burgers_solution


burgers_solution, a FORTRAN90 code which evaluates exact solutions of the time-dependent 1D viscous Burgers equation.

The form of the Burgers equation considered here is:

        du       du        d^2 u
        -- + u * -- = nu * -----
        dt       dx        dx^2
      
for -1.0 < x < +1.0, and 0.0 < t.

Licensing:

The computer code and data files described and made available on this web page are distributed under the MIT license

Languages:

burgers_solution is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version and a Python version.

Related Data and Programs:

BURGERS, a dataset directory which contains 40 solutions of the Burgers equation in one space dimension and time, at equally spaced times from 0 to 1, with values at 41 equally spaced nodes in [0,1];

burgers_solution_test

FD1D_BURGERS_LAX, a FORTRAN90 code which applies the finite difference method and the Lax-Wendroff method to solve the non-viscous Burgers equation in one spatial dimension and time.

FD1D_BURGERS_LEAP, a FORTRAN90 code which applies the finite difference method and the leapfrog approach to solve the non-viscous Burgers equation in one spatial dimension and time.

Reference:

  1. Claude Basdevant, Michel Deville, Pierre Haldenwang, J Lacroix, J Ouazzani, Roger Peyret, Paolo Orlandi, Anthony Patera,
    Spectral and finite difference solutions of the Burgers equation,
    Computers and Fluids,
    Volume 14, Number 1, 1986, pages 23-41.

Source Code:


Last revised on 03 September 2021.