compass_search


compass_search, a Fortran90 code which seeks the minimizer of a scalar function of several variables using compass search, a direct search algorithm that does not use derivatives.

The algorithm, which goes back to Fermi and Metropolis, is easy to describe. The algorithm begins with a starting point X, and a step size DELTA.

For each dimension I, the algorithm considers perturbing X(I) by adding or subtracting DELTA.

If a perturbation is found which decreases the function, this becomes the new X. Otherwise DELTA is halved.

The iteration halts when DELTA reaches a minimal value.

The algorithm is not guaranteed to find a global minimum. It can, for instance, easily be attracted to a local minimum. Moreover, the algorithm can diverge if, for instance, the function decreases as the argument goes to infinity.

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

compass_search is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

compass_search_test

asa047, a Fortran90 code which minimizes a scalar function of several variables using the Nelder-Mead algorithm.

praxis, a Fortran90 code which implements the principal axis method of Richard Brent for minimization of a function without the use of derivatives.

test_opt, a Fortran90 code which defines test problems requiring the minimization of a scalar function of several variables.

test_opt_con, a Fortran90 code which defines test problems for the minimization of a scalar function of several variables, with the search constrained to lie within a specified hyper-rectangle.

toms178, a Fortran90 code which optimizes a scalar functional of multiple variables using the Hooke-Jeeves method.

Author:

John Burkardt

Reference:

  1. Evelyn Beale,
    On an Iterative Method for Finding a Local Minimum of a Function of More than One Variable,
    Technical Report 25,
    Statistical Techniques Research Group,
    Princeton University, 1958.
  2. Richard Brent,
    Algorithms for Minimization without Derivatives,
    Dover, 2002,
    ISBN: 0-486-41998-3,
    LC: QA402.5.B74.
  3. Charles Broyden,
    A class of methods for solving nonlinear simultaneous equations,
    Mathematics of Computation,
    Volume 19, 1965, pages 577-593.
  4. David Himmelblau,
    Applied Nonlinear Programming,
    McGraw Hill, 1972,
    ISBN13: 978-0070289215,
    LC: T57.8.H55.
  5. Tamara Kolda, Robert Michael Lewis, Virginia Torczon,
    Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods,
    SIAM Review,
    Volume 45, Number 3, 2003, pages 385-482.
  6. Ken McKinnon,
    Convergence of the Nelder-Mead simplex method to a nonstationary point,
    SIAM Journal on Optimization,
    Volume 9, Number 1, 1998, pages 148-158.
  7. Zbigniew Michalewicz,
    Genetic Algorithms + Data Structures = Evolution Programs,
    Third Edition,
    Springer, 1996,
    ISBN: 3-540-60676-9,
    LC: QA76.618.M53.
  8. Jorge More, Burton Garbow, Kenneth Hillstrom,
    Testing unconstrained optimization software,
    ACM Transactions on Mathematical Software,
    Volume 7, Number 1, March 1981, pages 17-41.
  9. Michael Powell,
    An Iterative Method for Finding Stationary Values of a Function of Several Variables,
    Computer Journal,
    Volume 5, 1962, pages 147-151.
  10. Howard Rosenbrock,
    An Automatic Method for Finding the Greatest or Least Value of a Function,
    Computer Journal,
    Volume 3, 1960, pages 175-184.

Source Code:


Last revised on 11 June 2020.