LATIN_RANDOM
Latin Random Squares in M dimensions


LATIN_RANDOM is a FORTRAN90 library which makes Latin random squares.

A Latin square is a selection of one point from each row and column of a square matrix or table. In M dimensions, the corresponding item is a set of N points, where, in each dimension, there is exactly one point whose coordinates are in a given "column" or range of values. To emphasize the use of higher dimensions, these objects are sometimes called Latin hypersquares.

A Latin Random Square (I just made up this name) is a set of N points, where one point is taken at random from each of the subsquares of a Latin Square. These points may be regarded as an M dimensional quasirandom pointset.

Licensing:

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages:

LATIN_RANDOM is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version and a Python version.

Related Data and Programs:

CVT, a FORTRAN90 library which computes elements of a Centroidal Voronoi Tessellation.

FAURE, a FORTRAN90 library which computes elements of a Faure quasirandom sequence.

HALTON, a FORTRAN90 library which computes elements of a Halton Quasi Monte Carlo (QMC) sequence, using a simple interface.

HAMMERSLEY, a FORTRAN90 library which computes elements of a Hammersley Quasi Monte Carlo (QMC) sequence, using a simple interface.

HEX_GRID, a FORTRAN90 library which computes elements of a hexagonal grid dataset.

HEX_GRID_ANGLE, a FORTRAN90 library which computes elements of an angled hexagonal grid dataset.

IEEE_UNIFORM_SAMPLE, a FORTRAN90 library which tries to uniformly sample the discrete set of values that represent the legal IEEE real numbers;

IHS, a FORTRAN90 library which computes elements of an improved distributed Latin hypercube dataset.

LATIN_CENTER, a FORTRAN90 library which computes elements of a Latin Hypercube dataset, choosing center points.

LATIN_COVER, a FORTRAN90 library which produces N Latin squares which cover an NxN square, or NxN Latin cubes which cover an NxNxN cube.

LATIN_EDGE, a FORTRAN90 library which computes elements of a Latin Hypercube dataset, choosing edge points.

LATIN_RANDOM, a dataset directory which contains a number of examples of datasets created by LATIN_RANDOM.

LATIN_RANDOM_DATASET, a FORTRAN90 program which creates a Latin Random Hypercube dataset;

LATTICE_RULE, a FORTRAN90 library which approximates multidimensional integrals using lattice rules.

LCVT, a FORTRAN90 library which computes a latinized Centroidal Voronoi Tessellation.

NIEDERREITER2, a FORTRAN90 library which computes elements of a Niederreiter quasirandom sequence with base 2.

NORMAL, a FORTRAN90 library which computes elements of a sequence of pseudorandom normally distributed values.

SOBOL, a FORTRAN90 library which computes elements of a Sobol quasirandom sequence.

UNIFORM, a FORTRAN90 library which computes elements of a uniform pseudorandom sequence.

VAN_DER_CORPUT, a FORTRAN90 library which computes elements of a van der Corput quasirandom sequence.

Reference:

  1. Paul Bratley, Bennett Fox, Linus Schrage,
    A Guide to Simulation,
    Springer Verlag, pages 201-202, 1983.
  2. C J Colbourn and J H Dinitz,
    CRC Handbook of Combinatorial Design,
    CRC, 1996.
  3. Bennett Fox,
    Algorithm 647:
    Implementation and Relative Efficiency of Quasirandom Sequence Generators,
    ACM Transactions on Mathematical Software,
    Volume 12, Number 4, pages 362-376, 1986.
  4. Michael McKay, William Conover, Richard Beckman,
    A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,
    Technometrics,
    Volume 21, pages 239-245, 1979.
  5. Albert Nijenhuis, Herbert Wilf,
    Combinatorial Algorithms,
    Academic Press, 1978, second edition,
    ISBN 0-12-519260-6.
  6. Herbert Ryser,
    Combinatorial Mathematics,
    Mathematical Association of America, 1963.

Source Code:

Examples and Tests:

List of Routines:

You can go up one level to the FORTRAN90 source codes.


Last revised on 14 November 2014.