GEN_HERMITE_RULE, a FORTRAN90 code which generates a specific generalized Gauss-Hermite quadrature rule, based on user input.

The rule is written to three files for easy use as input to other programs.

The generalized Gauss Hermite quadrature rule is used as follows:

```        Integral ( -oo < x < +oo ) |x-a|^alpha * exp( - b * ( x - a)^2 ) f(x) dx
```
is to be approximated by
```        Sum ( 1 <= i <= order ) w(i) * f(x(i))
```

Usage:

gen_hermite_rule order alpha a b filename
where
• order is the number of points in the quadrature rule.
• alpha is the parameter for the generalized Gauss-Hermite quadrature rule. The value of alpha may be any real value greater than -1.0. Specifying alpha=0.0 results in the basic (non-generalized) rule.
• a is the center point (default 0);
• b is the scale factor (default 1);
• filename specifies the names of the output files: filename_w.txt, filename_x.txt, and filename_r.txt, containing the weights, abscissas, and interval limits.

Languages:

GEN_HERMITE_RULE is available in a C++ version and a FORTRAN90 version and a MATLAB version

Related Data and Programs:

ALPERT_RULE, a FORTRAN90 code which can set up an Alpert quadrature rule for functions which are regular, log(x) singular, or 1/sqrt(x) singular.

CCN_RULE, a FORTRAN90 code which defines a nested Clenshaw Curtis quadrature rule.

CHEBYSHEV1_RULE, a FORTRAN90 code which can compute and print a Gauss-Chebyshev type 1 quadrature rule.

CHEBYSHEV2_RULE, a FORTRAN90 code which can compute and print a Gauss-Chebyshev type 2 quadrature rule.

CLENSHAW_CURTIS_RULE, a FORTRAN90 code which defines a Clenshaw Curtis quadrature rule.

GEGENBAUER_RULE, a FORTRAN90 code which can compute and print a Gauss-Gegenbauer quadrature rule.

GEN_LAGUERRE_RULE, a FORTRAN90 code which computes a generalized Gauss-Laguerre quadrature rule.

HERMITE_RULE, a FORTRAN90 code which computes a generalized Gauss-Hermite quadrature rule.

INT_EXACTNESS_GEN_HERMITE, a FORTRAN90 code which checks the polynomial exactness of a generalized Gauss-Hermite quadrature rule.

JACOBI_RULE, a FORTRAN90 code which computes a generalized Gauss-Jacobi quadrature rule.

LAGUERRE_RULE, a FORTRAN90 code which computes a Gauss-Laguerre quadrature rule.

LEGENDRE_RULE, a FORTRAN90 code which computes a Gauss-Legendre quadrature rule.

LEGENDRE_RULE_FAST, a FORTRAN90 code which uses a fast (order N) algorithm to compute a Gauss-Legendre quadrature rule of given order.

LOGNORMAL_RULE, a FORTRAN90 code which can compute and print a quadrature rule for functions of a variable whose logarithm is normally distributed.

PATTERSON_RULE, a FORTRAN90 code which returns the points and weights of a 1D Gauss-Patterson quadrature rule of order 1, 3, 7, 15, 31, 63, 127, 255 or 511.

PATTERSON_RULE_COMPUTE, a FORTRAN90 code which computes the points and weights of a 1D Gauss-Patterson quadrature rule of order 1, 3, 7, 15, 31, 63, 127, 255 or 511.

QUADRATURE_RULES_GEN_HERMITE, a dataset directory which contains triples of files defining generalized Gauss-Hermite quadrature rules.

TEST_INT_HERMITE, a FORTRAN90 code which defines test integrands that can be approximated using a Gauss-Hermite rule.

TRUNCATED_NORMAL_RULE, a FORTRAN90 code which computes a quadrature rule for a normal distribution that has been truncated to [A,+oo), (-oo,B] or [A,B].

Reference:

1. Milton Abramowitz, Irene Stegun,
Handbook of Mathematical Functions,
National Bureau of Standards, 1964,
ISBN: 0-486-61272-4,
LC: QA47.A34.
2. Philip Davis, Philip Rabinowitz,
Methods of Numerical Integration,
Second Edition,
Dover, 2007,
ISBN: 0486453391,
LC: QA299.3.D28.
3. Sylvan Elhay, Jaroslav Kautsky,
Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of Interpolatory Quadrature,
ACM Transactions on Mathematical Software,
Volume 13, Number 4, December 1987, pages 399-415.
4. Jaroslav Kautsky, Sylvan Elhay,
Calculation of the Weights of Interpolatory Quadratures,
Numerische Mathematik,
Volume 40, 1982, pages 407-422.
5. Roger Martin, James Wilkinson,
The Implicit QL Algorithm,
Numerische Mathematik,
Volume 12, Number 5, December 1968, pages 377-383.
6. Arthur Stroud, Don Secrest,