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Abstract. A modified version of the truncated-Newton algorithm of Nash ([24], 125], [29]) is presented differing 
from it only in the use of an exact Hessian vector product for carrying out the large-scale unconstrained optimization 
required in variational data assimilation. The exact Hessian vector product is obtained by solving an optimal control 
problem of distributed parameters. (i.e. the system under study occupies a certain spatial and temporal domain 
and is modeled by partial differential equations) The algorithm is referred to as the adjoint truncated-Newton 
algorithm. The adjoint truncated-Newton algorithm is based on the first and the second order adjoint techniques 
allowing to obtain a better approximation to the Newton line search direction for the problem tested here. The 
adjoint truncated-Newton algorithm is applied here to a limited-area shallow water equations model with model 
generated data where the initial conditions serve as control variables. We compare the performance of the adjoint 
truncated-Newton algorithm with that of the original truncated-Newton method [29] and the LBFGS (Limited 
Memory BFGS) method of Liu and Nocedal [23]. Our numerical tests yield results which are twice as fast as 
these obtained by the truncated-Newton algorithm and are faster than the LBFGS method both in terms of number 
of iterations as well as in terms of CPU time. 

1. Introduction 

Most of numerical weather prediction models are distributed parameter systems [1, 51]. 
The term "distributed parameter system" implies that the response (e.g. cost function) of 
the system is governed by a set of partial differential equations and parameters embedded 
in the equations are spatially and time dependent [1, 38]. The issue of 4-dimensional 
variational data assimilation applied to the shallow water equations model has been the 
subject of several recent papers such as [4], [22], [48], [52], [53], [54] etc. The large-scale 
unconstrained minimization of a cost functional arising in the application of optimal control 
of distributed parameters assumes the following form 

min J ( U )  = min [W(CX X ), ( C X  - j~0)] dt 
U U . '  

(1) 

where J( is the state variable vector in a Hilbert space 2(, the inner product of  the space of  
observations is denoted by [., .] using an Euclidean norm, [to, t I ] denotes the assimilation 
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window where to and t f  are the initial and final time and W is a weighting function usually 
taken to be the inverse of the covariance matrix. The objective function J (U) is the weighted 
sum of the squares of the distance between the model solution and available observations 
distributed in space and time. j~0 is the observation vector, the operator C represents an 
operator from the space of the model solution J~ to the space of observations [54]. The 
conn'ol variable U and the state vector J~ satisfy model equations 

02 
0---7 = F(X), (2) 

2(t0) = u ,  (3) 

E C 2 is a function of J(, where C 2 denotes a set of twice where t is the time, and F 
continuously differentiable functions. Therefore, for any initial condition given by Eq. (3), 
Eq. (2) has an unique solution, X. 

The control variables can be initial conditions or initial plus boundary conditions [49] or 
parameters [50] to be estimated. For simplicity, only initial conditions are taken as control 
variables. 

Full-Newton descent methods (i.e., based on dense matrix factorizations) have never been 
used in a realistic large-scale optimal control of distributed parameter problems due to the 
fact that computation and storage of the Hessian are too costly to be practical [9]. Among 
the feasible methods for large-scale unconstrained minimization are (a) the limited memory 
conjugate gradient method ([34], [43]); (b) quasi-Newton type algorithms ([5], [9], [14], 
[37]); (c) limited-memory quasi-Newton methods such as LBFGS algorithm ([23], [36]) 
and (d)truncated-Newton algorithms ([26], [28], [29], [32], [411, [42]). 

The truncated-Newton algorithm can be applied to many problems such as the above 
unconstrained minimization problem (Eq. (1)) and parallel minimization problems ([30], 
[31]). The main purpose of the present work is to propose a modified version of the 
truncated-Newton algorithm of Nash [29] which uses the second order adjoint technique 
to obtain an exact Hessian vector product required in calculating the Newton line search 
direction and to compare the numerical results obtained by the adjoint truncated-Newton 
algorithm with these obtained by the truncated-Newton of Nash [29] and by the LBFGS 
algorithm [23]. The adjoint truncated-Newton algorithm is only useful for optimal control 
problems where adjoint model codes exist or could be easily derived. 

The truncated-Newton algorithms attempt to blend the rapid (quadratic) convergence rate 
of classic Newton method with feasible storage [29] and computational requirements [32] 
for large-scale unconstrained minimization problems. When these algorithms are used 
for the large-scale unconstrained minimization [53], the Hessian vector product is usually 
obtained by applying a finite-difference approximation technique to the gradient of the 
cost function with respect to the initial conditions, while the gradient is calculated by 
using the first order adjoint technique. Other alternatives for obtaining the Hessian/vector 
product such as automatic differentiation ([ 11], [ 13]), and higher order finite-differencing 
approximations exist. Many automatic differentiation variants are competitive in terms of 
complexity with analytic approaches. However, higher order finite-differencing approach 
is too costly to apply to optimal control problem of variational data assimilation. 

We have recently learned that Santosa and Symes [39, 40, 45] also used the adjoint method 
to calculate the Hessian vector product in an application to inverse problems of reflection 
seismology. They have also applied the adjoint technique to calculate the Hessian vector 
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product required in a different version of the truncated Newton method [6]. Their results 
indicate that the Hessian vector product calculated by this technique yields considerable 
accuracy [39]. In our paper we derived the second order adjoint technique in a different 
manner than theirs and applied it to a different version of the truncated Newton method 
[29]. We also carried out an accuracy analysis of the Hessian vector product calculation. 

We will briefly describe in Section 2 the shallow water equations model, then introduce in 
Section 3 the first order adj oint and the second order adj oint techniques used in the variational 
data assimilation to obtain an exact Hessian vector product. In Section 4 we present 
numerical results obtained by using the adjoint truncated-Newton algorithm, and compare 
them with the results obtained by using the limited memory quasi-Newton algorithm of Liu 
and Nocedal [23] and the truncated-Newton algorithm of Nash [29]. A detailed discussion 
concerning the accuracy of the finite-difference approximation of the Hessian vector product 
and the sources of error related to this approximation is provided. Summary and conclusions 
as well as topics for further research related to the adjoint truncated-Newton approach are 
presented in Section 5. 

2. The shallow water equations model 

In this section, we introduce the shallow water equations model which is used as the test 
model in this paper. 

The shallow water equations model equations may be written as 

Ou Ou Ou 04) 
- u i - v - + f  v - - ,  (4) 

Ot Ox Oy Ox 

Ov Ov Ov 04) 
- u - - - v - - - f  u - - - ,  (5) 

Ot Ox 3y Oy 

o4) o(u4)) o@4)) 
- ( 6 )  

at Ox Oy 

where x, y, t, u, v, 4) and f are the x and the y coordinates, the time, the two components 
of the horizontal velocity, the geopotential field and the Coriolis factor, respectively. The 
spatial domain is a 6000 km x 4400 km channel. The initial conditions are those of 
Grammeltvedt [18]. The southern and northern boundaries are rigid walls where the normal 
velocity components vanish, and it is assumed that the flow is periodic in the west-east 
direction with a wave length equal to the length of the channel. The time and space 
increments used in the model were 

Ax = 300 km, a y  = 220 kin, At = 600 s, (7) 

which result in 21 x 21 grid point locations in the channel and a dimension of 1083 of the 
initial condition vector U = (u, v, 4))r where superscript t denotes the transpose. 

The shallow water equations model is non-dimensionalized by the following scaling 

Ax'  = A x / H ,  Ay'  = A y / H ,  At '  = A t U / H ,  

u'=u/U, v'=v/U, 4)'=4)/U 2, 
f '  = f H / U ,  g' --- g H / U  2, (8) 

w h e r e H = 1 0 5 a n d U =  103 . 
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The cost function is defined in Eq. (1) where W 4 = 10 4 m-4s4 and Wu = W~ = 10 -2 
m-2s 2 are weighting factors which may in a more rigorous approach be taken as the inverse 
of estimates of the statistical root-mean-square observational errors on geopotential and 
wind components, respectively. 

3. The  adjoint  Newton  a lgor i thm 

3.i. Description of  the first order adjoint and the second order adjoint model theories 

Let us consider a perturbation U' on the initial condition U in Eq. (3). The perturbed 
solution J( + J) satisfies the equation: 

a(2 + 2) _ F(2 + 2), 
Ot 

aF ^ L2* aF2 
= F(X) + ---=X + . 2 + 0(112113), 

OX 2 OX 2 

X(to) + X(to) = U + U', 

where J(* denotes the complex conjugate transpose and ll3f II denotes the Euclidean norm 
of "J(". Using the model Eqs. (2) and (3) retaining the first order terms in ig, the above 
equation becomes: 

a 2  OF ^ 
- . X, (9) 

3t 3X 

X(t0) = U'. (10) 

Equations (9) and (10) define the tangent linear model (TLM) of the nonlinear forward 
model given by Eqs. (2) and (3) in the vicinity of the particular solution ,Y (see [46]) and 
the perturbation U' on the initial condition U in Eq. (3) has become the initial condition of 
the TLM. The TLM describes the temporal evolution of the perturbation Jr, to the second 
order with respect to the initial perturbation U'. Appendix A provides a simple example 
which illustrates the accuracy of the TLM. For discussions related to the validity of TLM 
models, please see [211. 

For a perturbation U' on the initial condition U in Eq. (3), the exact evolution of the 
perturbation due to this perturbation U' is given by thedifference, J~2 - J~t, between two 
solutions of the model Eq. (2) with initial conditions X~ (to) = U and X2(t0) = U + U', 
respectively. The tangent linear variable defined by Eqs. (9)-(10) only gives a second order 
approximation, with respect to U', to the exact evolution of the perturbation due to the 
perturbation U'. The Gateaux derivative, [Vv J, U'], of the cost function J is given by 

aJ = [VuJ, U'] = [W(CX - X~ CX] dt, 
i 

(11) 

To exhibit the linear dependence of 3J with respect to U' and consequently in order to 
compute the gradient of J,  we introduce the adjoint variable P. Taking the inner product 
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of Eq. (9) with - P  and integrating between times to and tf  gives 

Integrating by parts, one obtains 

or 

[ - P ( t f ) ,  X(ty)] + [P(to), X(to)] = 2 ,  Ot \ O X J  

Now let us define P as being the solution of 

o p  ' 

5; \ o x /  

P(t f )  = O, 

Then from Eq. (11) one obtains 

3J(U, U') = [VuJ, U'] = [U', P(to)] 

and 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Vu+v,J  = P(v+u,)(to). 

Therefore P(v+u')(to) may be written as 

P(v+v,)(to) = P(to) 4- ['(to) 4- Pe(to), 

(20) 

(21) 

where V g J is the Hessian matrix of second derivatives of the cost function with respect to 
the initial condition and ~o is a point in the interval [U, U + U']. From Eq. (18), we know 
that 

(19) 
1 , . a3 j (~o) . ,  

Vu+u,J  =- V u J  -4- V2 j �9 U' 4- ~ (U ) ----- f f~-u , 

Therefore the gradient of the cost function is obtained by a backwards integration of the 
adjoint system (15-16). The dependence of J on the initial condition U is implicit via X. 

It is important to realize that the TLM defined by Eqs. (9)-(10) is only second order 
accurate except when the original model equations Eq. (2) are linear. Although the TLM is 
used to derive Eq. (18), Eq. (18) is exact. See Appendix A for an analytical example. 

Let us denote the first order adjoint variable after a perturbation U I on the initial condition 
U by P(u+u'). Expanding V~+u, J around U in Taylor series, results in 

vvJ = P(to). (18) 
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where P(to) = Vv J, P(to) ---- V2 J �9 U' and Pe(to) = 0.5(U')*O3 J (~o)/aU3U '. Expanding 
OF~Of(l(2+2) around J(, results in 

O~ (2+2, OF + OZF 2 1 2 " 0 3 2  
-- aT( - ~  + 2  OX 3if, " 

(22) 

where ~l is a point in the interval [)(, 2 + X]. Substituting Eqs. (21) and (22) into 
Eqs. (15)-(16), one obtains 

a(P+i'+P<) ~aF a2F 2 1 2 .  a3F~l  
= -=+ + (P + f + P~) 

ot lax a~2 2 a~3 I 
+ c*w(c(~ + 2)  - ~0), (23) 

i.e. 

aP OP aPe 
at at at 

(02F2]* II.,O3F^X 
=t~) e + < a x /  <a~2 / 

_t. .(/ 'O2f ^'N* /1 ^ ,aF3 ^ \ * ( a N  a2F2. 12 ,  a3F)~ ] 

t J )  + x' + + + \ax  a22 ~ ~ ) 
+ C*W(CX - 2 ~ + C*WCX, P(tf) + fi(ty) + P~(ts) = 0. (24) 

If we let 

OPe __ ( l ~ , 0 3 f f ( ' ~  {~2F~] * //1 ^ ,0F3 ^ "~ * 

OF O2F^ 12,03F2" ] 
+ 7-X + OX 2X + 2 023 ] Pc 

(25) 

(26) P A b )  = o. 

Making use of Eqs. (25) and (15), one obtains the following equations from Eq. (24) 

O Po t ( O F ) 1" 0 2 F ^ \ * - ~ + ~,~77x) P + c*wci:, (27) 

P( t  s) = 0. (28) 

Equations (27) and (28) define the second order adjoint model of Eqs. (2) and (3). One 
backwards integration of the second order adjoint model yields an exact Hessian vector 
product: 

V ~ J - U '  : /3(to). (29) 

Santosa and Symes [39] showed that the exact Hessian can be computed at a modest cost 
for a problem similar to the one considered here. Their paper also showed the benefit of 
computing the Hessian in an optimization. The second order adjoint process is illustrated 
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in Appendix A using a simple nonlinear model with exact solutions for both the nonlinear 
model and the adjoint models. 

For the derivation of the second order adjoint model for the shallow water equations 
model, see [48]. 

3.2. The adjoint truncated-Newton method 

We provide a brief description of the adjoint truncated-Newton algorithm which differs 
from the truncated-Newton algorithm ([29], [32]) only in the Hessian vector calculation 
required for solving the Newton equations at the k-th iteration 

c k ~  = -~k, (30) 

where Gk is the Hessian of the cost function, dk is the linear search direction and gk = 
VJ(Uk) is the gradient of the cost function with respect to the initial conditions. For a 
complete description of the truncated-Newton algorithm, see Nash [29]. 

The main steps of the adjoint truncated-Newton algorithm are as follows: 

(1) Choose Uo, an initial guess to the minimizer U* and set the iteration counter to k = 0. 
(2) Test U~ for convergence. If the following convergence criterion is satisfied 

II~kll < 10 -5.  I1~o11, (31) 

then stop. Otherwise continue. 
(3) Solve approximately the Newton Eqs. (30) using a preconditioned modified-Lanczos 

algorithm where the Hessian vector product is obtained using a backwards integration 
of the second order adjoint model given by Eqs. (27) and (28). 

(4) Set k = k + 1 and update 

 ?k+l = Ok + (32) 

where O~k is the step-size obtained by conducting a line search using Davidon's cubic 
interpolation method [5]. Go to step 2. 

The computational cost required to obtain the Hessian vector product is similar for both the 
finite-difference approach and the second order adjoint approach. The second order adjoint 
approach requires us to integrate the original nonlinear model and its tangent linear model 
forward in time once and integrate the first order adjoint model and the second order adj oint 
model backwards in time once. The finite-difference approach requires the integration of 
the original nonlinear model forward in time and the first order adjoint model backwards 
in time twice. The computational costs for each model integration are comparable. 

4. Numerical results obtained using the adjoint truncated-Newton algorithm 

In this section we display numerical results obtained by applying the adjoint truncated- 
Newton algorithm for the large-scale unconstrained minimization of the functional in the 
variational data assimilation and compare the results obtained by the adjoint truncated- 
Newton algorithm with these obtained by both the truncated-Newton and the LBFGS 
algorithms. 
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4.1. Application of the adjoint truncated-Newton algorithm 
to variational data assimilation 

A simple experiment was conducted applying the adjoint truncated-Newton algorithm to 
minimize the cost functional J given by Eq. (1) in the variational data assimilation using the 
shallow water equations model. The experiment is devised as follows: the model generated 
values starting from the initial condition of Grammeltvedt [18] are used as observations, 
the initial guess is a randomly perturbed Grammeltvedt initial condition, and the length of 
the time assimilation window is 10 hours. We know the exact solution, i.e. that the value 
of the cost function at the minimum must be zero since we must retrieve the original initial 
conditions. The adjoint truncated-Newton algorithm described in Section 3.2 is used here for 
large-scale unconstrained minimization in the variational data assimilation experiment. The 
maximum number of conjugate gradient inner-iterations allowed for each adjoint truncated- 
Newton algorithm iteration is chosen as 50. The number of BFGS corrections that is to be 
stored in memory is denoted by M. 

Computations were performed on the CRAY-YMP supercomputer at the Supercomputer 
Computations Research Institute in Florida State University. All the routines are coded 
in single precision FORTRAN. The runs were made on the CRAY-YMP supercomputer, 
for which the relative machine precision e is approximately 10 -14. The variation of the 
objective function scaled by its initial value (J/Jo) as well as that of the norm of the 
gradient also scaled by its initial value (11 g II/fl g0 I[) as a function of the number of iterations 
are displayed in Fig. 1, respectively. Figure 1 shows that after 16 minimization iterations 
the value of the cost function and the norm of the gradient were reduced by 10 and 6 
orders of magnitude, respectively. At this stage the prescribed convergence criterion given 
by Eq. (31) is satisfied. The CPU times used by the adjoint truncated Newton algorithm 
and usual truncated Newton algorithm are 10.817 s and 24.491 s, respectively. The CPU 
times used by LBFGS of Liu and Nocedal [23] with number of LBFGS corrections of 5 
is t5.585 s. The rms error, ~/Hq~ - ~b~ 112IN, between retrieved geopotential field q~r after 
16 iterations and the unperturbed geopotential field q~, is 0.9069 m2/s 2 which is 3 orders of 
magnitude smaller than that of the perturbations, where N is the number of components in 
qSr. We conclude therefore that the adjoint truncated-Newton algorithm performs well both 
in terms of CPU time and the number of iterations. 

4.2. Numerical results 

In this section we compare the numerical behavior of the adjoint truncated-Newton un- 
constrained minimization algorithm with those of other robust large-scale unconstrained 
minimization methods. The methods tested are: 

(1) Truncated-Newton--the truncated-Newton method of Nash ([27], [29]). 
(2) LBFGS-- the  limited memory quasi-Newton method of Liu and Nocedal [23]. 

The test problem is the same as that described in Section 4.1. Computational efficiency 
and accuracy were used as leading criteria. For the adjoint truncated-Newton, truncated- 
Newton and LBFGS algorithms, the same convergence criterion as set by Eq. (31) is applied. 
The numerical results obtained are displayed in Table 2. 

The first column displays the unconstrained minimization algorithms tested. The second 
column displays the parameters used for each algorithm. The third, fourth and eighth 
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Figure 1. The variations of the log of the scaled cost function (Jk / J0 ) (a) and the scaled gradient norm (11 ~k II/II~0H) 
(b) with the number of iterations using algorithms: adjoint truncated-Newton (dotted line), truncated-Newton (solid 
line) and LBFGS (dashed line), respectively. 

columns record the number of iterations, the number of function calls, and the CPU time in 
seconds required to satisfy prescribed convergence criteria, respectively. The fifth column 
records the total number of conjugate gradient iterations (NCG) used to determine the 
Newton descent directions. The next two columns display the scaled cost function (Jk/Jo) 
and the scaled gradient norm ([1 gk [[/[1 g0 [[) at the end of the assimilation process, respectively. 

Both the adjoint truncated-Newton and truncated-Newton algorithms obtain the Newton 
descent direction by solving approximately the Newton equations using a truncated conju- 
gate gradient algorithm. They only differ in the calculation of the Hessian vector product. 
However their relative performances turn out to be dramatically different. Table 2 indi- 
cates that for different maximum number of conjugate gradient inner-iterations allowed 
for each inner iteration, the adjoint truncated-Newton algorithm outperforms the truncated- 
Newton algorithm. When the maximum number of conjugate gradient inner-iterations 
is 5, the truncated-Newton algorithm stopped without satisfying the prescribed conver- 
gence criterion. When the maximum number of conjugate gradient inner-iterations is 4, 
the truncated-Newton algorithm required three times the CPU time used by the adjoint 
truncated-Newton algorithm to satisfy the same convergence criteria. In terms of CPU 
times the adjoint truncated-Newton, truncated-Newton and LBFGS algorithms yield opti- 
mal results when the maximum number of conjugate gradient inner-iterations is 4 and 3 
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Table L Errors between the true evolution given by Eq. (64) and the approximation given by Eq. (63) at U = 0.9 
and t = 05  due to different perturbations on the initial condition U. X2 and X~ denote the model solutions 
starting from theinitialconditions U + U r and U, mspectively. 

122 - 21 - 21 u '  

1,2195493765050 x 10 -1 1. 
1,5854141894547 x 10 -3 0.1 
1.6344476184732 x 10 .5 0.01 
1.6395183253561 x 10 - 7  0.001 
1.6400272229676 x 10 9 0.0001 
1.6399903435054 x 10 - l l  0.00001 
1.6206145007512 x 10 -13 0.000001 
1.2021521456654 x 10 -15 0.0000001 

Table 2. Numerical results of algorithms: adjoint truncated-Newton (ATN), truncated-Newton (TN) and LBFGS 
for the minimization of the cost function in the variational data assimilation problem when observations are model 
generated and control variables are the initial conditions. MCGI and M denote the maximum number of conjugate 
gradient inner-iterations and the number of BFGS corrections that is to be stored in memory, respectively. NCG, 
NFC and Iter. denote the total number of conjugate gradient iterations, the number of function calls and the 
number of iterations, respectively. 

Algorithms lter. NFC NCG Jk/Jo II~kll/ll~oll CPU 

ATN MCGI=I  96 139 93 3.622 x 10 . 9  8.552 x 10 - 6  23.615 s 
MCGI=2 42 43 84 8.597 x 10 - l l  6,922 x I0 -6 I3,407s 
MCG[=3 30 46 89 1.716 • 10 -1~ 9.347 x 10 -6 14.1t6s 
MCG[=4 15 16 58 6.540 x 10 m 8.467 • 10 - 6  7.866s 
MCGI=5 20 43 91 2.590 x 10 - m  8.467 x 10 .6 13.992~ 
MCGI=50 16 17 85 1.485 x 10 - m  4,822 x 10 .6 10,817s 

TN MCGI=I  104 164 104 3.211 x 10 - l~  6,455 x 10 .6 35,862s 
MCGI=2 50 51 100 1.291 x 10 -1~ K577 x 10 .6 20.663 s 
MCGI=3 32 38 88 6.440 x 10 - l~  8.785 • 10 -6 17.125 s 
MCGI=4 38 87 106 1.114 x 10 -1~ 5.929 x 10 .6 25.202s 
MCGI=5 25 74 75 1.008 x 10 .6 1.113 x 10 -3 Failure 
MCGI=50 34 69 116 1.485 x 10 - l~  8.156 x 10 -6 24.491 s 

LBFGS M = 3 163 167 7.892 x 10 .9 7.804 x 10 .6  16,511 s 
M = 4 157 167 2.211 x 10 .9 9.655 x 10 -6 16.724s 
M ~ 5 147 153 1.658 x 10 .9 8.138 • 10 .6 15.585 s 
M = 6 153 159 1.585 x 10 -9 7.368 x 10 .6 16.290s 
M = 7 148 158 2.080 x 10 .9 8.136 x 10 .6  16.333 s 

a n d  M is  5,  r e s p e c t i v e l y .  I n  t h i s  c a s e  t h e  C P U  t i m e  r e q u i r e d  b y  a d j o i n t  t r u n c a t e d - N e w t o n  

a l g o r i t h m  is a b o u t  h a l f  o f  t h a t  r e q u i r e d  b y  e i t h e r  t h e  t r u n c a t e d - N e w t o n  or  t h e  L B F G S  

a l g o r i t h m s .  

I f  w e  r e l a x  t h e  c o n v e r g e n c e  c r i t e r i o n  g i v e n  b y  E q .  (31 )  by  t w o  o r d e r s  o f  m a g n i t u d e ,  t h e n  

t h e  a d j o i n t  t r u n c a t e d - N e w t o n ,  t r u n c a t e d - N e w t o n  a n d  L B F G S  a l g o r i t h m s  r e q u i r e  8, t 6  a n d  

55  i t e r a t i o n s  a n d  t a k e  5 s, 8 s a n d  6 s o f  C P U  t i m e  to  c o n v e r g e  w h e r e  w e  u s e d  a m a x i m u m  

n u m b e r  o f  c o n j u g a t e  g r a d i e n t  i n n e r - i t e r a t i o n s  Of 50  fo r  t h e  a d j o i n t  t r u n c a t e d - N e w t o n  a n d  

t r u n c a t e d - N e w t o n  a n d  M - -  5 fo r  t h e  L B F G S ,  r e s p e c t i v e l y .  T h e r e f o r e  e v e n  fo r  t h e  r e l a x e d  

a c c u r a c y  r e q u i r e m e n t  t h e  adj  o i n t  t r u n c a t e d - N e w t o n  a l g o r i t h m  p e r f o r m e d  s l i g h t l y  b e t t e r  t h a n  

t he  L B F G S  a l g o r i t h m  in  t e r m s  o f  C P U  t i m e  r e q u i r e d  to s a t i s f y  t h e  c o n v e r g e n c e  cr i te r ia .  
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Let us define the degree of nonlinearity of the cost function at ~r as 

ON(U) = (J (U)  - -  (J(U*) -I- p tVJ(U*)  + 0.5ptV2j(gl*)p))/llpll B, (33) 

where U is a point between the starting point U0 and the solution U*, p = 0 - U* and pt 
denotes the transpose of p. DN(U) gives a measure of the size of the third derivative or a 
deviation from quadratic behavior (see [32]). 

For our test problem we noticed that DN(U) increases from 1.TE - 7 to 4.7E § 12 as 
/~ approaches U* from the starting point. Therefore we may classify our test problem as a 
highly nonlinear problem near the solution. Then it is not surprising that the LBFGS algo- 
rithm outperforms the truncated-Newton algorithm in terms of CPU time (Table 2) if we take 
into account Nash's observation that for most of highly nonlinear problems, the LBFGS al- 
gorithm performs better than the truncated-Newton algorithm [32]. Our point is that even in 
this case, if we use a more accurate line search direction in the truncated-Newton algorithm, 
the truncated-Newton algorithm can outperform the LBFGS as the adj oint truncated-Newton 
algorithm does for the particular optimal control problem tested here. 

Therefore we conclude that the adjoint truncated-Newton algorithm turns out to be 
the most accurate and robust amongst the large-scale unconstrained minimization algo- 
rithms tested in terms of both CPU time and number of iterations for the specific problem 
tested here. 

Table 2 also indicates that the LBFGS method is less sensitive to parameter choice (the 
number of LBFGS corrections that is stored in memory). The overall performance of the 
LBFGS method is comparable with that of adjoint truncated Newton method in terms of 
CPU time and accuracy. If  analytic Hessian vector products are also used in a LBFGS 
version with preconditioning, its performance in terms of CPU time might be improved 
considerably. 

4.3. An accuracy analysis of the Hessian vector product 

The Hessian vector product Gk U' for a given U' required by the inner conjugate algorithm of 
the adjoint truncated-Newton algorithm is obtained by the second order adjoint technique 
where the vector U I serves as the initial condition for the TLM model. The Hessian 
vector product Gk U I of the truncated Newton algorithm is obtained by the following finite- 
difference approximation GkUtIFD 

GkU, IF D ~-. g (O k -~- hu t )  -- g(Ok) 
h (34) 

where Gk is the Hessian matrix at the k-th outer iteration, h = ,/e x (1 + llUkll) is the dif- 
ferencing parameter, where E is taken to be the machine precision [29], and the computed 
gradients g,(fJk + hU') and g(Uk) are obtained by using Eq. (18). 

In order to consider the accuracy of the finite-difference approximation with respect to 
the differencing parameter h, we assume h e [hmin, hmax] where hmin and hmax a re  taken to 
be the machine accuracy e and 103, respectively, such that the interval [h~n, hmax] contains 
all reasonable sequences of differencing parameters. 

Although a first order adjoint integration yields an exact gradient of the cost function 
with respect to the control variables, when a computer is used to calculate the gradient there 
are always computational errors involved. Let a positive quantity E0 denote an error bound 
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on the absolute error in the computed gradients of the cost function using Eq. (18) at Ok and 
(?k + hU'. It will be assumed throughout this paper that the value of e at the given point is 
available; an effective technique for computing ~ is given by Hamming [20]. 

So one has 

~(0k) = ~'(~)k) + 0o~o, (35) 

g((lk + hU') = ~((lk + hU') + OlEo, (36) 

where g(0k) denotes the true value of the gradient of the cost function with respect to the 
initial conditions, 1001 _< 1 and 1011 _< 1. Using a Taylor series expansion, one obtains 

h 2 0 2 ~ t' ~.~ ", 
o~,(6~) u' + 5-(u')* ~ J  u' +. . .  

h2 v '  * ~2g(~ 
= g((Jk) + ha~U'lt + -~-( ) - - ~ k ) U  ', (37) 

where Gd: ' l ,  -- tag(0~) /aO~U denotes the true value of the Hessian vector product and 
is a point in the interval [Uk, Uk + hU']. 
Solving for GkUrlt from Eq. (37) and using Eqs. (35) and (36), one obtains 

~url, ~(5~ + hU') - g((~) h , u , , ,  a2g'(~) u' 

_ (o~ - Oo)Eo h "U"* 02~(~) U' _ ~(5~ + hV')h - ~(5~) + h ~ ) ~ , (38) 

where -h(U')*[O2fi,(~)/O(J~]U'/2 is the truncation error resulting from the definition of 
the finite-differencing operator and (01 - 0o)e0/h is the condition error [14] resulting from 
computational error due to using computers. Combining Eqs. (34) and (38), one obtains 

GkUrlt = GkU'IFD + (01 - -  00)e0 h ' * 02g(~)  U '  
h 2 ( U )  ~ . (39) 

According to Eq. (29) 

G k U ' l t  = GlcU'IsOA , (40)  

where GkUrlsOA denotes the Hessian vector product obtained by using the second order 
adjoint technique. If a computer is used to calculate GtU'IsoA, one has 

GkU'lt = G k U t I s o A  -}- 02E0, (41) 

where Gk U'lsoa is the computed Hessian vector product and 1021 <_ 1. The error bound on 
the absolute error in the computed Hessian vector product is assumed to be the same as on 
that in the computed gradient. In order to investigate the truncation and condition errors 
one may look at the difference between the GkU']sOA and G~U'[FO, 

! (01 - -  O0)EO h . . . . .  a 2 g ( ~ ) ,  t 
-~,u ) - - u  - 02(o, (42) k U [SOA - -  G k U t [ F D  - -  h ~ U  k 2 ~2 
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Table 3. The rms errors between the Hessian vector products obtained by using the second order adjoint and the 

finite-difference techniques for various differencing parameters at the end of 15 iterations of the adjoint truncated- 

Newton algorithm, respectively. The maximum number of  conjugate gradient inner-iterations is 4 and h is the 

differencing parameter used in the original truncated-Newton algorithm. 

Differencing parameters rms errors 

h x 109 7.3674493981314 x 10 -7 

h x 108 6.9428037222996 x 10 -8 

h x 107 6.8992950502148 x 10 .9  

h x 106 6.8262063502701 x 10 - l ~  
h x 105 6 .2331779844824x  10 -11 

h x 104 1,1954425938165 x 10 -11 

h x 103 1.4501562065627 x 10 - l l  

h x 102 2.9876262946020 x 10 T M  

h x 10 t 2,6527501712652 x 10 - I ~  

h x 10 ~ 2.6074180374738 x 10 .9  

h x 10 -1 2.5350296945351 x 10 -8 

where the condition error and 02e0 are computational errors resulting from the fact that 
a computer is used to obtain the gradient and the Hessian vector product while the trun- 
cation error resulting from the finite-difference approximation changes with differencing 
parameter. 

The rms errors between the Hessian vector products obtained by using the second order 
adjoint and the finite-difference techniques with various differencing parameters are dis- 
played in Table 3. This Table indicates that (a) the Hessian vector products obtained by 
the finite-difference and the second order adjoint techniques follow a relationship given 
by Eq. (42) where the error term O(h) dominates for large differencing parameter h, (b) 
for a small differencing parameter, the error term O(1/h) in Eq. (42) dominates. The 
finite-difference technique involves subtractions of nearly equal numbers which result in 
cancellations of significant digits and which are the reason for the increase in the rms errors 
and (c) the differencing parameter h in the truncated Newton algorithm of Nash [29] may 
become too small near the end of the minimization process. Thus in practice, the Hessian 
vector product obtained by the second order adjoint approach is more accurate than that 
obtained by the finite-difference approach. 

Figure 2 shows the first 50 components of the scaled difference between the Hessian 
vector products obtained by using the second order adjoint and the finite-difference tech- 
niques respectively after 15 iterations using the adjoint truncated-Newton algorithm. The 
differencing parameter is chosen as hi = h (solid line), h2 = h x 10 -1 (dotted line) and 
h3 = h x 103 (dashed line) where h is the differencing parameter used in the original 
truncated Newton minimization algorithm, respectively. The results with h3 -~ h x 10 ~ 
clearly illustrate that toward the end of the minimization the differencing parameter in the 
truncated Newton algorithm of Nash [29] is too small. This result agrees with the rms 
error evolution in Table 3. It can be seen that the finite-difference technique can yield 
an approximation of similar accuracy to that obtained by second order adjoint technique 
if the differencing parameter is properly chosen. However simply increasing or decreas- 
ing the differencing parameter h at every iteration will not improve the performance of 
the truncated Newton minimization algorithm since the differencing parameter depends 
on the vector U' at each iteration and the vector U' is not known prior to performing the 
minimization iteration. 
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Figure 2. The first 50 components of the difference between the Hessian vector products obtained by using the 
second order adj oint and the finite-difference techniques scaled by a factor 1. E09 after 15 iterations using the adjoint 
truncated-Newton algorithm where the differencing parameter is chosen as hi = h (solid line), h2 = h x 1. E - 01 
(dotted line) and h3 = h x 1 .E + 03 (dashed line, which coincides with the x-axis) instead of h in the original 
truncated-Newton algorithm, respectively. 

The differencing parameter  h should be chosen such as (a) it balances the truncation 
error of  the order h with the condition error ([14], [16], [17]) of order 1/h, (b) h must be 

adjusted to the size of vector U' [41, 42] and (c) h should not become so small as to cause 
cancellations of  significant digits [44]. It is difficult to choose an h which satisfies all these 
requirements. Some good choices of  h in addition to that used in the truncated Newton 

minimization algorithm [29] are h = 2(1 + II0kll)vq/llg'll [41, 42], h = ,/7/llg'll [7] 
and h = 2(1 + II Ok II)vT/l[ U' II 2 [37] etc. But results (not shown here) obtained using these 
choices of  h are no better than those obtained when h=~/~x(l+IJ0~It) as used in the truncated 
Newton algori thm [29]. Al l  these choices of h cause cancellations of significant digits at 
some stage of the minimization process. 

The convergence rate of  the adjoint truncated-Newton minimization algorithm is best 
understood intuitively by splitting the elTor into three terms [37]. Let U* be the true solution 
to the problem, G ( U D  the exact Hessian at Uk, Gk the approximate Hessian obtained by the 

finite-difference or by the second order adjoint technique, and Hk the approximate matrix 
to the inverse Hessian matrix that the inner conjugate gradient algorithm actually used, i.e. 
/Sk = --Hk~k. Then, if  the step size chosen was 1 and i f  G(Uk)  is positive definite, 

0k+l - ~* = 0k - m~k - 0*  
= (Ok - G(Ot) - ' { ' , k  -- U*) + (G(Uk)  -1 - G[I)~,k + ( G ;  ~ - I4k)g,k (43) 

Therefore 

i t o ~ + , -  0*ii _< l l ( 0 k -  ~ ( 0 k ) - ~ k  - 0*)ll + t t (G(0k) - ' - -C~)~k l I  + [I(C/-- m)Skf[ 
(44) 

The first error term is the Newton error at the (k + 1)-th step. The second error term 
is due to the error in the second order adjoint technique or due to discrete differencing 
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and depends on the choice of h in the conjugate gradient algorithm. The third error term 
is an error due to round-off and early termination (truncation) in the conjugate gradient 
inner iteration. The second error induced by the second order adjoint technique is smaller 
than that caused by the finite-difference technique. Therefore the adjoint truncated-Newton 
minimization algorithm yields a speed-up for our test problem. It is also clear that both 
the adjoint truncated-Newton and truncated-Newton algorithms have the same convergence 
rate. We know that if cost function J is sufficiently smooth, Gk is a strongly consistent 
approximation to G(Uk), and G(U*) is nonsingular, then local quadratic convergence can 
be obtained if the differencing parameter h decreases sufficiently rapidly ([3], [15]). Under 
the same conditions we expect the adjoint truncated-Newton algorithm obtains the same 
convergence. However in practice both the adjoint truncated-Newton and truncated-Newton 
algorithms have only a super linear convergence rate. 

If we choose the vector U I as one of the coordinate directions e l , . . . ,  en where ei is 
the i-th unit vector and n is the number of the components in U I, respectively, either the 
second order adjoint or the finite-difference technique will generate an approximation to the 
Hessian. Since, for smooth functions, the Hessian is symmetric, the approximate Hessian is 
often symmetrized by averaging corresponding elements in the upper and lower triangular 
parts of Hessian matrix. Again the second order adjoint technique will obtain an exact 
Hessian if we do not consider computational error while the finite-difference technique 
obtains only an approximation to the Hessian. Burger [2] pointed out that the second order 
adjoint technique requires less computing time than direct differentiation in obtaining the 
approximate Hessian and thus the results from the former method are more accurate than 
these from the latter method. Our results are consistent with those of Burger [2] in as far as 
the aspect of accuracy is concerned. Similar results to ours were obtained by Santosa and 
Symes [39, 40, 45] showing the advantage of using the second order adjoint technique to 
obtain the Hessian vector product in the truncated-Newton algorithm. 

In summary, we conclude that the second order adjoint technique yields a more accurate 
value of the Hessian vector product compared to the finite-difference technique for optimal 
control problems tested here. When the differencing parameter h is too small or too big, 
cancellations of significant digits or truncation errors dominate the finite-difference approx- 
imation. It is hard to avoid the occurrence of these two types of error in the minimization 
process when the finite-difference technique is used [47]. Use of more accurate Hessian 
vector products in the inner conjugate gradient iteration of the truncated-Newton algorithm 
results in a better line search direction as measured by the amount of decrease in the cost 
function, but not in the residuals [33]. 

5. Summary and conclusions 

In this paper, we proposed a modified version of the Nash truncated-Newton algorithm [33] 
by using the first order adjoint and the second order adjoint techniques, i.e. we proposed 
a new method to obtain a Hessian vector product to be used in the process of solving the 
Newton equations for the truncated-Newton minimization algorithm for an optimal control 
problem. The costs of the second order adjoint approach and the finite-difference approach 
are computationally comparable, each of them requiring four different model integrations 
when applied to the optimal control problem tested here. But the former approach yields 
an exact Hessian vector product, while the latter provides only an approximation to the 
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Hessian vector product if the finite-differencing parameter is taken to be the square root 
of the machine accuracy. The numerical results indicate that the new Hessian vector cal- 
culation strategy employed in the modified-Lanczos algorithm of Nash [33] allows the 
adjoint truncated-Newton algorithm to perform better than either the truncated-Newton or 
the LBFGS algorithms both in terms of CPU time as well as in term of number of iterations 
required to satisfy the prescribed convergence criterion in our test problems. This result 
may be very useful, since truncated-Newton type methods and conjugate-gradient methods 
have comparable storage requirements and constitute the only practical methods for solving 
many large-scale unconstrained minimization problems arising in 4-dimensional variational 
data assimilation. 

In our test example, the eigenvalues of the Hessian at each iteration are positive [48], 
which implies the Hessians are positive definite and the cost function is strictly convex. 
Therefore the existence of a local minimum is assured. However the condition numbers at 
each iteration are large [48], which explains why all three algorithms require more than 16 
iterations to satisfy the prescribed convergence criteria. 

Theoretically, the truncated-Newton and the adjoint truncated-Newton minimization al- 
gorithms have the same convergence rate. However the adjoint truncated-Newton algorithm 
results in a speed-up due to the use of a more accurate Hessian vector product to obtain the 
line search direction. 

The adjoint truncated-Newton algorithm, like its truncated-Newton counterpart, is a close 
approximation to the Newton method at reasonable storage and computational cost. We 
expect the adjoint truncated-Newton algorithm to yield a similar speed-up for other large- 
scale unconstrained minimization problems related to optimal control and variational data 
assimilation. The idea of obtaining the Hessian vector product using the second order 
adjoint technique can be applied in other settings requiring large-scale minimization, in 
cases where an adjoint model formulation is possible, or via automatic differentiation 
techniques [19]--pointing to a more general applicability of this idea. An application of 
the adjoint truncated-Newton minimization algorithm for minimizing a cost functional in 
optimal control of distributed parameters in a primitive equations 3-D spectral model will 
be reported separately, once the second order adjoint model of this model is derived. 

Both the truncated Newton and the LBFGS methods are general purpose methods. The 
adjoint truncated-Newton algorithm is only useful for optimal control problems where the 
model equations serve as strong constraints. The application of the adjoint truncated- 
Newton algorithm requires one to develop the adjoint models corresponding to the forward 
model. One could extend the application of the second order adjoint to the LBFGS algorithm 
with the Hessian vector product being used as the right hand side in the LBFGS secant 
gq. [10]. 
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A. A n o n l i n e a r  m o d e l  with exact  solutions 

This appendix will illustrate the adjoint process by using a quadratic model. It is emphasized 
that when the model equations are nonlinear, the corresponding TLM is a second order 
accurate approximation to the true evolution of the perturbations due to the perturbation on 
the initial condition of the model equations, the first order adjoint model yields an exact 
gradient of the cost function with respect to the control variables, and the second order 
adjoint model yields an exact Hessian vector product. 

Let us now consider the following 1-dimensional nonlinear model equation 

OX 
- -  X 2, (45)  

Ot 

X(0) = U, (46) 

where time t changes from 0 to 1. The exact solution of the model is 

U 
X(t)  = (47) 

(tu + 1) 

If  the observations are model generated with the initial condition 

X(0) = 1, (48) 

then from Eq. (47), the observations may be written as 

1 
X(t)  = (49) 

(t + 1)" 

Let us define the cost function as 

J(g) = ~ < ( x -  x~ ( x -  x~ (50) 

i.e. 

1 

(t (J ~- 1) + 
J(U)  = 1) dt 

2U ( U + I )  (1 + 3 U ) ]  
1 l + U + - - l n - -  

The first order adjoint model of  Eqs. (45) and (46) may be written as 

OP 
-- ( - 2 X ) * P  + (X - X~ 

at 

i.e. 

OP 2U U 1 

(51) 

(52) 

- - - P  + - -  ( 5 3 )  
Ot Ut + 1 (tU + 1) (t + 1) '  
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P(1)  = O, (54) 

where P is the adjoint variable. The gradient of the cost function with respect to the initial 
conditions is given by 

v v J  = P(O). (55) 

Equations (53-54) have an analytic solution of the following form 

P(t)  = (tU + 1) 2 (t  + 1) 

= (tU + 1) 2 (t + 1)(tU + 1) 2 

= ( t U + l )  2 ( 1 - U ) ( t U + l )  + -  

1 ] 
+ 2 ( t U + l )  2 + c  , 

(tU + l )  (tU + l) 2dt  

+ 2(tU + 1) 2 + c 

1 t + l  
l n - -  (1 -- U) 2 U t  + 1 

(56) 

where c is a constant to be determined by the final condition (54). Therefore 

C - -  
1 1 ( ~ + 1 )  1 

1 - U 2 (1 - U) 2 In 2(U + 1) 2, 
(57) 

and Eq. (59) yields 

1 1 1  1 ( _ 2  ~ 1 (58) 
P(0)  -- 1 - ~  + 2 1 - U 2 (1 - U) ~ In \ U + I J  2(U + 1) 2. 

Equation (58) is exactly the gradient of the cost function (51) with respect to the initial 
condition U. 

Let us now consider a perturbation, U',  on the initial condition for X, U. The resulting 
perturbations for the variables X and P,  J( and/3,  are obtained from Eqs. (45), (46) and 
(53-54) as 

o2  
- -  = - 2 X X ,  
at 

5;(0) = u' ,  

a/3 

Ot 
-- ( -2X)* /3  + ( - 2 J ) ) * P  + X, 

/3(1) = 0, 

(59) 

(60) 

(61) 

(62) 

Equations (59-60) and (61)-(62) are the TLM and second order adjoint model of  the 
model Eqs. (45) and (46), respectively. Substituting X = U/( tU + 1) into Eq. (59) one 
obtains the following exact solution of the TLM (59) 

(tU + 1) 2, (63) 



A T R U N C A T E D  N E W T O N  O P T I M I Z A T I O N  A L G O R I T H M  259 

which is a quadratic approximation to 

U + U '  U 
(64) 

t(U + U') + l t (u )  + l '  

the exact evolution of the perturbation due to the perturbation U' on the initial condition U. 
Table 1 summarizes the errors between the true evolution given by Eq. (64) and the approx- 
imation given by Eq. (63) at U = 0.9 and t = 0.5 due to different perturbations on the 
initial condition U. Table 1 clearly indicates that 

U + U'  U U'  
- -  - -  -~ O(I IU'I I2 ) .  ( 6 5 )  

t(U + U') + 1 t(U) + 1 (tU + 1) 2 

Substituting X = U/(tU + I), the first order adjoint solution (56) and the TLM solution 
(63) into second order adjoint Eq. (61), one obtains 

0 t  3 _ _ _ - 2 U / 3  2U'  _ _ 2 U '  In _ _ t  + 1 2U'c, (66) 
Ot (tU + 1) (1 - U)(tU + 1) (l - -  U )  2 tU + 1 

where c is given by (57). Equations (66) and (62) have an analytical solution of the following 
form 

/3(t) = (tU + 1) 2 (1 - U)(tU + 1) + (1 - U) ~ l n  tU + i + 2U'c 

x (tU 1) 2dt + cl 

U' 2U' 
= (tU + l )  2 U(1 - U)(tU + 1) 2 + (1 - U)2U 

[ 2 U t U + l ~ - @ t l + - - 1 ] 2 U ' c  } x ~ l n - -  + (67) t + l U(tU + I) + c l  , 

where 

1 / 2U'  In + [(1 - U)2U], (68) 
c,(1 + u) ~ 2 

is a constant determined by the final condition (62). Therefore Eq. (67) yields 

1 2 t 
U(1 - U) +- (1 - U)2U "~ C1 

(1 - U2) 2 + (I ' (69) 

which is exactly the Hessian vector product [02j/OU2]U ' directly obtained from Eq. ( 5 1 )  

02J U' = [ 1 2U 2 2 
0U -----7 , (1 ~ U )  2 (1 - -  U 2 )  z (1 - U) ~ In (U + 1) 

1 t / u', 
-~ (1 - u ) 2 0  + u )  +- (1 + u )  ~ 

(70) 
J 
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i.e. 

02J t 
?(o) = ~--~u.  (71) 

B. A numerical accuracy analysis of the Hessian vector product 

This Appendix provides a numerical accuracy analysis of the Hessian vector product from 
another point of view. 

Let C1, C2 and C3 denote the averages of  the components of  the vectors (03 - 00)Co, 
--(Ut)*[O2gt(~)/O52]U! and  (00 - 01)~0 71- 0.5(U')*[O3J(~o)/OU3]U ', respectively, and 
assume that they are constant in the vicinity of some h E [hmin, hmax]. The rms error d 
between the the Hessian vector products obtained by using the second order adjoint and the 
finite-difference techniques approximately satisfies the following equation 

C1 
- -  + C2h + C3 = d, (72) 
h 

If  we choose h and d as the three differencing parameters and the three rms errors in Table 3 
from row 2 to row 4, from row 5 to row 7, and from row 8 to row 10, respectively, then we 
obtain three systems of  linear equations in C1, C2 and C3. The solutions of the systems of 
linear equations are 

C1 = 3.3 • 10 -1~ C2 = 8.5 x 10 -11, C3 = - 5 . 3  x 10 -11, (73) 

C 1 = 7.0 • 10 -14, C2 = 6.9 x 10 -11, C3 = 5.4 x 10 -12, (74) 

and 

C1 = 2.1 x 10 -14, C 2 = - 1 . 6  x 10 -9,  C3 = 5.1 • 10 -12, (75) 

respectively. In the three cases, if h is chosen as the differencing parameter from the second 
row, from the sixth row and from the tenth row of Table 3, respectively, then the three terms 
in Eq. (72) are 

C-!l = 4.0 x 10 -13, C2h = 6.9 x 10 -8, C3 =- - 5 . 3  x 10 -11, (76) 
h 

C1 = 8.5 • 10 -13, C2h 5.7 x 10 -12, C3 5.4 x 10 -12, (77) 
h 

and 

C---!l = 2.6 x 10 -9,  C2h = - 1 . 3  x 10 -14, C 3 = 5.1 x 10 -12, (78) 
h 

respectively. Clearly the truncation error C2h and the condition error C1/h  dominate the 
first and third cases, respectively. In the second case, the magnitudes of the errors from the 
finite-difference approach and the second order adjoint approach are similar. These results 
are consistent with the theoretical analysis presented subsection 4.3. 
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