laguerre_polynomial
laguerre_polynomial,
a MATLAB code which
evaluates the Laguerre polynomial, the generalized Laguerre polynomials,
and the Laguerre function.
The Laguerre polynomial L(n,x) can be defined by:
L(n,x) = exp(x)/n! * d^n/dx^n ( exp(-x) * x^n )
where n is a nonnegative integer.
The generalized Laguerre polynomial Lm(n,m,x) can be defined by:
Lm(n,m,x) = exp(x)/(x^m*n!) * d^n/dx^n ( exp(-x) * x^(m+n) )
where n and m are nonnegative integers.
The Laguerre function can be defined by:
Lf(n,alpha,x) = exp(x)/(x^alpha*n!) * d^n/dx^n ( exp(-x) * x^(alpha+n) )
where n is a nonnegative integer and -1.0 < alpha is a real number.
Licensing:
The information on this web page is distributed under the MIT license.
Languages:
laguerre_polynomial is available in
a C version and
a C++ version and
a Fortran77 version and
a Fortran90 version and
a MATLAB version and
an Octave version and
a Python version.
Related Data and Programs:
laguerre_polynomial_test
companion_matrix,
a MATLAB code which
computes the companion matrix for a polynomial.
The polynomial may be represented in the standard monomial basis,
or as a sum of Chebyshev, Gegenbauer, Hermite, Laguerre, or Lagrange
basis polynomials. All the roots of the polynomial can be determined as
the eigenvalues of the corresponding companion matrix.
gen_laguerre_rule,
a MATLAB code which
computes a generalized gauss-laguerre quadrature rule.
laguerre_rule,
a MATLAB code which
can compute and print a gauss-laguerre quadrature rule.
matlab_polynomial,
a MATLAB code which
analyzes a variety of polynomial families, returning the polynomial
values, coefficients, derivatives, integrals, roots, or other information.
polpak,
a MATLAB code which
evaluates a variety of mathematical functions.
polynomial_conversion,
a MATLAB code which
converts representations of a polynomial between monomial, Bernstein,
Chebyshev, Hermite, Lagrange, Laguerre and other forms.
test_values,
a MATLAB code which
supplies test values of various mathematical functions.
Reference:
-
Theodore Chihara,
An Introduction to Orthogonal Polynomials,
Gordon and Breach, 1978,
ISBN: 0677041500,
LC: QA404.5 C44.
-
Walter Gautschi,
Orthogonal Polynomials: Computation and Approximation,
Oxford, 2004,
ISBN: 0-19-850672-4,
LC: QA404.5 G3555.
-
Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
NIST Handbook of Mathematical Functions,
Cambridge University Press, 2010,
ISBN: 978-0521192255,
LC: QA331.N57.
-
Gabor Szego,
Orthogonal Polynomials,
American Mathematical Society, 1992,
ISBN: 0821810235,
LC: QA3.A5.v23.
Source Code:
-
imtqlx.m,
diagonalizes a symmetric tridiagonal matrix.
-
l_exponential_product.m,
exponential product table for L(n,x).
-
l_integral.m,
evaluates a monomial integral associated with L(n,x).
-
l_polynomial.m,
evaluates the Laguerre polynomial L(n,x).
-
l_polynomial_coefficients.m,
coefficients of the Laguerre polynomial L(n,x).
-
l_polynomial_values.m,
some values of the Laguerre polynomial L(n,x).
-
l_polynomial_zeros.m,
zeros of the Laguerre polynomial L(n,x).
-
l_power_product.m,
power product table for L(n,x).
-
l_quadrature_rule.m,
Gauss-Laguerre quadrature based on L(n,x).
-
lf_integral.m,
evaluates a monomial integral associated with Lf(n,alpha,x).
-
lf_function.m,
evaluates the Laguerre function Lf(n,alpha,x).
-
lf_function_values.m,
returns values of the Laguerre function Lf(n,alpha,x).
-
lf_function_zeros.m,
returns the zeros of Lf(n,alpha,x).
-
lf_quadrature_rule.m,
Gauss-Laguerre quadrature rule for Lf(n,alpha,x);
-
lm_integral.m,
evaluates a monomial integral associated with Lm(n,m,x).
-
lm_polynomial.m,
evaluates Laguerre polynomials Lm(n,m,x).
-
lm_polynomial_coefficients.m,
coefficients of Laguerre polynomial Lm(n,m,x).
-
lm_polynomial_values.m,
returns values of Laguerre polynomials Lm(n,m,x).
-
lm_polynomial_zeros.m,
returns the zeros for Lm(n,m,x).
-
lm_quadrature_rule.m,
Gauss-Laguerre quadrature rule for Lm(n,m,x);
-
r8_sign.m,
returns the sign of an R8.
-
r8mat_print.m,
prints an R8MAT.
-
r8mat_print_some.m,
prints some of an R8MAT.
-
r8vec_print.m,
prints an R8VEC.
-
r8vec2_print.m,
prints a pair of R8VEC's.
Last revised on 12 January 2021.