rkf45


rkf45, a Python code which implements the Watt and Shampine RKF45 solver for systems of ordinary differential equations (ODE).

The rkf45 ODE solver is a Runge-Kutta-Fehlberg algorithm for solving an ordinary differential equation, with automatic error estimation using rules of order 4 and 5.

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

rkf45 is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

backward_euler, a Python code which solves one or more ordinary differential equations (ODE) using the backward Euler method.

euler, a Python code which solves one or more ordinary differential equations (ODE) using the forward Euler method.

leapfrog, a Python code which uses the leapfrog method to solve a second order ordinary differential equation (ODE) of the form y''=f(t,y).

midpoint, a Python code which solves one or more ordinary differential equations (ODE) using the (implicit) midpoint method.

midpoint_explicit, a Python code which solves one or more ordinary differential equations (ODE) using the (explicit) midpoint method, also called the modified Euler method.

midpoint_fixed, a Python code which solves one or more ordinary differential equations (ODE) using the (implicit) midpoint method, using a simple fixed-point iteration to solve the nonlinear equation.

rk4, a Python code which applies the fourth order Runge-Kutta (RK) algorithm to estimate the solution of an ordinary differential equation (ODE) at the next time step.

trapezoidal, a Python code which solves one or more ordinary differential equations (ODE) using the (implicit) trapezoidal method.

trapezoidal_fixed, a Python code which solves one or more ordinary differential equations (ODE) using the (implicit) trapezoidal method, using a fixed point method to handle the implicit system.

Author:

This Python implementation was written by Peter Monk.

Reference:

  1. Erwin Fehlberg,
    Low-order Classical Runge-Kutta Formulas with Stepsize Control,
    NASA Technical Report R-315, 1969.
  2. Lawrence Shampine, Herman Watts, S Davenport,
    Solving Non-stiff Ordinary Differential Equations - The State of the Art,
    SIAM Review,
    Volume 18, pages 376-411, 1976.
  3. The source code for Shampine and Watt's original FORTRAN77 routine is available at https://www.netlib.org/ode/ the NETLIB ODE web site.

Source Code:


Last revised on 08 May 2012.