stochastic_diffusion, a Fortran77 code which implement several versions of a stochastic diffusivity coefficient, creating graphic images of sample realizations of the diffusivity field.
The 1D diffusion equation has the form
- d/dx ( DC(X) d/dx U(X) ) = F(X).where DC(X) is a function called the diffusivity and F(X) is called the source term or forcing term.
In the 1D stochastic version of the problem, the diffusivity function includes the influence of stochastic parameters:
- d/dx ( DC(X;OMEGA) d/dx U(X;OMEGA) ) = F(X).
The 2D diffusion equation has the form
- Del ( DC(X,Y) Del U(X,Y) ) = F(X,Y).
In the 2D stochastic version of the problem, the diffusivity function includes the influence of stochastic parameters:
- Del ( DC(X,Y;OMEGA) Del U(X,Y;OMEGA) ) = F(X,Y).
The computer code and data files described and made available on this web page are distributed under the MIT license
stochastic_diffusion is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.
black_scholes, a Fortran77 library which implements some simple approaches to the Black-Scholes option valuation theory;
correlation, a Fortran77 library which contains examples of statistical correlation functions.
GNUPLOT, Fortran77 programs which illustrate how a program can write data and command files so that gnuplot can create plots of the program results.
ORNSTEIN_UHLENBECK, a Fortran77 library which approximates solutions of the Ornstein-Uhlenbeck stochastic differential equation (SDE) using the Euler method and the Euler-Maruyama method.
PCE_ODE_HERMITE, a Fortran77 program which sets up a simple scalar ODE for exponential decay with an uncertain decay rate, using a polynomial chaos expansion in terms of Hermite polynomials.
SDE, a Fortran77 library which illustrates the properties of stochastic differential equations, and common algorithms for their analysis, by Desmond Higham;