
Nonlinear equations:
The secant method

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/nonlinear secant/nonlinear secant.pdf

Use two samples to guess where a function crosses the x axis

Rootfinding (Secant version)

Given a function f(x) and two estimates for the root, use a linear model to predict a better root.

The bisection and regula falsi methods start and stay within a change-of-sign interval. This has the advantage
of a guaranteed bracketing of the solution, but requires the user to supply such an interval at the beginning,
and costs a certain amount of internal bookkeeping from step to step.

The secant method drops the change-of-sign requirement, resulting in simpler code, and faster convergence
when the initial estimates are close to a root.

1 The secant method is a linear model for f(x)

For a given function f(x) whose root we are seeking, suppose we have two sample data points, (a,f(a))
and (b,f(b)). Then the linear function that matches this data has the form:

y(x) =
f(a) (b− x) + f(b) (x− a)

b− a

If this linear function is a good model for f(x) locally, then we can estimate the root of f(x) by computing
the root of y(x):

c =
f(a) b− f(b) a

f(a)− f(b)

If our new root estimate is not good enough, we can update our data by a ← b and b ← c and apply a
new secant prediction. As the root estimates get better, the linear model approximates f(x) better, and
convergence may be expected to accelerate.

1

2 MATLAB code for a secant method

Compared to the codes for bisection and regula falsi, the code for the secant method should seem very
similar, but also simpler:

1 function b = secant (f , a , b , xto l , f t o l , itmax)
2
3 i t = 0 ;
4
5 while (t rue)
6 i t = i t + 1 ;
7 c = (a ∗ f (b) − b ∗ f (a)) / (f (b) − f (a)) ;
8 alpha = abs (c − b) / abs (b − a) ;
9 a = b ;

10 b = c ;
11 i f (abs (f (b)) <= f t o l && abs (a − b) <= x t o l)
12 return
13 end
14 i f (itmax <= i t)
15 return ;
16 end
17 end
18
19 return
20 end

Listing 1: secant.m

Because we no longer insist on a change of sign interval, we cannot guarantee that the new estimate c will
be be between the old estimates a and b. We cannot guarantee that it will be closer to the root. In fact, in
severe cases, the new estimate can be arbitrarily further away, even infinitely so.

3 Example: Secant method for the quadratic equation

1 a = 1 . 0 ;
2 b = 2 . 0 ;
3 x t o l = 0 .000001 ;
4 f t o l = 0 .000001 ;
5 itmax = 50 ;
6
7 [a , b , i t] = secant (@(x) quadrat i c (x) , a , b , xto l , f t o l , itmax) ;

Listing 2: quadratic secant.m

The convergence is significantly faster than we saw for the bisection method:

x = estimated root f(x)

------------------ ---------------------

a 0.0 5.0

b 10.0 -6.08804

1 4.509362338266694 -1.468283915902688

2 2.764289450683286 2.972539956436820

3 3.932383262632530 -0.354202296279007

4 3.808014892908678 -0.044370277430026

5 3.790204406153088 0.001634270584124

6 3.790837107828249 -6.618464845509209e-06

7 3.790834555849615 -9.719784976880419e-10

8 3.790834555474779 1.110223024625157e-15

2

In this example, our two initial points formed a change of sign interval for f(x). We could have chosen
starting points for which this was not true. The most important thing is that the starting points are close
to the root, so that a linear approximation to the function is reasonable.

4 Estimating the rate of convergence

Suppose that a function f(x) has a root x∗, and that an iterative solution method produces a sequence xi
to this root. Define Ei to be the corresponding sequence of errors,

Ei = |xi − x∗|

The method is said to have a convergence rate r if it is the case that

lim
i→∞

Ei

(Ei−1)r
= C

for some finite nonzero constant C.

For the bisection method, we can take Ei to be simply the width of the change-of-sign interval, and with
this view, we have that bisection has a linear rate of convergence (r = 1) with constant C = 1

2 . The value
of r is of much more interest than the value of C.

While determining a convergence rate is a mathematical task, we are naturally interested in a way to
computationally estimate r. When we are converging, we can approximate

Ei =C Er
i−1

Ei−1 =C Er
i−2

and hence
Ei

Ei−1
= (

Ei−1

Ei−2
)r

from which we can solve for r:

r =
log Ei

Ei−1

log Ei−1

Ei−2

Computationally, we can estimate Ei by xi − xi−1. But since we already compute the quantity αi =
|xi−xi−1|
|xi−1−xi−2| we can make the following approximation to the convergence rate:

r ≈ log(αi)

log(αi−1)

Making this calculation requires a few small modifications:

1 alpha = 0 . 0 ;
2 while (t rue)
3 i t = i t + 1 ;
4 c = (a ∗ f (b) − b ∗ f (a)) / (f (b) − f (a)) ;
5 a lpha o ld = alpha ;
6 alpha = abs (c − b) / abs (b − a) ;
7 i f (0 < a lpha o ld)
8 r = log (alpha) / log (a lpha o ld) ;
9 fprintf (’ Estimated convergence ra t e = %g\n ’ , r) ;

10 end

Listing 3: extract from secant2.m

3

Here are the sequence of convergence rate estimates that were computed during the treatment of the quadratic
function:

it alpha log(alpha) estimated r

-- ----------- ---------- -----------

1 0.666667 -0.405465 ------

2 0.100000 -2.30259 5.6789

3 0.219512 -1.51635 0.658541

4 0.028885 -3.54443 2.33748

5 0.00502376 -5.29358 1.49349

6 0.000148699 -8.81359 1.66496

The secant method seems to be converging at a rate between linear (r=1) and quadratic (r=2). Such behavior

is termed superlinear convergence. The secant method generally has a convergence rate of 1+
√
5

2 ≈ 1.618 and
so our estimates towards the end of our iteration are actually quite reasonable.

The convergence rate does not guarantee that the method will converge, only that, if it does converge, then
mathematically the behavior of the sequence of iterates will tend to this limiting pattern. This is called an
asymptotic limit. So when the secant method works, it works significantly better than the bisection method,
whose convergence rate is r = 1.

If we look at the entire sequence of estimates for r, then it is likely the early ones are poor estimates, because
at that time, α is not a great estimate of the error. In the middle of the sequence, we may hope to see
estimated convergence rates near 1.6, but if we take many iterations, the last few steps may be affected by
roundoff error, and the corresponding values of r may break the pattern.

5 Class exercise: A scorecard for the secant method

To get a feeling for what can happen, let’s try the secant method on some test problems, printing the number
of iterations it, and the first and last estimates for the convergence rate r.
Each student should pick a function. Download copies of secant2.m and your function to your MATLAB
directory. Then issue a command like

1 [a , b , i t] = secant2 (@(x) f (x) , a , b , xto l , f t o l , itmax)

where you want to replace:

• f(x) by your function;
• a and b by two starting values, between 0 and 10;
• xtol and ftol by small toleranced, say 0.000001 each;
• itmax by an iteration limit, say 50;

Then run the program. If it fails to converge, try using a different pair of starting values a and b. Once you
get convergence, please record the initial values of a and b, the number of iterations it, and the final value
of r, the estimated convergence rate.

function a b it estimated r
cubic()
hump()
kepler()
lambert()
quadratic()
trig()
wiggle()

4

Unlike the bisection method, which ruthless approaches the root, the secant iteration can diverge, especially
if the starting points are far away from the root, or if the function has oscillations or the derivative is zero
near the starting points. However, if the method is successful, we expect to see a convergence rate near 1.6.

6 Rate of convergence for fixed point

The convergence rate of a fixed point method can also be computed. Here is pseudocode for a fixed point
function, arranged to look as much as possible like the other codes we have been using. In particular, the
pseudocode computes the values of alpha and alpha old so that it can estimate the convergence exponent
r.

I want you to use this pseudocode to create a MATLAB function that solves fixed point problems, and apply
it to several test cases. You will save a lot of time by starting with a code such as secant2.m and making
the necessary modifications.

1 function x = fixed point (f, g, x, xtol, ftol, itmax)
2
3 i t <−− 0
4 xold <−− 0
5 o ld <−− 0
6 new <−− 0
7 alpha <– 0
8
9 Loop

10
11 i t <−− i t + 1
12 xold <−− x
13 x <−− g (x)
14 o ld <−− new
15 new <−− abs (x − xold)
16
17 alpha old <– alpha
18
19 if old is not 0, THEN
20 alpha <– new / old
21 if alpha old is not 0 THEN
22 r <– log (alpha) / log (alpha old);
23 print r
24
25 i f new <= x t o l and | f (x) | <= f t o l , break from loop with s u c c e s s
26 i f i t > itmax , break from loop with f a i l u r e
27
28 End loop
29
30 Pr int x , f (x)

Listing 4: extract from fixed point2 pseudocode.txt

7 Calling your fixed point code

Briefly, once you have written your fixed point code, you can test it with commands like:

1 x <−− Your s t a r t i n g po int
2 x t o l <−− Your x t o l e r a n c e
3 f t o l <−− Your f t o l e r a n c e
4 itmax <−− Maximum i t e r a t i o n s
5 x = f i x e d p o i n t (@(x) f 1 (x) , @(x) g1 (x) , x , xto l , f t o l , itmax) ;

5

where you have written function files f1.m and g1.m for the first case, and similarly f2.m and g2.m for the
second case.

When you run your code, you want to note the solution and the final convergence rate estimate.

8 Assignment #4: Rate of convergence for fixed point

Using the pseudocode above as a guide, write a file fixed point.m that can solve a general fixed point problem
for a root of f(x) = 0 using the iteration x = g(x).

Consider the following two problems:

1. f1(x) = x3/8− x2 + x+ 1 = 0 with g1(x) = x3/8− x2 + 2x+ 1 and starting x = 1.75;

2. f2(x) = −x3 + 5x2 − 4x− 6 = 0 with g2(x) = −x3 + 5x2 − 3x− 6 and starting x = 2.75;

For each problem, prepare the appropriate input, and then call your fixed point code for a solution. For
both problems, note answers to the following questions:

1. What is the solution x?

2. What is your (final) estimate for the rate of convergence r?

3. Can you explain why one problem has a significantly higher rate of convergence? In class, the derivative
of g(x) was discussed.

Turn in: your file fixed point.m and your answers to the questions, by Friday, September 20.

6

