besselzero


besselzero, a Fortran90 code which computes zeros of Bessel j and y functions.

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

besselzero is available in a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

besselzero_test

besselj, a Fortran90 code which evaluates Bessel J functions of noninteger order.

fn, a Fortran90 code which evaluates elementary and special functions using Chebyshev polynomials, including Airy, Bessel I, Bessel J, Bessel K, Bessel Y, beta, confluent hypergeometric, cosine integral, the Dawson integral, digamma (psi), error, exponential integral, gamma, hyperbolic cosine integral, hyperbolic sine integral, incomplete gamma, log gamma, logarithmic integral, Pochhammer, psi, sine integral, Spence;, by Wayne Fullerton.

specfun, a Fortran90 code which computes special functions, including Bessel I, J, K and Y functions, and the Dawson, E1, EI, Erf, Gamma, log Gamma, Psi/Digamma functions, by William Cody and Laura Stoltz;

special_functions, a Fortran90 code which evaluates special functions, including Airy, Associated Legendre, Bernoulli Numbers, Bessel, Beta, Complete Elliptic Integral, Cosine Integral, Elliptic Integral, Error, Euler Numbers, Exponential Integral, Fresnel Integral, Gamma, Hankel, Hermite polynomials, Hypergeometric 2F1, Incomplete Beta, Incomplete Gamma, Jacobi Elliptic, Kelvin, Kummer Confluent Hypergeometric, Laguerre polynomials, Lambda, Legendre functions, Legendre polynomials, Mathieu, Modified Spherical Bessel, Parabolic Cylinder, Psi, Riccati-Bessel, Sine Integral, Spheroidal Angular, Spheroidal Wave, Struve, Tricomi Confluent Hypergeometric, Whittaker, by Shanjie Zhang, Jianming Jin;

test_values, a Fortran90 code which supplies test values of various mathematical functions, including Abramowitz, AGM, Airy, Bell, Bernoulli, Bessel, Beta, Binomial, Bivariate Normal, Catalan, Cauchy, Chebyshev, Chi Square, Clausen, Clebsch Gordan, Collatz, Cosine integral, Dawson, Debye, Dedekind, dilogarithm, Dixon elliptic functions, Exponential integral, Elliptic, Error, Euler, Exponential integral, F probability, Fresnel, Frobenius, Gamma, Gegenbauer, Goodwin, Gudermannian, Harmonic, Hermite, Hypergeometric 1F1, Hypergeometric 2F1, inverse trigonometic, Jacobi Elliptic functions sn(), cn(), dn(), the Julian Ephemeris Date, Kelvin, Knapsack, Laguerre, Lambert W, Laplace, Legendre, Lerch, Lobachevsky, Lobatto, Logarithmic integral, Log normal, McNugget numbers, Mersenne primes, Mertens, Mittag-Leffler, Moebius, Multinomial, Negative binomial, Nine J, Normal, Omega, Owen, Partition, Phi, Pi, Poisson, Polylogarithm, Polynomial Resultant, Polyomino, Prime, Psi, Rayleigh, Hyperbolic Sine integral, Sigma, Sine Power integral, Sine integral, Six J, Sphere area, Sphere volume, Spherical harmonic, Stirling, Stromgen, Struve, Student, Subfactorial, Student probability, Three J, Transport, Trigamma, Truncated normal, van der Corput, von Mises, Weibull, Wright Omega, Zeta.

toms715, a Fortran90 code which evaluates special functions, including the Bessel I, J, K, and Y functions of order 0, of order 1, and of any real order, Dawson's integral, the error function, exponential integrals, the gamma function, the normal distribution function, the psi function. This is a version of ACM TOMS algorithm 715.

Source Code:


Last revised on 08 June 2025.