hermite_polynomial
hermite_polynomial,
an Octave code which
evaluates the physicist's Hermite polynomial, the probabilist's
Hermite polynomial, the Hermite function, and related functions.
The physicist's Hermite polynomial H(i,x) can be defined by:
H(i,x) = (-1)^i exp(x^2/2) * d^i/dx^i ( exp(-x^2/2) )
The normalized physicist's Hermite polynomial Hn(i,x) is scaled so that
Integral ( -oo < x < +oo ) exp ( - x^2 ) * Hn(i,x) Hn(j,x) dx = delta ( i, j )
The probabilist's Hermite polynomial He(i,x) is related to H(i,x) by:
He(i,x) = H(i,x/sqrt(2)) / sqrt ( 2^in )
The normalized probabilist's Hermite polynomial Hen(i,x) is scaled so that
Integral ( -oo < x < +oo ) exp ( - 0.5*x^2 ) * Hen(i,x) Hen(j,x) dx = delta ( i, j )
The Hermite function Hf(i,x) is related to H(i,x) by:
Hf(i,x) = H(i,x) * exp(-x^2/2) / sqrt ( 2^i * i! * sqrt ( pi ) )
The Hermite function Hf(i,x) is scaled so that:
Integral ( -oo < x < +oo ) Hf(i,x) Hf(j,x) dx = delta ( i, j )
Licensing:
The computer code and data files described and made available on this web page
are distributed under
the MIT license.
Languages:
hermite_polynomial is available in
a C version and
a C++ version and
a Fortran90 version and
a Fortran77 version and
a MATLAB version and
an Octave version and
a Python version.
Related Data and Programs:
hermite_polynomial_test
hermite_rule,
an Octave code which
computes and prints a Gauss-Hermite quadrature rule.
octave_polynomial,
an Octave code which
analyzes a variety of polynomial families, returning the polynomial
values, coefficients, derivatives, integrals, roots, or other information.
pce_ode_hermite,
an Octave code which
sets up a simple scalar ODE for exponential decay with an uncertain
decay rate, using a polynomial chaos expansion in terms of Hermite polynomials.
polpak,
an Octave code which
evaluates a variety of mathematical functions.
polynomial_conversion,
an Octave code which
converts representations of a polynomial between monomial, Bernstein,
Chebyshev, Hermite, Lagrange, Laguerre and other forms.
test_values,
an Octave code which
supplies test values of various mathematical functions.
Reference:
-
Theodore Chihara,
An Introduction to Orthogonal Polynomials,
Gordon and Breach, 1978,
ISBN: 0677041500,
LC: QA404.5 C44.
-
Walter Gautschi,
Orthogonal Polynomials: Computation and Approximation,
Oxford, 2004,
ISBN: 0-19-850672-4,
LC: QA404.5 G3555.
-
Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
NIST Handbook of Mathematical Functions,
Cambridge University Press, 2010,
ISBN: 978-0521192255,
LC: QA331.N57.
-
Gabor Szego,
Orthogonal Polynomials,
American Mathematical Society, 1992,
ISBN: 0821810235,
LC: QA3.A5.v23.
Source Code:
-
h_integral.m,
evaluates the integral of H(i,x).
-
h_polynomial_coefficients.m,
coefficients of H(i,x).
-
h_polynomial_value.m,
evaluates H(i,x).
-
h_polynomial_values.m,
tabulated values of H(i,x).
-
h_polynomial_zeros.m,
zeros of H(i,x).
-
h_quadrature_rule.m,
quadrature for H(i,x).
-
h_to_monomial_matrix.m,
physicist's Hermite to monomial conversion matrix.
-
he_double_product_integral.m,
integral of He(i,x)*He(j,x)*e^(-x^2/2).
-
he_integral.m,
evaluates the integral of He(i,x).
-
he_plot.m,
plots one or more Hermite polynomials He(i,x).
-
he_polynomial_coefficients.m,
coefficients of He(i,x).
-
he_polynomial_value.m,
evaluates He(i,x).
-
he_polynomial_values.m,
tabulated values of He(i,x).
-
he_polynomial_zeros.m,
zeros of He(i,x).
-
he_quadrature_rule.m,
quadrature for He(i,x).
-
he_triple_product_integral.m,
integral of He(i,x)*He(j,x)*He(k,x)*e^(-x^2/2).
-
hen_exponential_product.m,
exponential product of exp(b*x)*Hen(i,x)*Hen(j,x).
-
hen_polynomial_value.m,
evaluates Hen(i,x).
-
hen_power_product.m,
power products, x^e*Hen(i,x)*Hen(j,x).
-
hen_projection.m,
determines the projection coefficients for a function f(x) against
Hen(0:n,x).
-
hen_projection_data.m,
determines the least squares projection coefficients for a function f(x) which
is only supplied as M data values (x,fx), against Hen(0:n,x).
-
hen_projection_value.m,
evaluates the projection of a function against Hen(0:n,x).
-
hf_exponential_product.m,
exponential products, exp(b*x)*Hf(i,x)*Hf(j,x).
-
hf_function_value.m,
evaluates the Hermite function Hf(i,x).
-
hf_function_values.m,
values of the Hermite function Hf(i,x).
-
hf_plot.m,
plots one or more Hermite functions Hf(i,x).
-
hf_power_product.m,
power products x^e*Hf(i,x)*Hf(j,x).
-
hf_quadrature_rule.m,
quadrature for Hf(i,x).
-
hn_exponential_product.m,
exponential products exp(b*x)*Hn(i,x)*Hn(j,x).
-
hn_polynomial_value.m,
evaluates Hn(i,x).
-
hen_power_product.m,
power products x^e*Hn(i,x)*Hn(j,x).
-
imtqlx.m,
diagonalizes a symmetric tridiagonal matrix;
-
monomial_to_h_matrix.m,
monomial to physicist's Hermite conversion matrix;
-
r8_factorial2.m,
computes the double factorial function;
-
r8_sign.m,
returns the sign of an R8.
-
r8mat_print.m,
prints an R8MAT;
-
r8mat_print_some.m,
prints some of an R8MAT;
-
r8vec_print.m,
prints an R8VEC;
-
r8vec2_print.m,
prints a pair of R8VEC's;
Last modified on 31 March 2024.