mxm_openmp


mxm_openmp, a FORTRAN90 code which sets up a dense matrix multiplication problem C = A * B, using OpenMP for parallel execution.

The matrices A and B are chosen so that C = (N+1) * I, where N is the order of A and B, and I is the identity matrix.

Usage:

In the BASH shell, the program could be run with 8 threads using the commands:

        export OMP_NUM_THREADS=8
        ./mxm_openmp
      

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

mxm_openmp is available in a C version and a C++ version and a FORTRAN90 version.

Related Data and Programs:

DIJKSTRA_OPENMP, a FORTRAN90 code which uses OpenMP to parallelize a simple example of Dijkstra's minimum distance algorithm for graphs.

FFT_OPENMP, a FORTRAN90 code which demonstrates the computation of a Fast Fourier Transform in parallel, using OpenMP.

HEATED_PLATE_OPENMP, a FORTRAN90 code which solves the steady (time independent) heat equation in a 2D rectangular region, using OpenMP to run in parallel.

HELLO_OPENMP, a FORTRAN90 code which prints out "Hello, world!" using the OpenMP parallel programming environment.

JACOBI_OPENMP, a FORTRAN90 code which illustrates the use of the OpenMP application program interface to parallelize a Jacobi iteration solving A*x=b.

MANDELBROT_OPENMP, a FORTRAN90 code which generates an ASCII Portable Pixel Map (PPM) image of the Mandelbrot fractal set, using OpenMP for parallel execution.

MD_OPENMP, a FORTRAN90 code which carries out a molecular dynamics simulation using OpenMP.

mxm_openmp_test

openmp_test, FORTRAN90 codes which use the OpenMP application code interface for carrying out parallel computations in a shared memory environment.

POISSON_OPENMP, a FORTRAN90 code which computes an approximate solution to the Poisson equation in a rectangle, using the Jacobi iteration to solve the linear system, and OpenMP to carry out the Jacobi iteration in parallel.

PRIME_OPENMP, a FORTRAN90 code which counts the number of primes between 1 and N, using OpenMP for parallel execution.

QUAD_OPENMP, a FORTRAN90 code which applies a quadrature rule to estimate an integral, and executes in parallel using OpenMP.

RANDOM_OPENMP, a FORTRAN90 code which illustrates how a parallel program using OpenMP can generate multiple distinct streams of random numbers.

SATISFY_OPENMP, a FORTRAN90 code which demonstrates, for a particular circuit, an exhaustive search for solutions of the circuit satisfiability problem, using OpenMP for parallel execution.

SCHEDULE_OPENMP, a FORTRAN90 code which demonstrates the default, static, and dynamic methods of "scheduling" loop iterations in OpenMP to avoid work imbalance.

ZIGGURAT_OPENMP, a FORTRAN90 code which demonstrates how the ZIGGURAT library can be used to generate random numbers in an OpenMP parallel program.

Reference:

  1. Peter Arbenz, Wesley Petersen,
    Introduction to Parallel Computing - A practical guide with examples in C,
    Oxford University Press,
    ISBN: 0-19-851576-6,
    LC: QA76.58.P47.
  2. Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh Menon,
    Parallel Programming in OpenMP,
    Morgan Kaufmann, 2001,
    ISBN: 1-55860-671-8,
    LC: QA76.642.P32.
  3. Barbara Chapman, Gabriele Jost, Ruud vanderPas, David Kuck,
    Using OpenMP: Portable Shared Memory Parallel Processing,
    MIT Press, 2007,
    ISBN13: 978-0262533027,
    LC: QA76.642.C49.

Source Code:


Last revised on 31 July 2020.