jacobi_polynomial


jacobi_polynomial, an Octave code which evaluates the Jacobi polynomial.

For a given choice of the parameters a and b, both greater than -1, the Jacobi polynomials are a set of polynomials which are pairwise orthogonal with respect to the integral:

        integral (-1<=x<=+1) J(i,a,b,x) J(j,a,b,x) (1-x)^a (1+x)^b dx
      
That is, this integral is 0 unless i = j. J(i,a,b,x) indicates the Jacobi polynomial of degree i.

The standard Jacobi polynomials can be defined by a three term recurrence formula that is a bit too ugly to quote here.

It is worth noting that the definition of the Jacobi polynomials is general enough that it includes some familiar families as special cases:

Licensing:

The computer code and data files made available on this web page are distributed under the MIT license

Languages:

jacobi_polynomial is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version and an Octave version.

Related Data and Programs:

jacobi_polynomial_test

polpak, an Octave code which evaluates a variety of mathematical functions.

test_values, an Octave code which supplies test values of various mathematical functions.

Reference:

  1. Theodore Chihara,
    An Introduction to Orthogonal Polynomials,
    Gordon and Breach, 1978,
    ISBN: 0677041500,
    LC: QA404.5 C44.
  2. Walter Gautschi,
    Orthogonal Polynomials: Computation and Approximation,
    Oxford, 2004,
    ISBN: 0-19-850672-4,
    LC: QA404.5 G3555.
  3. Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
    NIST Handbook of Mathematical Functions,
    Cambridge University Press, 2010,
    ISBN: 978-0521192255,
    LC: QA331.N57.
  4. Gabor Szego,
    Orthogonal Polynomials,
    American Mathematical Society, 1992,
    ISBN: 0821810235,
    LC: QA3.A5.v23.

Source Code:


Last modified on 25 September 2022.