Primitive Paths using Geometrical and Annealing Methods

Sachin Shanbhag and Martin Kroger

School of Computational Science, Florida State University Department of Materials, ETH Zurich

SoR Meeting, Oct 2007

Primitive Path

Primitive Path

Length of the primitive path is shorter than the length of the polymer chain

Primitive Paths in Entangled Polymer Melts

- Polymer chains themselves form obstacles for other chains
- Obstacles/constraints are "mobile"
- Recently "annealing" method to obtain the primitive path network

Annealing to get Primitive Path Network

- Switch-off intra-chain excluded volume (keep inter-chain EV)
- Decrease the system temperature gradually

Tension in the chains gradually increases and they shrink to their primitive paths

Why is this so exciting?

lattice models

molecular dynamics

we can now extract the primitive path network from these microscopic simulations

tube model

slip-link models

the primitive path network forms a basic ingredient of these successful coarse-grained models

Different Methods to get Primitive Paths

(1) The original annealing algorithm (Everaers et al., 2004)

(2) Lattice-based modified annealing algorithm (Shanbhag and Larson, 2005)

(3) Z-code - shortest multiple disconnected path (Kroger, 2005)

(4) CReTA - contour reduction topological analysis (Tzoumanekas and Theodorou, 2006)

All these methods seek to minimize the total contour length, while preserving "physically relevant" obstacles

ANNEALING

GEOMETRICAL

Different Methods to get Primitive Paths

(1) The original annealing algorithm (1000 centiseconds/particle)

(2) Lattice-based modified annealing algorithm (100 centiseconds/particle)

(3) Z-code - shortest multiple disconnected path (1 centiseconds/particle)

(4) CReTA - contour reduction topological analysis (10 centiseconds/particle)

In general, geometrical methods are cheaper

Different Methods to get Primitive Paths

(1) The original annealing algorithm (1000 centiseconds/particle)

(2) Lattice-based modified annealing algorithm (100 centiseconds/particle)

(3) Z-code - shortest multiple disconnected path (1 centiseconds/particle)

(4) CReTA - contour reduction topological analysis (10 centiseconds/particle)

Apply these different methods to the same set of equilibrated samples

Movie (Equilibration)

Shanbhag and Larson, *PRL*, **2005** Shaffer, *J. Chem Phys.*, **1994**

Annealing

Procedure

1. Equilibrate N_p chains, N beads/chain in a box of $L_{box}^*L_{box}^*L_{box}$ using BFM

Ν	N _p	L _{box}
10	400	20
32	125	20
75	180	30
125	364	45
300	277	55
500	216	60

System Parameters

f = 0.5; A≈16; t_{anneal} ≈5 t_{Rouse} Crossing: <**P**(t)> < 0.3 No Crossing: <**P**(t)> <0.05

A -> infinity, annealing approaches quenching

0.2

0.4

t∕tau anneal

0

0.6

0.8

Movie (Annealing)

Shanbhag and Larson, *PRL*, **2005** Shaffer, *J. Chem Phys.*, **1994**

Geometrical Method: Z-code

Computation time = 1 s (Kroger, 2005)

Since network A is on a lattice, while network Z is off-lattice: we expect <LppA> to be greater than <LppZ>

Results...

A (red); Z (green); A->Z (blue)

N=300; Lpp(t=0)=421; representative sample

N=300; *Lpp*(*t*=0)=421; representative sample

Some entanglements lost during annealing are preserved during quenching

N=300; Lpp(t=0)=421; representative sample

How are entanglements lost during annealing?

Needs chain slack and chain ends

out-of-secant area disentanglement

Zhou and Larson, 2006 Shanbhag and Kroger, 2007

End Looping

Zhou and Larson, 2006 Shanbhag and Kroger, 2007

Rings: Prevent CR-EL by design

7.7% difference persists

N=190; Lpp(t=0)=210

For rings beads 1 and N, were immobilized (like linears)

Limiting equivalence: Quenching and Z

Quenching: T=0, or A -> infinity

Quenching:

 $F_{i} = k(u_{i} - u_{i-1}) + F_{EV}$ If $F_{EV} = 0$, then $dr_{i}/dt = (k/\zeta) (u_{i} - u_{i-1}) = (2k/\zeta) (r_{cm} - r_{i})$

Limiting equivalence: Quenching and Z

Quenching:

If $\mathbf{F}_{EV}(\mathbf{r})$, is point-like and radially symmetric, with obstacle at \mathbf{r}

 $d\mathbf{r}_{i}/dt = (2k/\zeta) (\mathbf{r}_{cm} - \mathbf{r}_{i}) + \mathbf{F}_{EV}(|\mathbf{r}_{i}-\mathbf{r}|)$

Stationary solution ${\bm r}_i$ is a point close to ${\bm r},$ that is attached to ${\bm r}_{\rm cm}$ by a spring

Limiting equivalence: Quenching and Z

If the size of the beads is decreased, during quenching, while maintaining the ratio of the bead size to the spring length (to prevent crossing) Z and quenching algorithms become almost identical.

Summary

- 1. Annealing and Geometrical methods compared
- 2. $Lpp(A \rightarrow Z) < Lpp(Z) < Lpp(A)$
- 3. About 15% difference between Lpp(A->Z) and Lpp(Z), due to loss of entanglements during annealing
- 4. Equivalence between quenching (in the limit of vanishing bead size) and geometrical methods demonstrated

Acknowledgements

• PRF and CRC-FYAP for funding

Chain Uncrossability...

Chain crossing **necessarily** involves the intersection of the midpoints of two bonds, if one bead is moved at a time

Chain Uncrossability...

Secondary lattice (split each original cube to 8 cubes) Enforce (or don't enforce) excluded volume of bond midpoints

red points (bond midpoints occupy positions on the secondary lattice)