polynomial_resultant_symbolic


polynomial_resultant_symbolic, a Python code which uses the sympy() symbolic arithmetic package to compute the resultant R of univariate polynomials P and Q.

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license.

Languages:

polynomial_resultant_symbolic is available in a MATLAB version and a Python version.

Related Data and Programs:

polynomial_resultant, a Python code which computes the resultant R of univariate polynomials P and Q.

test_values, a Python code which supplies test values of various mathematical functions, including Abramowitz, AGM, Airy, Bell, Bernoulli, Bessel, Beta, Binomial, Bivariate Normal, Catalan, Cauchy, Chebyshev, Chi Square, Clausen, Clebsch Gordan, Collatz, Cosine integral, Dawson, Debye, Dedekind, dilogarithm, Dixon elliptic functions, Exponential integral, Elliptic, Error, Euler, Exponential integral, F probability, Fresnel, Frobenius, Gamma, Gegenbauer, Goodwin, Gudermannian, Harmonic, Hermite, Hypergeometric 1F1, Hypergeometric 2F1, inverse trigonometic, Jacobi, Julian Ephemeris Date, Kelvin, Laguerre, Lambert W, Laplace, Legendre, Lerch, Lobachevsky, Lobatto, Logarithmic integral, Log normal, McNugget numbers, Mertens, Mittag-Leffler, Moebius, Multinomial, Negative binomial, Nine J, Normal, Omega, Owen, Partition, Phi, Pi, Poisson, Polylogarithm, Polynomial Resultant, Polyomino, Prime, Psi, Rayleigh, Hyperbolic Sine integral, Sigma, Sine Power integral, Sine integral, Six J, Sphere area, Sphere volume, Spherical harmonic, Stirling, Stromgen, Struve, Student, Subfactorial, Student probability, Three J, Transport, Trigamma, Truncated normal, van der Corput, von Mises, Weibull, Wright omega, Zeta.

Reference:

  1. Michael Pohst, Hans Zassenhaus,
    Algorithmic Algebraic Number Theory,
    Cambridge University Press, 1989
    LC: QA247.P58
    ISBN: 0-521-33060-2

Source Code:

-
Last modified on 31 January 2024.