legendre_fast_rule


legendre_fast_rule, a Fortran90 code which implements a fast algorithm for the computation of the points and weights of the Gauss-Legendre quadrature rule.

The standard algorithm for computing the N points and weights of such a rule is by Golub and Welsch. It sets up and solves an eigenvalue problem, whose solution requires work of order N*N.

By contrast, the fast algorithm, by Glaser, Liu and Rokhlin, can compute the same information expending work of order N. For quadrature problems requiring high accuracy, where N might be 100 or more, the fast algorithm provides a significant improvement in speed.

The Gauss-Legendre quadrature rule is designed for the interval [-1,+1].

The Gauss-Legendre quadrature assumes that the integrand has the form:

        Integral ( -1 <= x <= +1 ) f(x) dx
      

The standard Gauss-Legendre quadrature rule is used as follows:

        Integral ( -1 <= x <= +1 ) f(x) dx
      
is to be approximated by
        Sum ( 1 <= i <= order ) w(i) * f(x(i)) 
      

This program allows the user to request that the rule be transformed from the standard interval [-1,+1] to the interval [a,b].

Usage:

legendre_fast_rule n a b
where

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

legendre_fast_rule is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version.

Related Data and Programs:

legendre_fast_rule_test

f90_rule, a Fortran90 code which computes a quadrature rule which estimates the integral of a function f(x), which might be defined over a one dimensional region (a line) or more complex shapes such as a circle, a triangle, a quadrilateral, a polygon, or a higher dimensional region, and which might include an associated weight function w(x).

Reference:

  1. Andreas Glaser, Xiangtao Liu, Vladimir Rokhlin,
    A fast algorithm for the calculation of the roots of special functions,
    SIAM Journal on Scientific Computing,
    Volume 29, Number 4, pages 1420-1438, 2007.

Source Code:


Last revised on 26 July 2020.