hyper_2f1


hyper_2f1, a Fortran77 code which evaluates the hypergeometric functions 2F1(a,b,c;x) for real or parameters a, b, c, and real or complex argument x, by Shanjie Zhang and Jianming Jin.

Licensing:

The Fortran77 source code of this library is copyrighted by Shanjie Zhang and Jianming Jin. However, they give permission to incorporate routines from this library into a user program provided that the copyright is acknowledged.

Languages:

hyper_2f1 is available in a C version and a C++ version and a Fortran77 version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

hyper_2f1_test

special_functions, a Fortran77 library which computes special functions, by Shanjie Zhang, Jianming Jin;

test_values, a Fortran77 code which supplies test values of various mathematical functions, including Abramowitz, AGM, Airy, Bell, Bernoulli, Bessel, Beta, Binomial, Bivariate Normal, Catalan, Cauchy, Chebyshev, Chi Square, Clausen, Clebsch Gordan, Collatz, Cosine integral, Dawson, Debye, Dedekind, dilogarithm, Exponential integral, Elliptic, Error, Euler, Exponential integral, F probability, Fresnel, Frobenius, Gamma, Gegenbauer, Goodwin, Gudermannian, Harmonic, Hermite, Hypergeometric 1F1, Hypergeometric 2F1, inverse trigonometic, Jacobi, Julian Ephemeris Date, Kelvin, Laguerre, Lambert W, Laplace, Legendre, Lerch, Lobachevsky, Lobatto, Logarithmic integral, Log normal, McNugget numbers, Mertens, Mittag-Leffler, Moebius, Multinomial, Negative binomial, Nine J, Normal, Omega, Owen, Partition, Phi, Pi, Poisson, Polylogarithm, Polyomino, Prime, Psi, Rayleigh, Hyperbolic Sine integral, Sigma, Sine Power integral, Sine integral, Six J, Sphere area, Sphere volume, Spherical harmonic, Stirling, Stromgen, Struve, Student, Subfactorial, Student probability, Three J, Transport, Trigamma, Truncated normal, van der Corput, von Mises, Weibull, Wright omega, Zeta.

Reference:

  1. Olde Daalhuis, Adri B. (2010),
    "Hypergeometric function",
    in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.
    Clark, Charles W. (eds.),
    NIST Handbook of Mathematical Functions,
    Cambridge University Press, ISBN 978-0-521-19225-5.
    https://dlmf.nist.gov/15
  2. Shanjie Zhang, Jianming Jin,
    Computation of Special Functions,
    Wiley, 1996,
    ISBN: 0-471-11963-6,
    LC: QA351.C45.

Source Code:


Last revised on 26 December 2023.