toms358


toms358, a Fortran90 code which implements ACM TOMS algorithm 358, which computes the singular value decomposition of a complex matrix. The conversion to Fortran90 was carried out by Aleksander Schwarzenberg-Czerny.

The text of many ACM TOMS algorithms is available online through ACM: https://calgo.acm.org/ or NETLIB: https://www.netlib.org/toms/index.html.

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

toms358 is available in a Fortran77 version and a Fortran90 version.

Related Data and Programs:

toms358_test

lapack_test, a Fortran90 code which demonstrates the use of the LAPACK linear algebra library.

svd_basis, a Fortran90 code which computes a reduced basis for a collection of data vectors using the SVD.

toms581, a Fortran77 code which implements an improved algorithm for computing the singular value decomposition (SVD) of a rectangular matrix; this is ACM TOMS algorithm 581, by Tony Chan.

Reference:

  1. Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, James Demmel, Jack Dongarra, Jeremy DuCroz, Anne Greenbaum, Sven Hammarling, Alan McKenney, Danny Sorensen,
    LAPACK User's Guide,
    Third Edition,
    SIAM, 1999,
    ISBN: 0898714478,
    LC: QA76.73.F25L36.
  2. Peter Businger, Gene Golub,
    Algorithm 358: Singular Value Decomposition of a Complex Matrix,
    Communications of the ACM,
    Volume 12, Number 10, October 1969, pages 564-565.
  3. Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
    LINPACK User's Guide,
    SIAM, 1979,
    ISBN13: 978-0-898711-72-1,
    LC: QA214.L56.
  4. Gene Golub, Charles VanLoan,
    Matrix Computations, Third Edition,
    Johns Hopkins, 1996,
    ISBN: 0-8018-4513-X,
    LC: QA188.G65.
  5. Lloyd Trefethen, David Bau,
    Numerical Linear Algebra,
    SIAM, 1997,
    ISBN: 0-89871-361-7,
    LC: QA184.T74.

Source Code:


Last revised on 13 March 2021.