nonlinear_secant
nonlinear_secant,
demonstrates how a root of a function f(x) can be approximated using
the secant method.
The notes:
Scripts and functions:
-
cubic.m,
evaluates the cubic function.
-
cubic_secant.m,
uses secant() to find a zero of cubic().
-
cubic_secant2.m,
uses secant2() to find a zero of cubic().
-
hump.m,
evaluates the hump function.
-
hump_secant.m,
uses secant() to find a zero of hump().
-
hump_secant2.m,
uses secant2() to find a zero of hump().
-
kepler.m,
evaluates the Kepler function.
-
kepler_secant.m,
uses secant() to find a zero of kepler().
-
kepler_secant2.m,
uses secant2() to find a zero of kepler().
-
lambert.m,
evaluates the Lambert function.
-
lambert_secant.m,
uses secant() to find a zero of lambert().
-
lambert_secant2.m,
uses secant2() to find a zero of lambert().
-
plots.m
-
quadratic.m,
evaluates the quadratic function.
-
quadratic_secant.m,
uses secant() to find a zero of quadratic().
-
quadratic_secant2.m,
uses secant2() to find a zero of quadratic().
-
secant.m,
seeks a root of a function using the secant method.
-
secant2.m,
seeks a root of a function using the secant method,
and estimates the rate of convergence.
-
trig.m,
evaluates the trig function.
-
trig_secant.m,
uses secant() to find a zero of trig().
-
trig_secant2.m,
uses secant2() to find a zero of trig().
-
wiggle.m,
evaluates the wiggle function.
-
wiggle_secant.m,
uses secant() to find a zero of wiggle().
-
wiggle_secant2.m,
uses secant2() to find a zero of wiggle().
Text:
Images:
Last revised on 17 September 2019.