**monomial**,
an Octave code which
enumerates, lists, ranks, unranks and randomizes multivariate monomials
in a space of D dimensions, with total degree less than N,
equal to N, or lying within a given range.

A (univariate) monomial in 1 variable x is simply any (nonnegative integer) power of x:

1, x, x^2, x^3, ...The exponent of x is termed the degree of the monomial.

Since any polynomial p(x) can be written as

p(x) = c(0) * x^0 + c(1) * x^1 + c(2) * x^2 + ... + c(n) * x^nwe may regard the monomials as a natural basis for the space of polynomials, in which case the coefficients may be regarded as the coordinates of the polynomial.

A (multivariate) monomial in D variables x(1), x(2), ..., x(d) is a product of the form

x(1)^e(1) * x(2)^e(2) * ... * x(d)^e(d)where e(1) through e(d) are nonnegative integers. The sum of the exponents is termed the degree of the monomial.

Any polynomial in D variables can be written as a linear combination of monomials in D variables. The "total degree" of the polynomial is the maximum of the degrees of the monomials that it comprises. For instance, a polynomial in D = 2 variables of total degree 3 might have the form:

p(x,y) = c(0,0) x^0 y^0 + c(1,0) x^1 y^0 + c(0,1) x^0 y^1 + c(2,0) x^2 y^0 + c(1,1) x^1 y^1 + c(0,2) x^0 y^2 + c(3,0) x^3 y^0 + c(2,1) x^2 y^1 + c(1,2) x^1 y^2 + c(0,3) x^0 y^3The monomials in D variables can be regarded as a natural basis for the polynomials in D variables.

For multidimensional polynomials, a number of orderings are possible. Two common orderings are "grlex" (graded lexicographic) and "grevlex" (graded reverse lexicographic). Once an ordering is imposed, each monomial in D variables has a rank, and it is possible to ask (and answer!) the following questions:

As mentioned, two common orderings for monomials are "grlex" (graded lexicographic) and "grevlex" (graded reverse lexicographic). The word "graded" in both names indicates that, for both orderings, one monomial is "less" than another if its total degree is less. Thus, for both orderings, xyz^2 is less than y^5 because a monomial of degree 4 is less than a monomial of degree 5.

But what happens when we compare two monomials of the same degree? For the lexicographic ordering, one monomial is less than another if its vector of exponents is lexicographically less. Given two vectors v1=(x1,y1,z1) and v2=(x2,y2,z2), v1 is less than v2 if

- x1 is less than x2;
- or x1 = x2, but y1 is less than y2;
- or x1 = x2, and y1 = y2, but z1 is less than z2;

Thus, for the grlex ordering, we first order by degree, and then for two monomials of the same degree, we use the lexicographic ordering. Here is how the grlex ordering would arrange monomials in D=3 dimensions.

# monomial expon -- --------- ----- 1 1 0 0 0 2 z 0 0 1 3 y 0 1 0 4 x 1 0 0 5 z^2 0 0 2 6 y z 0 1 1 7 y^2 0 2 0 8 x z 1 0 1 9 x y 1 1 0 10 x^2 2 0 0 11 z^3 0 0 3 12 y z^2 0 1 2 13 y^2z 0 2 1 14 y^3 0 3 0 15 x z^2 1 0 2 16 x y z 1 1 1 17 x y^2 1 2 0 18 x^2 z 2 0 1 19 x^2y 2 1 0 20 x^3 3 0 0 21 z^4 0 0 4 22 y z^3 0 1 3 23 y^2z^2 0 2 2 24 y^3z 0 3 1 25 y^4 0 4 0 26 x z^3 1 0 3 27 x y z^2 1 1 2 28 x y^2z 1 2 1 29 x y^3 1 3 0 30 x^2 z^2 2 0 2 31 x^2y z 2 1 1 32 x^2y^2 2 2 0 33 x^3 z 3 0 1 34 x^3y 3 1 0 35 x^4 4 0 0 36 z^5 0 0 5 ... ......... .....

For the reverse lexicographic ordering, given two vectors, v1=(x1,y1,z1) and v2=(x2,y2,z2), v1 is less than v2 if:

- z1 is greater than z2;
- or z1 = z2 but y1 is greater than y2;
- or z1 = z2, and y1 = y2, but x1 is greater than x2.

Thus, for the grevlex ordering, we first order by degree, and then for two monomials of the same degree, we use the reverse lexicographic ordering. Here is how the grevlex ordering would arrange monomials in D=3 dimensions.

# monomial expon -- --------- ----- 1 1 0 0 0 2 z 0 0 1 3 y 0 1 0 4 x 1 0 0 5 z^2 0 0 2 6 y z 0 1 1 7 x z 1 0 1 8 y^2 0 2 0 9 x y 1 1 0 10 x^2 2 0 0 11 z^3 0 0 3 12 y z^2 0 1 2 13 x z^2 1 0 2 14 y^2z 0 2 1 15 x y z 1 1 1 16 x^2 z 2 0 1 17 y^3 0 3 0 18 x y^2 1 2 0 19 x^2y 2 1 0 20 x^3 3 0 0 21 z^4 0 0 4 22 y z^3 0 1 3 23 x z^3 1 0 3 24 y^2z^2 0 2 2 25 x y z^2 1 1 2 26 x^2 z^2 2 0 2 27 y^3z^1 0 3 1 28 x y^2z 1 2 1 29 x^2y z 2 1 1 30 x^3 z 3 0 1 31 y^4 0 4 0 32 x y^3 1 3 0 33 x^2y^2 2 2 0 34 x^3y 3 1 0 35 x^4 4 0 0 36 z^5 0 0 5 ... ......... .....

The computer code and data files made available on this web page are distributed under the MIT license

**monomial** is available in
a C version and
a C++ version and
a Fortran90 version and
a MATLAB version and
an Octave version and
a Python version.

combo, an Octave code which includes routines for ranking, unranking, enumerating and randomly selecting balanced sequences, cycles, graphs, Gray codes, subsets, partitions, permutations, restricted growth functions, Pruefer codes and trees.

legendre_product_polynomial, an Octave code which defines Legendre product polynomials, creating a multivariate polynomial as the product of univariate Legendre polynomials.

polynomial, an Octave code which adds, multiplies, differentiates, evaluates and prints multivariate polynomials in a space of M dimensions.

polynomial_multiply, an Octave code which multiplies two polynomials p(x) and q(x).

r8poly, an Octave code which contains a number of utilities for polynomials with R8 coefficients, that is, using double precision or 64 bit real arithmetic.

set_theory, an Octave code which demonstrates MATLAB commands that implement various set theoretic operations.

subset, an Octave code which enumerates, generates, ranks and unranks combinatorial objects including combinations, compositions, Gray codes, index sets, partitions, permutations, subsets, and Young tables.

- i4_uniform_ab.m, returns a random I4 between given limits.
- i4vec_uniform_ab.m, returns a random I4VEC between given limits.
- mono_between_enum.m, enumerates the monomials of D variables of total degree between N1 and N2, inclusive.
- mono_between_next_grevlex.m, computes, in grevlex order, the monomials of D variables of total degree between N1 and N2, inclusive.
- mono_between_next_grlex.m, computes, in grlex order, the monomials of D variables of total degree between N1 and N2, inclusive.
- mono_between_random.m, randomly selects a monomials of D variables of total degree between N1 and N2, inclusive.
- mono_next_grevlex.m, returns the next monomial in D variables, in grevlex order.
- mono_next_grlex.m, returns the next monomial in D variables, in grlex order.
- mono_print.m, prints a monomial.
- mono_rank_grlex.m, returns the grlex rank of a monomial in the sequence of all monomials in D dimensions of degree N or less.
- mono_total_enum.m, enumerates the monomials of D variables of total degree N.
- mono_total_next_grevlex.m, computes, in grevlex order, the monomials of D variables of total degree N.
- mono_total_next_grlex.m, computes, in grlex order, the monomials of D variables of total degree N.
- mono_total_random.m, randomly selects a monomial of D variables of total degree N.
- mono_unrank_grlex.m, given a grlex rank, returns the corresponding monomial of D variables.
- mono_upto_enum.m, enumerates the monomials of D variables of total degree up to N.
- mono_upto_next_grevlex.m, computes, in grevlex order, the monomials of D variables of total degree up to N.
- mono_upto_next_grlex.m, computes, in grlex order, the monomials of D variables of total degree up to N.
- mono_upto_random.m, randomly selects a monomial of D variables of total degree up to N.
- mono_value.m, evaluates a monomial.