attractor_ode
attractor_ode,
a MATLAB code which
sets up and solves several systems of ordinary differential equations (ODE)
which have chaotic behavior and an attractor, with the Lorenz ODE
being a classic example.
Licensing:
The computer code and data files described and made available on this
web page are distributed under
the MIT license
Languages:
attractor_ode is available in
a MATLAB version.
Related Data and codes:
attractor_ode_test
matlab_ode,
MATLAB codes which
set up various ordinary differential equations (ODE).
Reference:
-
Vadim Anishchenko, Vladimir Astakhov,
Experimental study of the mechanism of the appearance and the
structure of a strange attractor in an oscillator with inertial
nonlinearity,
Radiotekhnika i Elektronika,
Volume 28, 1983, pages 1109-1115.
-
Alain Arneodo, Pierre Coullet, Edward Spiegel, Charles Tresser,
Asymptotic Chaos,
Physica D: Nonlinear Phenomena,
Volume 14, Number 3, 1985, pages 327-347.
-
Guanrong Chen, Tetsushi Ueta,
Yet another chaotic attractor,
International Journal of Bifurcation and Chaos
in Applied Sciences and Engineering,
Volume 9, Number 7, 1999, pages 1465-1466.
-
Peter Gray, Stephen Scott,
Chemical oscillations and instabilities,
Interational Series of Monographs on Chemistry,
Volume 21, Oxford University Press, 1990.
-
Michel Henon, Carl Heiles,
The applicability of the third integral of motion:
some numerical experiments,
Astronomical Journal,
Volume 69, 1964, pages 73-79.
-
William Langford,
Numerical studies of torus bifurcations,
Internationale Schriftenreihe zur numerischen Mathematik,
Volume 70, Birkhaeuser, 1984, pages 285-295.
-
Edward Lorenz,
Deterministic Nonperiodic Flow,
Journal of the Atmospheric Sciences,
Volume 20, Number 2, 1963, pages 130-141.
-
Stephen Lucas, Evelyn Sander, Laura Taalman,
Modeling dynamical systems for 3D printing,
Notices of the American Mathematical Society,
Volume 67, Number 11, December 2020, pages 1692-1705.
-
Michael Mackey, Leon Glass,
Oscillation and chaos in physiological control systems,
Science,
Volume 197, Number 4300, pages 287-289, 1977.
-
Otto Roessler,
An equation for continuous chaos,
Physics Letters,
Volume 57A, Number 5, pages 397–398, 1976.
Source Code:
-
anishchenko_deriv.m,
the right hand side of the Anishchenko ODE.
-
anishchenko_parameters.m,
parameters of the Anishchenko ODE.
-
arneodo_deriv.m,
the right hand side of the Arneodo ODE.
-
arneodo_parameters.m,
parameters of the Arneodo ODE.
-
autocatalytic_deriv.m,
the right hand side of the autocatalytic ODE.
-
autocatalytic_parameters.m,
parameters of the autocatalytic ODE.
-
chen_deriv.m,
the right hand side of the Chen ODE.
-
chen_parameters.m,
parameters of the Chen ODE.
-
henon_heiles_deriv.m,
the right hand side of the Henon Heiles ODE.
-
henon_heiles_parameters.m,
parameters of the Henon Heiles ODE.
-
langford_deriv.m,
the right hand side of the Langford ODE.
-
langford_parameters.m,
parameters of the Langford ODE.
-
lorenz_deriv.m,
the right hand side of the Lorenz ODE.
-
lorenz_parameters.m,
parameters of the Lorenz ODE.
-
roessler_deriv.m,
the right hand side of the Roessler ODE.
-
roessler_parameters.m,
parameters of the Roessler ODE.
Last revised on 17 September 2021.