D$-y)) sin(q. (25) 

The initial velocity fields were derived from the initial height field via the 
geostrophic relationship 

-g ah 
Id= f ay’ C--J -- (26) 
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The constants used were 

L = 4400 km, 

D = 6000 km, 

3= 10m4 see-‘, 

j3 = 1.5 X lo-” set-’ m-‘, 

g = 10 msec-*, 

Ho = 2000 m, 

H, = 220 m, 

H, = 133 m. 

The time and space increments used in the short runs (2 days) were 

(a) Ax = Ay = 200 km, At = 1800 set, 
(b) Ax = Ay = 200 km, At = 3600 sec. 

For the long runs the space and time increments 

Ax = Ay = 500 km, At = 3600 set, 

were also used. 
All of the calculations were carried out on a CDC 6600 computer at the South 

African Meteorological Offtce. Gustafsson’s experiments [l] were performed on a 
similar computer. 

5.2. Computational Eflciency 

The methods QNEXl and ADIF were first compared by finding the run times in 
seconds per full time step. The results are shown in Table I, where OPT = 2 is an op- 
timized CDC version of FORTRAN, and OPT = 0 is a fast two-pass compilation 
with little optimization of object code. It is evident that ADIF is almost twice as fast 
as any of the versions of QNEXl of [ 11, a result which was not unexpected because, 
while the methods have similar operation counts ([ 115 + 152/M] NxlvY operations 
per full time step for QNEXl, 143N,N, for ADIF) QNEXl is more complicated to 
program than ADIF. Only the method G13 of [l] is faster than ADIF. However, the 
G13 method has a convergence criterion imposing a limit on A, = At/Ax, which is 
only four times as large as the CFL criterion for explicit schemes, and its 
convergence is very slow if A,, A, are near the convergence limit. 

TABLE I 

Method 
Run time 

per full time step (set) 

QNEXl, M = 12 0.43 
QNEXl, M=6 0.49 
ADIF (with OPT = 0) 0.25 
ADIF (with OPT = 2) 0.23 
G13 0.16 
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TABLE II 

II ~ApllIII wEx II 0 = 2 days) 

dx=dy=500km Ax = A,v = 200 km 

Method Al = 3600 set At = 1800 set Af = 3600 set AI= 18OOsec 

QNEXl (M= 6) 6..7 i x IO-’ 3.1 x lo-” 1.0x10 1 4.4 x 10 
ADIF 5.4 1om4 2.3 10m4 8.7 x lo-’ 3.9 10 ( x x x 

5.3. Accuracy 

In order to provide a basis for comparison between the new method (ADIF) and 
Gustafsson’s QNEXl [ 11, we assume that the exact solution of the initial/boundary 
value problem (2), (5~(7), i+x, is the solution of (23) computed with a fine dis- 
cretization, viz., dx = dy = 50 km and At = 450 sec. As in [ 1 J, the relative error in an 
approximate solution, wAP, is measured in the norm (] . ]] defined by the inner product 

where a and /I are grid functions satisfying the boundary conditions given in (19b). 
The relative errors in the approximations determined by QNEXl (M = 6) and ADIF 
are shown in Table II, where E,, = wAP - wEx. 

The height field was also computed with each method using Ax = Ay = 200 km. 
Figure 1 shows the initial height field, while Figs. 2 and 3 show the height field after 
2 days determined from ADIF with At = 1800 set and At = 3600 set, respectively. 

FIG. 1. The initial height field. dx = Ay = 200 km. 
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FIG. 2. The height field after 2 days for ADIF. df = 1800 sec. dx = dy = 200 km 

FIG. 3. The height field after 2 days for ADIF. At = 3600 set, Ax = AJ = 200 km. 

Figures 4 and 5 show the corresponding height fields computed with QNEX 1. It is in- 
teresting to note that Fig. 3 is almost identical to Fig. 9 of [ 171, which shows the 
height field computed with a semi-implicit finite-difference method using the same 
mesh parameters. The ADIF method is more efficient than the semi-implicit method 
of [ 171 by a factor of 2.5. 
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FIG. 4. The height field after 2 days for QNEXl (M = 6). At = 1800 set, Ax = Ay = 200 km. 

r”“““““““” “““““‘I 

“IG. 5. The height field after 2 days for QNEXl (M = 6). At = 3600 set, Ax = Ay = 200 km. 

5.4. Long-Time Integrations 

Some long-term runs were made using both ADIF and QNEXl (M= 6). The ap- 
proximate solutions always “blew up”; with the coarse mesh this occurred after 
12-14 days. It was observed that the “blow-up” was preceded by a sudden strong dis- 
sipation of energy (which was more pronounced in the case of ADIF than for 



12 FAIRWEATHER AND NAVON 

QNEXl). This phenomenon appears to be a characteristic of energy-conserving 
models for the shallow-water equations. Sadourny [ 141 observed that for an energy- 
conserving model when this dissipation of energy occurs the potential enstrophy (the 
mean square potential vorticity) jumps by an order of magnitude. The potential 
enstrophy, Z, is a third invariant of the shallow-water equations, and is defined in the 
following way. If we denote by 

I30 c 

100 

095 

090 

FIG. 6. The time evolution of .potential enstrophy (2) and total energy (E) for ADIF. 
A.u = AJ = 500 km. df = 3600 sec. 

___--- 

I25 r 
75 r 

FIG. 7. The time evolution of potential enstrophy (2) and total energy (E) for QNEXl (M = 6). 
Ax=Ay=500 km, At= 3600sec. 
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the component of the relative vorticity along the local vertical, the absolute vorticity 
is defined as 

Q=t+J 
Then 

L L 2 
z=: l^i‘ 0 0 

$ dx dy. 

Several numerical experiments were conducted to examine the time evolution of 
both the energy and the enstrophy invariants, E and Z, respectively, for the methods 
ADIF and QNEXl. Two spatial grids were used, namely, 

and 

Ax = Ay = 500 km, (27) 

Ax = Ay =, 200 km, (28) 

with At = 3600 set in each case. The results obtained from ADIF with (27) are 
plotted in Fig. 6. In this and subsequent figures the broken line denotes the “blow-up” 
time, T,. In this experiment the enstrophy increases linearly during the first 6 days, 
but in the vicinity of T, (~12 days) it jumps by an order of magnitude. The total 
energy remains reasonably constant for about 7 days after which it slowly decreases 
before decreasing sharply prior to “blow-up.” The discontinuity occurring at t = T, 
has been referred to as an “energy catastrophe” [ 141. 

The results for QNEXl are given in Fig. 7. In this case T, is around 14 days and 
hence QNEXl is marginally more stable than ADIF. The behavior of E is quite 
different from that displayed in Fig. 6 but, again, a sharp decrease of E accompanied 
by a rapid increase in Z is observed prior to “blow-up.” 

The same experiment was repeated with the finer mesh (28), and the time evolution 
of E and Z in the case of ADIF is plotted in Fig. 8. The behavior of E and Z is 
similar to that displayed in Fig. 6, with the exception that the “blow-up” time T, is 
delayed from 12 to 22 days, approximately. Sadourny [ 141 also observed that 
decreasing the mesh sizes delays T,. The corresponding results for QNEXl are given 
in Fig. 9. 

In a second series of experiments a dissipation term of the form 

was added to the right-hand side of Eq. (23a) of the ADIF scheme. In [ 1 ] dissipation 
is introduced into QNEXl by adding the terms &(At)‘l D,, De,, M$ and 
c(At)’ D+xDpxw;k+‘i2 to the right sides of (16a) and (16b), respectively. The time 
evolution of E and Z for these versions of ADIF and QNEXl was studied for E in 
the vicinity of the critical dissipativity, E, (0.003 for ADIF and 0.002 for QNEXl ). 
The critical dissipativity, E,, is the value of E above which the numerical solution is 
stabilized far beyond T,, and below which it “blows up” at approximately T, (cf. 
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FIG. 8. The time evolution of potential enstrophy (Z) and total energy (E) for ADIF. 
AX = Ay = 200 km, dl= 36M) sec. 

[ 14)). The results for ADIF with E, = 0.003 and QNEXl with E, = 0.002 and the 
grid (27) are plotted in Figs. 10 and 11, respectively. In each case it is seen that the 
enstrophy increases in a manner similar to that with E = 0 until time T, after which it 
oscillates. A similar observation was made by Sadourny [ 141 for his energy- 
conserving model. 

Runs with E > E, were also made, and, as observed by Sadourny j14], the time 
evolution of E was found to be rather insensitive to the value of E as long as it stays 

I 
I 
INSTABILIT” 

IT 
0 2 4 6 8 IO I2 I4 I6 I8 20 22 T’“~‘DA”51 

FIG. 9. The time evolution of potential enstrophy (2) and total energy (E) for QNEX\ (M = 6) 
A.u=Ay= 200 km, At= 3600 sec. 
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FIG. 10. The time evolution of potential enstrophy (2) and total energy 
E = E, = 0.003. Ax = Ay = 500 km, At = 3600 sec. 

(I?) for ADIF with 

0 2 4 6 8 IO 12 14 16 It3 20 
TIME ,Dl"S, 

FIG. 1 I. The time evolution of potential enstrophy (Z) and total energy (E) for QNEXl (M = 6) 
with E = E, = 0.002. Ax = Ay = 500 km, At = 3600 sec. 

within an order of magnitude of its critical value. In Figs. 12 and 13 the time 
evolutions of E and Z for ADIF and QNEXl are plotted, respectively, with the 
spatial grid (27) and E = 0.015. 

As we have indicated there is a striking similarity between the results of our 
experiments and those of Sadourny [ 141 for his energy-conserving model, and it is 
possible to draw the same analogy between our method and the Navier-Stokes 
equations in three dimensions that Sadourny drew between his model and these 
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100 
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060 - 

050 - 

040 - 

0 2 4 6 8 IO 12 14 16 I8 20 
TIME ,Dc%YIIs, 

0 2 4 6 8 IO 12 14 I6 I8 20 
TIME ,Dc%YIIs, 

FIG. 12. The time evolution of potential enstrophy (2) and total energy (E) for ADIF with 
E = 0.015. Ax = dy = 500 km, AI = 3600 sec. 

E E - I05 - I05 

- 095 - 095 

080 080 - - 

070 070 - - 

060 060 - - 

050 050 - - 

040 040 - - 

030 030 - - 

020 020 - - 
I I I I I I I I I 1 I I I I I I I I I I I 1 I I 

0 0 2 2 4 4 6 6 8 8 IO IO I2 I2 I4 I4 I6 I6 I8 I8 20 20 
TIME ,DP”S, TIME ,DP”S, 

FIG. 13. The time evolution of potential enstrophy (Z) and total energy (E) for QNEXI (M = 6) 
with E = 0.015. Ax = AL’ = 500 km, At = 3600 sec. 

equations (see [ 14, p. 6841). In particular, our results verify that the critical time T, 
is inversely proportional to the square root of the initial enstrophy Z,. (Compare [ 14, 
16, 191. In our example Z; I” = 13.) In addition our study shows that 

T, = C(d) Z, I”, 

where C(d) depends on the mesh and increases as the mesh is refined, 
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It should be emphasized that for the three-dimensional Navier-Stokes equations 
there exists an intrinsic critical time T,, independent of resolution. Since potential 
enstrophy is an invariant of the shallow-water equations, there is no intrinsic critical 
time for these equations. However, as observed by Sadourny [ 181, catastrophic 
behavior may occur at a finite time in numerical models if they do not conserve 
potential enstrophy. In this case the source of catastrophy lies in the truncation error 
and becomes less and less effective as resolution increases, and the critical time 
increases to infinity with resolution. 

Finally, we emphasize a point made by Sadoumy. There is little to be gained by 
adding dissipation to ADIF and QNEXl. While dissipative terms stabilize the 
methods beyond T,, the catastrophe itself is unavoidable. Since the potential energy 
is an invariant of the shallow-water equations one should think of T, as the time 
beyond which the methods cease to be dynamically consistent with the original equa- 
tions, and consider calculations performed beyond that time as purely formal. 
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