hyper_2f1, a Fortran90 code which evaluates the hypergeometric functions 2F1(a,b,c;x) for real or complex parameters a, b, c, and argument x, by N. Michel and M. Stoitsov.
Although this code should get 16 digits of accuracy, it seems, at least for complex results, to be limited to 8 digits instead. The corresponding C++ version has no such accuracy issue, so some kind of hidden bug is suspected.
The information on this web page is distributed under the MIT license.
hyper_2f1 is available in a C version and a C++ version and a Fortran77 version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.
test_values, a Fortran90 code which supplies test values of various mathematical functions, including Abramowitz, AGM, Airy, Bell, Bernoulli, Bessel, Beta, Binomial, Bivariate Normal, Catalan, Cauchy, Chebyshev, Chi Square, Clausen, Clebsch Gordan, Collatz, Cosine integral, Dawson, Debye, Dedekind, dilogarithm, Exponential integral, Elliptic, Error, Euler, Exponential integral, F probability, Fresnel, Frobenius, Gamma, Gegenbauer, Goodwin, Gudermannian, Harmonic, Hermite, Hypergeometric 1F1, Hypergeometric 2F1, inverse trigonometic, Jacobi, Julian Ephemeris Date, Kelvin, Laguerre, Lambert W, Laplace, Legendre, Lerch, Lobachevsky, Lobatto, Logarithmic integral, Log normal, McNugget numbers, Mertens, Mittag-Leffler, Moebius, Multinomial, Negative binomial, Nine J, Normal, Omega, Owen, Partition, Phi, Pi, Poisson, Polylogarithm, Polyomino, Prime, Psi, Rayleigh, Hyperbolic Sine integral, Sigma, Sine Power integral, Sine integral, Six J, Sphere area, Sphere volume, Spherical harmonic, Stirling, Stromgen, Struve, Student, Subfactorial, Student probability, Three J, Transport, Trigamma, Truncated normal, van der Corput, von Mises, Weibull, Wright omega, Zeta.