elfun
elfun,
an Octave code which
evaluates elliptic integrals, include Bulirsch's integrals cel(),
cel1(), cel2(), cel3(), Carlson integrals rc(), rd(), rf(), rg(), rj(),
and Jacobi functions cn(), dn(), sn(),
by Milan Batista.
Licensing:
The computer code and data files made available on this web page
are distributed under
the MIT license
Languages:
elfun is available in
a MATLAB version and
an Octave version.
Related Data and Programs:
elfun_test
elliptic_integral,
an Octave code which
evaluates elliptic integral functions using Carlson's elliptic
functions.
test_values,
an Octave code which
supplies test values of various mathematical functions.
toms577,
an Octave code which
evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.
This is a version of ACM TOMS algorithm 577;
Reference:
-
Milan Batista,
Elfun18 - A collection of MATLAB functions for the computation of elliptic
integrals and Jacobian elliptic functions of real arguments,
SoftwareX,
Volume 10, 2019,
https://github.com/ElsevierSoftwareX/SOFTX_2018_246
Source Code:
-
cel.m,
evaluates Bulirsch's general complete elliptic integral.
-
cel1.m,
evaluates the complete Bulirsch's elliptic integral of the 1st kind.
-
cel2.m,
evaluates the complete Bulirsch's elliptic integral of the 2nd kind.
-
cel3.m,
evaluates the complete Bulirsch's elliptic integral of the 3rd kind.
-
ijsn.m,
inverse of Jacobi elliptic function SN.
-
jacobi_cn_values.m,
returns some values of the Jacobi elliptic function cn().
-
jacobi_cnk.m,
evaluates the Jacobi elliptic function x=cn(u,k).
-
jacobi_cnk_inverse.m,
computes the inverse of the Jacobi elliptic function x=cn(u,k).
-
jacobi_dn_values.m,
returns some values of the Jacobi elliptic function dn().
-
jacobi_dnk.m,
evaluates the Jacobi elliptic function x=dn(u,k).
-
jacobi_dnk_inverse.m,
computes the inverse of the Jacobi elliptic function x=dn(u,k).
-
jacobi_sn_values.m,
returns some values of the Jacobi elliptic function sn().
-
jacobi_snk.m,
evaluates the Jacobi elliptic function x=sn(u,k).
-
jacobi_snk_inverse.m,
computes the inverse of the Jacobi elliptic function x=sn(u,k).
-
jcn.m,
evaluates the Jacobi elliptic function cn(x,k).
-
jdn.m,
evaluates the Jacobi elliptic function dn(x,k).
-
jsn.m,
evaluates the Jacobi elliptic function sn(x,k).
-
melf.m,
evaluates incomplete elliptic integrals of the 1st kind.
-
melk.m,
evaluates complete elliptic integrals of the 1st kind.
-
mijsn.m,
computes the inverse of Jacobi elliptic function sn(x,m).
-
pendulum_nonlinear_conserved.m,
evaluates a quantity that should be conserved
by the nonlinear pendulum ODE.
-
pendulum_nonlinear_deriv.m,
evaluates the right hand side of the nonlinear pendulum ODE.
-
pendulum_nonlinear_exact.m,
returns the exact solution of the nonlinear pendulum ODE;
-
pendulum_nonlinear_parameters.m,
returns parameters of the nonlinear pendulum ODE.
-
r8_sign.m,
returns the sign (+1 or -1 only) of a real value.
-
rc.m,
evaluates Carlson's degenerate elliptic integral of the 1st kind.
-
rd.m,
evaluates Carlson's degenerate elliptic integral of the 2nd kind.
-
rf.m,
evaluates Carlson's elliptic integral of the first kind.
-
rg.m,
evaluates Carlson's elliptic integral of the second kind.
-
rj.m,
evaluates Carlson's elliptic integral of the third kind.
-
sncndn.m,
evaluates the Jacobi elliptic functions sn, cn, dn.
-
ufun1.m,
mimics the elemental behavior of a function of 1 argument.
-
ufun2.m,
mimics the elemental behavior of a function of 2 arguments.
-
ufun3.m,
mimics the elemental behavior of a function of 3 arguments.
-
ufun4.m,
mimics the elemental behavior of a function of 4 arguments.
-
umodpi.m,
reduces |z| mod pi.
Last modified on 22 June 2023.