elfun
elfun,
a MATLAB code which
evaluates elliptic integrals, include Bulirsch's integrals cel(),
cel1(), cel2(), cel3(), Carlson integrals rc(), rd(), rf(), rg(), rj(),
and Jacobi functions cn(), dn(), sn(),
by Milan Batista.
Licensing:
The computer code and data files made available on this web page
are distributed under
the MIT license
Languages:
elfun is available in
a MATLAB version.
Related Data and Programs:
elfun_test
elliptic_integral,
a MATLAB code which
evaluates elliptic integral functions using Carlson's elliptic
functions.
test_values,
a MATLAB code which
supplies test values of various mathematical functions.
toms577,
a MATLAB code which
evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.
This is a version of ACM TOMS algorithm 577;
Reference:
-
Milan Batista,
Elfun18 - A collection of MATLAB functions for the computation of elliptic
integrals and Jacobian elliptic functions of real arguments,
SoftwareX,
Volume 10, 2019,
https://github.com/ElsevierSoftwareX/SOFTX_2018_246
Source Code:
-
cel.m,
evaluates Bulirsch's general complete elliptic integral.
-
cel1.m,
evaluates the complete Bulirsch's elliptic integral of the 1st kind.
-
cel2.m,
evaluates the complete Bulirsch's elliptic integral of the 2nd kind.
-
cel3.m,
evaluates the complete Bulirsch's elliptic integral of the 3rd kind.
-
ijsn.m,
inverse of Jacobi elliptic function SN.
-
jacobi_cn_values.m,
returns some values of the Jacobi elliptic function cn().
-
jacobi_cnk.m,
evaluates the Jacobi elliptic function x=cn(u,k).
-
jacobi_cnk_inverse.m,
computes the inverse of the Jacobi elliptic function x=cn(u,k).
-
jacobi_dn_values.m,
returns some values of the Jacobi elliptic function dn().
-
jacobi_dnk.m,
evaluates the Jacobi elliptic function x=dn(u,k).
-
jacobi_dnk_inverse.m,
computes the inverse of the Jacobi elliptic function x=dn(u,k).
-
jacobi_sn_values.m,
returns some values of the Jacobi elliptic function sn().
-
jacobi_snk.m,
evaluates the Jacobi elliptic function x=sn(u,k).
-
jacobi_snk_inverse.m,
computes the inverse of the Jacobi elliptic function x=sn(u,k).
-
jcn.m,
evaluates the Jacobi elliptic function cn(x,k).
-
jdn.m,
evaluates the Jacobi elliptic function dn(x,k).
-
jsn.m,
evaluates the Jacobi elliptic function sn(x,k).
-
melf.m,
evaluates incomplete elliptic integrals of the 1st kind.
-
melk.m,
evaluates complete elliptic integrals of the 1st kind.
-
mijsn.m,
computes the inverse of Jacobi elliptic function sn(x,m).
-
pendulum_nonlinear_conserved.m,
evaluates a quantity that should be conserved
by the nonlinear pendulum ODE.
-
pendulum_nonlinear_deriv.m,
evaluates the right hand side of the nonlinear pendulum ODE.
-
pendulum_nonlinear_exact.m,
returns the exact solution of the nonlinear pendulum ODE;
-
pendulum_nonlinear_parameters.m,
returns parameters of the nonlinear pendulum ODE.
-
r8_sign.m,
returns the sign (+1 or -1 only) of a real value.
-
rc.m,
evaluates Carlson's degenerate elliptic integral of the 1st kind.
-
rd.m,
evaluates Carlson's degenerate elliptic integral of the 2nd kind.
-
rf.m,
evaluates Carlson's elliptic integral of the first kind.
-
rg.m,
evaluates Carlson's elliptic integral of the second kind.
-
rj.m,
evaluates Carlson's elliptic integral of the third kind.
-
sncndn.m,
evaluates the Jacobi elliptic functions sn, cn, dn.
-
ufun1.m,
mimics the elemental behavior of a function of 1 argument.
-
ufun2.m,
mimics the elemental behavior of a function of 2 arguments.
-
ufun3.m,
mimics the elemental behavior of a function of 3 arguments.
-
ufun4.m,
mimics the elemental behavior of a function of 4 arguments.
-
umodpi.m,
reduces |z| mod pi.
Last modified on 22 July 2022.