SPHERE_FIBONACCI_GRID
Fibonacci Spiral Grid on a Sphere


SPHERE_FIBONACCI_GRID is a Python library which constructs a grid of points using the Fibonacci spiral over the surface of a sphere in 3D.

Licensing:

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages:

SPHERE_FIBONACCI_GRID is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version and a Python version.

Related Data and Programs:

BALL_GRID, a Python library which computes a grid of points over the interior of a ball in 3D.

CIRCLE_ARC_GRID, a Python program which computes points equally spaced along a circular arc;

CUBE_GRID, a Python library which computes a grid of points over the interior of a cube in 3D.

DISK_GRID, a Python library which computes a grid of points over the interior of a disk in 2D.

ELLIPSE_GRID, a Python library which computes a grid of points over the interior of an ellipse in 2D.

ELLIPSOID_GRID, a Python library which computes a grid of points over the interior of an ellipsoid in 3D.

HYPERCUBE_GRID, a Python library which computes a grid of points over the interior of a hypercube in M dimensions.

LINE_GRID, a Python library which computes a grid of points over the interior of a line segment in 1D.

POLYGON_GRID, a Python library which generates a grid of points over the interior of a polygon in 2D.

PYRAMID_GRID, a Python library which computes a grid of points over the interior of the unit pyramid in 3D;

SIMPLEX_GRID, a Python library which generates a grid of points over the interior of a simplex in M dimensions.

SPHERE_INTEGRALS, a Python library which returns the exact value of the integral of any monomial over the surface of the unit sphere in 3D.

SPHERE_LLQ_GRID, a Python library which computes a grid of quadrilaterals bounded by latitude and longitude lines over the surface of a sphere in 3D.

SPHERE_LLT_GRID, a Python library which uses longitudes and latitudes to create grids of points, lines, and triangles on the surface of the unit sphere in 3D.

SPHERE_MONTE_CARLO, a Python library which applies a Monte Carlo method to estimate the integral of a function on the surface of the unit sphere in 3D;

SQUARE_GRID, a Python library which computes a grid of points over the interior of a square in 2D.

TETRAHEDRON_GRID, a Python library which computes a grid of points over the interior of a tetrahedron in 3D.

TRIANGLE_GRID, a Python library which computes a grid of points over the interior of a triangle in 2D.

WEDGE_GRID, a Python library which computes a grid of points over the interior of the unit wedge in 3D.

Reference:

  1. Edward Saff, Arno Kuijlaars,
    Distributing Many Points on a Sphere,
    The Mathematical Intelligencer,
    Volume 19, Number 1, 1997, pages 5-11.
  2. Richard Swinbank, James Purser,
    Fibonacci grids: A novel approach to global modelling,
    Quarterly Journal of the Royal Meteorological Society,
    Volume 132, Number 619, July 2006 Part B, pages 1769-1793.

Source Code:

Examples and Tests:

You can go up one level to the Python source codes.


Last revised on 21 May 2015.