hyper_2f1


hyper_2f1, a MATLAB code which evaluates the hypergeometric function 2F1(a,b,c;x) for real arguments a, b, c, and real or complex argument x. For convenience, this function is simply a wrapper for the built-in generalized hypergeometric function hypergeom().

Licensing:

The computer code and data files made available on this web page are distributed under the MIT license.

Languages:

hyper_2f1 is available in a C version and a C++ version and a Fortran77 version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

hyper_2f1_test

hypergeom_test, a MATLAB code which calls hypergeom(), which is a built-in function which evaluates the generalized hypergeometric functions pFq(z), for integer p and q.

test_values, a MATLAB code which supplies test values of various mathematical functions, including Abramowitz, AGM, Airy, Bell, Bernoulli, Bessel, Beta, Binomial, Bivariate Normal, Catalan, Cauchy, Chebyshev, Chi Square, Clausen, Clebsch Gordan, Collatz, Cosine integral, Dawson, Debye, Dedekind, dilogarithm, Exponential integral, Elliptic, Error, Euler, Exponential integral, F probability, Fresnel, Frobenius, Gamma, Gegenbauer, Goodwin, Gudermannian, Harmonic, Hermite, Hypergeometric 1F1, Hypergeometric 2F1, inverse trigonometic, Jacobi, Julian Ephemeris Date, Kelvin, Laguerre, Lambert W, Laplace, Legendre, Lerch, Lobachevsky, Lobatto, Logarithmic integral, Log normal, McNugget numbers, Mertens, Mittag-Leffler, Moebius, Multinomial, Negative binomial, Nine J, Normal, Omega, Owen, Partition, Phi, Pi, Poisson, Polylogarithm, Polyomino, Prime, Psi, Rayleigh, Hyperbolic Sine integral, Sigma, Sine Power integral, Sine integral, Six J, Sphere area, Sphere volume, Spherical harmonic, Stirling, Stromgen, Struve, Student, Subfactorial, Student probability, Three J, Transport, Trigamma, Truncated normal, van der Corput, von Mises, Weibull, Wright omega, Zeta.

Reference:

  1. Olde Daalhuis, Adri B. (2010),
    "Hypergeometric function",
    in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.
    Clark, Charles W. (eds.),
    NIST Handbook of Mathematical Functions,
    Cambridge University Press, ISBN 978-0-521-19225-5.
    https://dlmf.nist.gov/15

Source Code:


Last revised on 22 December 2023.