# CUBE_EXACTNESS Exactness of 3D Quadrature Rules

CUBE_EXACTNESS is a FORTRAN90 library which investigates the polynomial exactness of quadrature rules over the interior of a cube in 3D.

We assume that the integral to be approximated is of a Legendre type, over a rectangular region:

```        I(f) = integral ( z1 <= z <= z2 )
integral ( y1 <= y <= y2 )
integral ( x1 <= x <= x2 ) f(x,y,z) dx dy dz
```
and that such integrals are to be approximated by:
```        Q(f) = sum ( 1 <= i <= N ) w(i) * f(x(i),y(i),z(i))
```

To determine the exactness of a given quadrature rule, we simply compare the exact integral I(f) to the estimated integral Q(f) for a sequence of monomials of increasing total degree D. This sequence begins with:

```        D = 0:  1
D = 1:  x    y     z
D = 2:  x^2  xy    xz    y^2   yz   z^2
D = 3:  x^3  x^2y  x^2z  xy^2  xyz  xz^2  y^3  y^2z  yz^2  z^3
```
and the exactness of a quadrature rule is defined as the largest value of D such that I(f) and Q(f) are equal for all monomials up to and including those of total degree D.

Note that if the 3D quadrature rule is formed as a product of two 1D rules, then knowledge of the 1D exactness of the individual factors gives sufficient information to determine the exactness of the product rule, which will simply be the minimum of the exactnesses of the three factor rules.

### Languages:

CUBE_EXACTNESS is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version.

### Related Data and Programs:

CUBE_FELIPPA_RULE, a FORTRAN90 library which returns the points and weights of a Felippa quadrature rule over the interior of a cube in 3D.

CUBE_GRID, a FORTRAN90 library which computes a grid of points over the interior of a cube in 3D.

EXACTNESS, a FORTRAN90 library which investigates the exactness of quadrature rules that estimate the integral of a function with a density, such as 1, exp(-x) or exp(-x^2), over an interval such as [-1,+1], [0,+oo) or (-oo,+oo).

HYPERCUBE_EXACTNESS, a FORTRAN90 program which measures the monomial exactness of an M-dimensional quadrature rule over the interior of the unit hypercube in M dimensions.

PYRAMID_EXACTNESS, a FORTRAN90 program which investigates the monomial exactness of a quadrature rule over the interior of a pyramid in 3D.

SPHERE_EXACTNESS, a FORTRAN90 program which tests the monomial exactness of a quadrature rule on the surface of the unit sphere in 3D.

SQUARE_EXACTNESS, a FORTRAN90 library which investigates the polynomial exactness of quadrature rules for f(x,y) over the interior of a rectangle in 2D.

TETRAHEDRON_EXACTNESS, a FORTRAN90 program which investigates the monomial exactness of a quadrature rule over the interior of a tetrahedron in 3D.

TRIANGLE_EXACTNESS, a FORTRAN90 program which investigates the monomial exactness quadrature rule over the interior of a triangle in 2D.

WEDGE_EXACTNESS, a FORTRAN90 program which investigates the monomial exactness of a quadrature rule over the interior of the unit wedge in 3D.

### Reference:

1. Philip Davis, Philip Rabinowitz,
Methods of Numerical Integration,
Second Edition,
Dover, 2007,
ISBN: 0486453391,
LC: QA299.3.D28.

### List of Routines:

• LEGENDRE_3D_EXACTNESS: monomial exactness for the 3D Legendre integral.
• LEGENDRE_3D_MONOMIAL_INTEGRAL the Legendre integral of a monomial.
• R8VEC_PRINT prints an R8VEC.
• R8VEC2_PRINT prints an R8VEC2.
• TIMESTAMP prints the current YMDHMS date as a time stamp.

You can go up one level to the FORTRAN90 source codes.

Last revised on 15 August 2014.