laguerre_polynomial
    
    
    
      laguerre_polynomial,
      an Octave code which
      evaluates the Laguerre polynomial, the generalized Laguerre polynomials,
      and the Laguerre function.
    
    
      The Laguerre polynomial L(n,x) can be defined by:
      
        L(n,x) = exp(x)/n! * d^n/dx^n ( exp(-x) * x^n )
      
      where n is a nonnegative integer.
    
    
      The generalized Laguerre polynomial Lm(n,m,x) can be defined by:
      
        Lm(n,m,x) = exp(x)/(x^m*n!) * d^n/dx^n ( exp(-x) * x^(m+n) )
      
      where n and m are nonnegative integers.
    
    
      The Laguerre function can be defined by:
      
        Lf(n,alpha,x) = exp(x)/(x^alpha*n!) * d^n/dx^n ( exp(-x) * x^(alpha+n) )
      
      where n is a nonnegative integer and -1.0 < alpha is a real number.
    
    
      Licensing:
    
    
      The information on this web page is distributed under the MIT license.
    
    
      Languages:
    
    
      laguerre_polynomial is available in
      a C version and
      a C++ version and
      a Fortran77 version and
      a Fortran90 version and
      a MATLAB version and
      an Octave version and
      a Python version.
    
    
      Related Data and Programs:
    
    
      
      laguerre_polynomial_test
    
    
      
      companion_matrix,
      an Octave code which
      computes the companion matrix for a polynomial.
      The polynomial may be represented in the standard monomial basis,
      or as a sum of Chebyshev, Gegenbauer, Hermite, Laguerre, or Lagrange
      basis polynomials.  All the roots of the polynomial can be determined as 
      the eigenvalues of the corresponding companion matrix.
    
    
      
      gen_laguerre_rule,
      an Octave code which
      computes and prints a generalized Gauss-Laguerre quadrature rule.
    
    
      
      octave_polynomial,
      an Octave code which
      analyzes a variety of polynomial families, returning the polynomial
      values, coefficients, derivatives, integrals, roots, or other information.
    
    
      
      polpak,
      an Octave code which
      evaluates a variety of mathematical functions.
    
    
      
      polynomial_conversion,
      an Octave code which
      converts representations of a polynomial between monomial, Bernstein,
      Chebyshev, Hermite, Lagrange, Laguerre and other forms.
    
    
      
      test_values,
      an Octave code which
      supplies test values of various mathematical functions.
    
    
      Reference:
    
    
      
        - 
          Theodore Chihara,
          An Introduction to Orthogonal Polynomials,
          Gordon and Breach, 1978,
          ISBN: 0677041500,
          LC: QA404.5 C44.
         
        - 
          Walter Gautschi,
          Orthogonal Polynomials: Computation and Approximation,
          Oxford, 2004,
          ISBN: 0-19-850672-4,
          LC: QA404.5 G3555.
         
        - 
          Frank Olver, Daniel Lozier, Ronald Boisvert, Charles Clark,
          NIST Handbook of Mathematical Functions,
          Cambridge University Press, 2010,
          ISBN: 978-0521192255,
          LC: QA331.N57.
         
        - 
          Gabor Szego,
          Orthogonal Polynomials,
          American Mathematical Society, 1992,
          ISBN: 0821810235,
          LC: QA3.A5.v23.
         
      
    
    
      Source Code:
    
    
      
        - 
          imtqlx.m,
          diagonalizes a symmetric tridiagonal matrix.
        
 
        - 
          l_exponential_product.m,
          exponential product table for L(n,x).
        
 
        - 
          l_integral.m,
          evaluates a monomial integral associated with L(n,x).
        
 
        - 
          l_polynomial.m,
          evaluates the Laguerre polynomial L(n,x).
        
 
        - 
          l_polynomial_coefficients.m,
          coefficients of the Laguerre polynomial L(n,x).
        
 
        - 
          l_polynomial_values.m,
          some values of the Laguerre polynomial L(n,x).
        
 
        - 
          l_polynomial_zeros.m,
          zeros of the Laguerre polynomial L(n,x).
        
 
        - 
          l_power_product.m,
          power product table for L(n,x).
        
 
        - 
          l_quadrature_rule.m,
          Gauss-Laguerre quadrature based on L(n,x).
        
 
        - 
          lf_integral.m,
          evaluates a monomial integral associated with Lf(n,alpha,x).
        
 
        - 
          lf_function.m,
          evaluates the Laguerre function Lf(n,alpha,x).
        
 
        - 
          lf_function_values.m,
          returns values of the Laguerre function Lf(n,alpha,x).
        
 
        - 
          lf_function_zeros.m,
          returns the zeros of Lf(n,alpha,x).
        
 
        - 
          lf_quadrature_rule.m,
          Gauss-Laguerre quadrature rule for Lf(n,alpha,x);
        
 
        - 
          lm_integral.m,
          evaluates a monomial integral associated with Lm(n,m,x).
        
 
        - 
          lm_polynomial.m,
          evaluates Laguerre polynomials Lm(n,m,x).
        
 
        - 
          lm_polynomial_coefficients.m,
          coefficients of Laguerre polynomial Lm(n,m,x).
        
 
        - 
          lm_polynomial_values.m,
          returns values of Laguerre polynomials Lm(n,m,x).
        
 
        - 
          lm_polynomial_zeros.m,
          returns the zeros for Lm(n,m,x).
        
 
        - 
          lm_quadrature_rule.m,
          Gauss-Laguerre quadrature rule for Lm(n,m,x);
        
 
        - 
          r8_sign.m,
          returns the sign of an R8.
        
 
        - 
          r8mat_print.m,
          prints an R8MAT.
        
 
        - 
          r8mat_print_some.m,
          prints some of an R8MAT.
        
 
        - 
          r8vec_print.m,
          prints an R8VEC.
        
 
        - 
          r8vec2_print.m,
          prints a pair of R8VEC's.
        
 
      
    
    
    
      Last revised on 12 January 2021.