subroutine jn_zeros ( n, nt, z ) !*****************************************************************************80 ! !! jn_zeros() computes the first NT zeros of Bessel function Jn(x). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 June 2025 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N, the order of the Bessel functions. ! ! integer NT, the number of zeros. ! ! Output: ! ! real ( kind = rk8 ) Z(NT), the first NT zeros of Jn(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer nt integer n real ( kind = rk8 ) rj1(nt) real ( kind = rk8 ) ry0(nt) real ( kind = rk8 ) ry1(nt) real ( kind = rk8 ) z(nt) call jyzo ( n, nt, z, rj1, ry0, ry1 ) return end subroutine yn_zeros ( n, nt, z ) !*****************************************************************************80 ! !! yn_zeros() computes the first NT zeros of Bessel function Yn(x). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 June 2025 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N, the order of the Bessel functions. ! ! integer NT, the number of zeros. ! ! Output: ! ! real ( kind = rk8 ) Z(NT), the first NT zeros of Yn(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer nt integer n real ( kind = rk8 ) rj0(nt) real ( kind = rk8 ) rj1(nt) real ( kind = rk8 ) ry1(nt) real ( kind = rk8 ) z(nt) call jyzo ( n, nt, rj0, rj1, z, ry1 ) return end subroutine jyndd ( n, x, bjn, djn, fjn, byn, dyn, fyn ) !*****************************************************************************80 ! !! jyndd(): Bessel functions Jn(x) and Yn(x), first and second derivatives. ! ! Licensing: ! ! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However, ! they give permission to incorporate this routine into a user program ! provided that the copyright is acknowledged. ! ! Modified: ! ! 02 August 2012 ! ! Author: ! ! Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. ! This version by John Burkardt. ! ! Reference: ! ! Shanjie Zhang, Jianming Jin, ! Computation of Special Functions, ! Wiley, 1996, ! ISBN: 0-471-11963-6, ! LC: QA351.C45. ! ! Input: ! ! integer N, the order. ! ! real ( kind = rk8 ) X, the argument. ! ! Output: ! ! real ( kind = rk8 ) BJN, DJN, FJN, BYN, DYN, FYN, the values of ! Jn(x), Jn'(x), Jn"(x), Yn(x), Yn'(x), Yn"(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) bj(102) real ( kind = rk8 ) bjn real ( kind = rk8 ) byn real ( kind = rk8 ) bs real ( kind = rk8 ) by(102) real ( kind = rk8 ) djn real ( kind = rk8 ) dyn real ( kind = rk8 ) e0 real ( kind = rk8 ) ec real ( kind = rk8 ) f real ( kind = rk8 ) f0 real ( kind = rk8 ) f1 real ( kind = rk8 ) fjn real ( kind = rk8 ) fyn integer k integer m integer mt integer n integer nt real ( kind = rk8 ) s1 real ( kind = rk8 ) su real ( kind = rk8 ) x do nt = 1, 900 mt = int ( 0.5D+00 * log10 ( 6.28D+00 * nt ) & - nt * log10 ( 1.36D+00 * abs ( x ) / nt ) ) if ( 20 < mt ) then exit end if end do m = nt bs = 0.0D+00 f0 = 0.0D+00 f1 = 1.0D-35 su = 0.0D+00 do k = m, 0, -1 f = 2.0D+00 * ( k + 1.0D+00 ) * f1 / x - f0 if ( k <= n + 1 ) then bj(k+1) = f end if if ( k == 2 * int ( k / 2 ) ) then bs = bs + 2.0D+00 * f if ( k /= 0 ) then su = su + ( -1.0D+00 ) ** ( k / 2 ) * f / k end if end if f0 = f1 f1 = f end do do k = 0, n + 1 bj(k+1) = bj(k+1) / ( bs - f ) end do bjn = bj(n+1) ec = 0.5772156649015329D+00 e0 = 0.3183098861837907D+00 s1 = 2.0D+00 * e0 * ( log ( x / 2.0D+00 ) + ec ) * bj(1) f0 = s1 - 8.0D+00 * e0 * su / ( bs - f ) f1 = ( bj(2) * f0 - 2.0D+00 * e0 / x ) / bj(1) by(1) = f0 by(2) = f1 do k = 2, n + 1 f = 2.0D+00 * ( k - 1.0D+00 ) * f1 / x - f0 by(k+1) = f f0 = f1 f1 = f end do byn = by(n+1) djn = - bj(n+2) + n * bj(n+1) / x dyn = - by(n+2) + n * by(n+1) / x fjn = ( n * n / ( x * x ) - 1.0D+00 ) * bjn - djn / x fyn = ( n * n / ( x * x ) - 1.0D+00 ) * byn - dyn / x return end subroutine jyzo ( n, nt, rj0, rj1, ry0, ry1 ) !*****************************************************************************80 ! !! jyzo() computes the zeros of Bessel functions Jn(x), Yn(x) and derivatives. ! ! Licensing: ! ! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However, ! they give permission to incorporate this routine into a user program ! provided that the copyright is acknowledged. ! ! Modified: ! ! 28 July 2012 ! ! Author: ! ! Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. ! This version by John Burkardt. ! ! Reference: ! ! Shanjie Zhang, Jianming Jin, ! Computation of Special Functions, ! Wiley, 1996, ! ISBN: 0-471-11963-6, ! LC: QA351.C45. ! ! Input: ! ! integer N, the order of the Bessel functions. ! ! integer NT, the number of zeros. ! ! Output: ! ! real ( kind = rk8 ) RJ0(NT), RJ1(NT), RY0(NT), RY1(NT), the zeros ! of Jn(x), Jn'(x), Yn(x), Yn'(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer nt real ( kind = rk8 ) bjn real ( kind = rk8 ) byn real ( kind = rk8 ) djn real ( kind = rk8 ) dyn real ( kind = rk8 ) fjn real ( kind = rk8 ) fyn integer l integer n real ( kind = rk8 ) n_r8 real ( kind = rk8 ) rj0(nt) real ( kind = rk8 ) rj1(nt) real ( kind = rk8 ) ry0(nt) real ( kind = rk8 ) ry1(nt) real ( kind = rk8 ) x real ( kind = rk8 ) x0 n_r8 = real ( n, kind = rk8 ) if ( n <= 20 ) then x = 2.82141D+00 + 1.15859D+00 * n_r8 else x = n + 1.85576D+00 * n_r8 ** 0.33333D+00 & + 1.03315D+00 / n_r8 ** 0.33333D+00 end if l = 0 do x0 = x call jyndd ( n, x, bjn, djn, fjn, byn, dyn, fyn ) x = x - bjn / djn if ( 1.0D-09 < abs ( x - x0 ) ) then cycle end if l = l + 1 rj0(l) = x x = x + 3.1416D+00 + ( 0.0972D+00 + 0.0679D+00 * n_r8 & - 0.000354D+00 * n_r8 ** 2 ) / l if ( nt <= l ) then exit end if end do if ( n <= 20 ) then x = 0.961587D+00 + 1.07703D+00 * n_r8 else x = n_r8 + 0.80861D+00 * n_r8 ** 0.33333D+00 & + 0.07249D+00 / n_r8 ** 0.33333D+00 end if if ( n == 0 ) then x = 3.8317D+00 end if l = 0 do x0 = x call jyndd ( n, x, bjn, djn, fjn, byn, dyn, fyn ) x = x - djn / fjn if ( 1.0D-09 < abs ( x - x0 ) ) then cycle end if l = l + 1 rj1(l) = x x = x + 3.1416D+00 + ( 0.4955D+00 + 0.0915D+00 * n_r8 & - 0.000435D+00 * n_r8 ** 2 ) / l if ( nt <= l ) then exit end if end do if ( n <= 20 ) then x = 1.19477D+00 + 1.08933D+00 * n_r8 else x = n_r8 + 0.93158D+00 * n_r8 ** 0.33333D+00 & + 0.26035D+00 / n_r8 ** 0.33333D+00 end if l = 0 do x0 = x call jyndd ( n, x, bjn, djn, fjn, byn, dyn, fyn ) x = x - byn / dyn if ( 1.0D-09 < abs ( x - x0 ) ) then cycle end if l = l + 1 ry0(l) = x x = x + 3.1416D+00 + ( 0.312D+00 + 0.0852D+00 * n_r8 & - 0.000403D+00 * n_r8 ** 2 ) / l if ( nt <= l ) then exit end if end do if ( n <= 20 ) then x = 2.67257D+00 + 1.16099D+00 * n_r8 else x = n_r8 + 1.8211D+00 * n_r8 ** 0.33333D+00 & + 0.94001D+00 / n_r8 ** 0.33333D+00 end if l = 0 do x0 = x call jyndd ( n, x, bjn, djn, fjn, byn, dyn, fyn ) x = x - dyn / fyn if ( 1.0D-09 < abs ( x - x0 ) ) then cycle end if l = l + 1 ry1(l) = x x = x + 3.1416D+00 + ( 0.197D+00 + 0.0643D+00 * n_r8 & -0.000286D+00 * n_r8 ** 2 ) / l if ( nt <= l ) then exit end if end do return end