STOCHASTIC_DIFFUSION, a C++ library which implement several versions of a stochastic diffusivity coefficient, using GNUPLOT to create graphic images of sample realizations of the diffusivity field.
The 1D diffusion equation has the form
- d/dx ( DC(X) d/dx U(X) ) = F(X).where DC(X) is a function called the diffusivity and F(X) is called the source term or forcing term.
In the 1D stochastic version of the problem, the diffusivity function includes the influence of stochastic parameters:
- d/dx ( DC(X;OMEGA) d/dx U(X;OMEGA) ) = F(X).
The 2D diffusion equation has the form
- Del ( DC(X,Y) Del U(X,Y) ) = F(X,Y).
In the 2D stochastic version of the problem, the diffusivity function includes the influence of stochastic parameters:
- Del ( DC(X,Y;OMEGA) Del U(X,Y;OMEGA) ) = F(X,Y).
The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.
STOCHASTIC_DIFFUSION is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version and a Python version.
BLACK_SCHOLES, a C++ library which implements some simple approaches to the Black-Scholes option valuation theory;
CORRELATION, a C++ library which contains examples of statistical correlation functions.
gnuplot_test, C++ programs which illustrate how a program can write data and command files so that gnuplot can create plots of the program results.
ORNSTEIN_UHLENBECK, a C++ library which approximates solutions of the Ornstein-Uhlenbeck stochastic differential equation (SDE) using the Euler method and the Euler-Maruyama method.
PCE_ODE_HERMITE, a C++ program which sets up a simple scalar ODE for exponential decay with an uncertain decay rate, using a polynomial chaos expansion in terms of Hermite polynomials.
SDE, a C++ library which illustrates the properties of stochastic differential equations, and common algorithms for their analysis, by Desmond Higham;