allen_cahn_pde_euler


allen_cahn_pde_euler, an Octave code which uses the Euler method to solve the Allen-Cahn PDE as a system of stiff ordinary differential equations (ODE), by Aly-Khan Kassam, Lloyd Trefethen.

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

allen_cahn_pde_euler is available in a MATLAB version and an Octave version.

Related Data and Programs:

allen_cahn_pde_euler_test

kdv_etdrk4, an Octave code which uses the ETDRK4 method to solve the Korteweg-DeVries equation, by Aly-Khan Kassam, Lloyd Trefethen.

kdv_ift, an Octave code which uses the IFT method to solve the Korteweg-DeVries equation, by Aly-Khan Kassam, Lloyd Trefethen.

Author:

Original MATLAB version by Aly-Khan Kassam, Lloyd Trefethen; This version by John Burkardt.

Reference:

  1. Stephen Cox, Paul Matthews,
    Exponential time differencing for stiff systems,
    Journal of Computational Physics,
    Volume 176, pages 430-455, 2002.
  2. Aly-Khan Kassam, Lloyd Trefethen,
    Fourth-order time-stepping for stiff ODE's,
    SIAM Journal on Scientific Computing,
    Volume 26, Number 4, pages 1214-1233, 2005.
  3. Lloyd Trefethen,
    Spectral methods in MATLAB,
    SIAM, 2000,
    LC: QA377.T65
    ISBN: 978-0-898714-65-4

Source Code:


Last revised on 10 July 2024.