legendre_polynomial


legendre_polynomial, an Octave code which evaluates the Legendre polynomial and associated functions.

The Legendre polynomial P(n,x) can be defined by:

        P(0,x) = 1
        P(1,x) = x
        P(n,x) = (2*n-1)/n * x * P(n-1,x) - (n-1)/n * P(n-2,x)
      
where n is a nonnegative integer.

The N zeroes of P(n,x) are the abscissas used for Gauss-Legendre quadrature of the integral of a function F(X) with weight function 1 over the interval [-1,1].

The Legendre polynomials are orthogonal under the inner product defined as integration from -1 to 1:

        Integral ( -1 <= x <= 1 ) P(i,x) * P(j,x) dx 
          = 0 if i =/= j
          = 2 / ( 2*i+1 ) if i = j.
      

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

legendre_polynomial is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Data and Programs:

legendre_polynomial_test

legendre_rule, an Octave code which computes a 1d gauss-legendre quadrature rule.

octave_polynomial, an Octave code which analyzes a variety of polynomial families, returning the polynomial values, coefficients, derivatives, integrals, roots, or other information.

pce_legendre, an Octave code which assembles the system matrix of a 2d stochastic pde, using a polynomal chaos expansion in terms of legendre polynomials;

polpak, an Octave code which evaluates a variety of mathematical functions.

test_values, an Octave code which supplies test values of various mathematical functions.

Reference:

  1. Theodore Chihara,
    An Introduction to Orthogonal Polynomials,
    Gordon and Breach, 1978,
    ISBN: 0677041500,
    LC: QA404.5 C44.
  2. Walter Gautschi,
    Orthogonal Polynomials: Computation and Approximation,
    Oxford, 2004,
    ISBN: 0-19-850672-4,
    LC: QA404.5 G3555.
  3. Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
    NIST Handbook of Mathematical Functions,
    Cambridge University Press, 2010,
    ISBN: 978-0521192255,
    LC: QA331.N57.
  4. Gabor Szego,
    Orthogonal Polynomials,
    American Mathematical Society, 1992,
    ISBN: 0821810235,
    LC: QA3.A5.v23.

Source Code:


Last revised on 12 January 2021.