boat


boat, a MATLAB code which considers the boat tiling puzzle, a smaller version of the eternity puzzle. The boat puzzle specifies a region R composed of 756 30-60-90 triangles, and a set of 21 "tiles", each consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

The boat puzzle was devised as a follow up to the trinity puzzle (4 tiles), and the whale puzzle (8 tiles) and a warmup to the eternity puzzle (209 tiles). It represents a subset of the Guenter Stertenbrink solution of the eternity puzzle.

Some of these codes rely on access to files in the "eternity" directory, which might be accessed by a MATLAB "addpath()" command, or else by simply copying those files into the user's directory as well.

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

boat is available in a MATLAB version.

Related Data and Programs:

boat_test

boat_cplex_test a BASH code which calls cplex(), to read the LP file defining the boat tiling problem, solve the linear programming problem, and write the solution to a file.

boat_gurobi_test a BASH code which calls gurobi(), to read the LP file defining the boat tiling problem, solve the linear programming problem, and write the solution to a file.

boomerang, a MATLAB code which considers the boomerang tiling puzzle, a smaller version of the eternity puzzle. The puzzle specifies a region R composed of 2376 30-60-90 triangles, and a set of 66 "tiles", each consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

boundary_word_drafter, a MATLAB code which describes the outline of an object on a grid of drafters, or 30-60-90 triangles, using a string of symbols that represent the sequence of steps tracing out the boundary.

eternity, a MATLAB code which considers the eternity puzzle, which considers an irregular dodecagon shape that is to be tiled by 209 distinct pieces, each formed by 36 contiguous 30-60-90 triangles, known as polydrafters.

eternity_tile, a MATLAB code which considers the individual tiles of the eternity puzzle, 209 distinct pieces, each formed by 36 contiguous 30-60-90 triangles, known as polydrafters.

pram, a MATLAB code which considers the pram puzzle, a smaller version of the eternity puzzle. The pram puzzle specifies a region R composed of 2304 30-60-90 triangles, and a set of 64 "tiles", consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

serenity, a MATLAB code which considers the serenity puzzle, a smaller version of the eternity puzzle. The serenity puzzle specifies a dodecagonal region R composed of 288 30-60-90 triangles, and a set of 8 "tiles", each consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

tortoise, a MATLAB code which considers the tortoise tiling puzzle, a smaller version of the eternity puzzle. The tortoise puzzle specifies a region R composed of 1620 30-60-90 triangles, and a set of 45 "tiles", each consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

trinity, a MATLAB code which considers the trinity puzzle, a smaller version of the eternity puzzle. The trinity puzzle specifies a region R composed of 144 30-60-90 triangles, and a set of 4 "tiles", T1, T2, T3 and T4, each consisting of 36 30-60-90 triangles, and seeks an arrangement of the four tiles that exactly covers the region.

whale, a MATLAB code which considers the whale tiling puzzle, a smaller version of the eternity puzzle. The whale puzzle specifies a region R composed of 288 30-60-90 triangles, and a set of 8 "tiles", each consisting of 36 30-60-90 triangles, and seeks an arrangement of the tiles that exactly covers the region.

Reference:

  1. Marcus Garvie, John Burkardt,
    A new mathematical model for tiling finite regions of the plane with polyominoes,
    Contributions to Discrete Mathematics,
    Volume 15, Number 2, July 2020.
  2. Solomon Golomb,
    Polyominoes: Puzzles, Patterns, Problems, and Packings,
    Princeton University Press, 1996,
    ISBN: 9780691024448
  3. Ed Pegg,
    Polyform Patterns,
    in Tribute to a Mathemagician,
    Barry Cipra, Erik Demaine, Martin Demaine, editors,
    pages 119-125, A K Peters, 2005.
  4. Mark Wainwright,
    Prize specimens,
    Plus magazine,
    01 January 2001,
    https://plus.maths.org/content/prize-specimens

Source code:


Last revised on 06 February 2022.