pendulum_nonlinear_exact
    
    
    
      pendulum_nonlinear_exact,
      a MATLAB code which
      evaluates an exact formula y(t) for the solution of the
      the ordinary differential equations (ODE) that represent 
      the behavior of a nonlinear pendulum of length L under a 
      gravitational force of strength G, y''=-G/L sin(y).
    
    
      The formula relies on the evaluation of Jacobi elliptic functions
      cn(x,k), dn(x,k), sn(x,k), and their inverses.
    
    
      Licensing:
    
    
      The information on this web page is distributed under the MIT license.
    
    
      Languages:
    
    
      pendulum_nonlinear_exact is available in
      a MATLAB version and
      an Octave version.
    
    
      Related Data and codes:
    
    
      
      pendulum_nonlinear_exact_test
    
    
      
      elfun,
      a MATLAB code which
      evaluates elliptic integrals and Jacobi elliptic functions 
      cn(), dn(), sn(),
      by Milan Batista.
    
    
      
      elliptic_integral,
      a MATLAB code which
      evaluates complete elliptic integrals of first, second and third kind,
      using Carlson's elliptic integral functions.
    
    
      
      matlab_exact,
      a MATLAB code which 
      evaluates exact solutions to a few selected examples of
      ordinary differential equations (ODE) and partial differential
      equations (PDE).
    
    
      Reference:
    
    
      
        - 
          Milton Abramowitz, Irene Stegun,
          Handbook of Mathematical Functions,
          National Bureau of Standards, 1964,
          ISBN: 0-486-61272-4,
          LC: QA47.A34.
         
        - 
          Augusto Belendez, Carolina Pascual, David Mendez, 
          Tarsicio Belendez Vazquez, Cristian Neipp,
          Exact solution of the nonlinear pendulum problem,
          Revista Brasileira de Ensino de Fisica,
          Volume 29, Number 4, pages, 645-648, 2007.
         
        - 
          Roland Bulirsch,
          Numerical Calculation of Elliptic Integrals and Elliptic
          Functions,
 
          Numerische Mathematik,
          Volume 7, pages 78-90, 1965.
         
        - 
          Bille Carlson,
          Numerical computation of real or complex elliptic integrals,
          Numerical Algorithms,
          Volume 10, 1995, pages 13-26.
         
        - 
          Wolfgang Ehrhardt,
          The AMath and DAMath Special functions:
          Reference manual and implementation notes,
          https://www.swmath.org/software/29423.
         
        - 
          Karlheinz Ochs,
          A comprehensive analytical solution of the nonlinear pendulum,
          European Journal of Physics,
          Volume 32, pages 479-490, 2011.
         
        - 
          William Reinhardt, Peter Walker,
          Jacobian Elliptic Functions,
          Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
          NIST Handbook of Mathematical Functions,
          Cambridge University Press, 2010,
          ISBN: 978-0521192255,
          LC: QA331.N57.
         
        - 
          Paul D. Williams, 
          Achieving seventh-order amplitude accuracy in leapfrog 
          integrations, 
          Monthly Weather Review,
          Volume 141, Number 9, pages 3037-3051, September 2013.
         
      
    
    
      Source Code:
    
    
      
        - 
          
          ijsn.m,
          inverse of Jacobi elliptic function SN.
        
 
        - 
          
          jacobi_cnk.m,
          Jacobi's elliptic function cn(x,k).
        
 
        - 
          
          jacobi_dnk.m,
          Jacobi's elliptic function dn(x,k).
        
 
        - 
          
          jacobi_snk.m,
          Jacobi's elliptic function sn(x,k).
        
 
        - 
          
          jacobi_snk_inverse.m,
          inverse of Jacobi's elliptic function sn(x,k).
        
 
        - 
          
          jcn.m,
          evaluates the Jacobi elliptic function cn(x,k).
        
 
        - 
          
          jdn.m,
          evaluates the Jacobi elliptic function dn(x,k).
        
 
        - 
          
          jsn.m,
          evaluates the Jacobi elliptic function sn(x,k).
        
 
        - 
          
          melf.m,
          evaluates incomplete elliptic integrals of the 1st kind.
        
 
        - 
          
          melk.m,
          evaluates complete elliptic integrals of the 1st kind.
        
 
        - 
          
          mijsn.m,
          computes the inverse of Jacobi elliptic function sn(x,m).
        
 
        - 
          
          pendulum_nonlinear_conserved.m,
          evaluates a quantity that should be conserved
          by the nonlinear pendulum ODE.
        
 
        - 
          
          pendulum_nonlinear_deriv.m,
          evaluates the right hand side of the nonlinear pendulum ODE.
        
 
        - 
          
          pendulum_nonlinear_exact.m,
          returns the exact solution of the nonlinear pendulum ODE;
        
 
        - 
          
          pendulum_nonlinear_parameters.m,
          returns parameters of the nonlinear pendulum ODE.
        
 
        - 
          r8_sign.m,
          returns the sign (+1 or -1 only) of a real value.
        
 
        - 
          rf.m,
          evaluates Carlson's elliptic integral of the first kind.
        
 
        - 
          sncndn.m,
          evaluates the Jacobi elliptic functions sn, cn, dn.
        
 
        - 
          ufun2.m,
          mimics the elemental behavior of a function FUN(X,Y).
        
 
      
    
    
    
      Last revised on 22 November 2020.