
Numerical Integration
(Quadrature )

Sachin Shanbhag
Dept. Scientific Computing

(based on material borrowed from Dennis Duke, Samir Al-Amer,
David Kofke, Holistic Numerical Methods Institute)



Numerical Integration

Why do we need it?

¥ many integrals cannot be evaluated analytically
¥ even if you can, you might need to check your answer
¥ even if you can, numerical evaluation of the answer can be bothersome

Examples:
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An example of an integral that needs checking:



Possible Issues

the integrand is some sort of table of numbers
¥ regularly spaced
¥ irregularly spaced
¥ contaminated with noise (experimental data)

the integrand is computable everywhere in the range of integration,
but there may be
¥ infinite range of integration
¥ local discontinuities

considerations
¥ time to compute the integral
¥ estimate of the error due to

- truncation
- round-off
- noise in tabulated values



¥ In the differential limit, an integral is equivalent to a summation
operation:

¥ Approximate methods for determining integrals are mostly based on
idea of area between integrand and axis.

Integral as Riemann sum
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LetÕs try a simple example 

-0.0007670.001534102410

-0.0015330.0030685129

-0.0030650.0061362568

-0.0061230.0122721287

-0.0122220.024544646

-0.0243430.049087325

-0.0482840.098175164

-0.0949600.19635083

-0.1834650.39269942

-0.3407590.78539821

errordxintervalsn

Note that the error is decreasing by a factor 2, just like our discretization interval dx.

Question: Why is the error = I(exact) - I(calc) negative?
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Analytically



Instead of having the top of the rectangle hit the left (or right) edge we could also
have it hit the function at the midpoint of each interval:
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Note that the lines at the top of the
rectangles can have any slope
whatsoever and we will always get
the same answer.

-0.0000000980.001534102410

-0.0000003920.0030685129

-0.0000015690.0061362568

-0.0000062750.0122721287

-0.0000251000.024544646

-0.0001004060.049087325

-0.0004017080.098175164

-0.0016081890.19635083

-0.0064545430.39269942

-0.0261721530.78539821

errordxintervalsn

now the error is falling by a factor 4  with
each halving of the interval dx.



Question: Why is the error smaller?



Question: Why is the error smaller?

Answer:

¥ One reason is that in the mid-point rule, the maximum distance over which we
ÒextrapolateÓ our knowledge of f(x) is halved.

¥ Different integration schemes result from what we think the function is doing
between evaluation points.

¥ Link between interpolation and numerical integration



Orientation

¥ Newton-Cotes Methods
Use intepolating polynomials. Trapezoid, SimpsonÕs 1/3 and 3/8 rules,
BodeÕs are special cases of 1st, 2nd, 3rd and 4th order polynomials are
used, respectively

¥ Romberg Integration (Richardson Extrapolation)
use knowledge of error estimates to build a recursive higher order
scheme

¥ Gauss Quadrature
Like Newton-Cotes, but instead of a regular grid, choose a set that lets
you get higher order accuracy

¥ Monte Carlo Integration
Use randomly selected grid points. Useful for higher dimensional
integrals (d>4)



Newton-Cotes Methods

¥ In Newton-Cotes Methods, the function is approximated by a polynomial
of order n

¥ To do this, we use ideas learnt from interpolation

¥ Computing the integral of a polynomial is easy.
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we approximate the function f(x) in the interval [a,b] as:

interpolation



Trapezoid Method (First Order Polynomial are used)

Newton-Cotes Methods
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!  

If the interval is divided into n segments(not necessarily equal) 

a = x0 " x1 " x2 " ..." xn = b
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SpecialCase  (Equally spaced base points)
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Multi-step Trapezoid Method



0.000000200.00153398102410

0.000000780.003067965129

0.000003140.006135922568

0.000012550.012271851287

0.000050200.02454369646

0.000200810.04908739325

0.000803320.09817477164

0.003214830.1963495483

0.012884200.3926990842

0.051940550.7853981621

errordxintervalsn /2/2
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Multi-step Trapezoid Method

Now the error is again decreasing
by a factor 4, so like dx2.

In fact, it can be shown that:
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Simpson 1/3 Rule
Second Order Polynomial are used

Newton-Cotes Methods
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Simpson 3/8 Rule
Third Order Polynomial are used,
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Newton-Cotes Methods

wikipedia.org

These are called ÒclosedÓ because we use function evaluations at the end-points
of the interval. There are ÒopenÓ formulae which donÕt evalute f(a) and f(b), but we
wonÕt discuss them here.



¥ Trapezoid formula with an interval h gives error of the order O(h2)

¥ Can we combine two Trapezoid estimates with intervals 2h and h  to get a
better estimate?

¥ For a multistep trapezoidal rule, the error is:

¥ Think of     as an approximate average value of fÓ(x) in [a,b]. Then,

Romberg Integration
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Romberg Integration
How good is this approximation?

Consider

12.9110748

16.8110787

22.9110846

33.0110945

51.5111134

91.4111533

205112662

807118681

EtValuen

Vertical distance covered by a
rocket between 8 to 30
seconds

Exact value x=11061 meters



The true error gets approximately  quartered as the number of
segments is doubled.  This information is used to get a better
approximation of the integral, and is the basis of Romberg
Integration (or RichardsonÕs extrapolation).

Romberg Integration

2n

C
Et ! where C is an approximately constant

If Itrue = true value and In= approx. value of the integral

Itrue "  In + Et

Et(n) "  C/n2 "  Itrue - In

 Et(2n) "  C/4n2 "  Itrue - I2n

Therefore, eliminate C/n2 between these two equations

!  

I true " I true,est = I2n +
I2n # In

3
Note: What we calculate
is still an approximation
for Itrue



Example

 

   

   

   

   

The vertical distance covered by a rocket from 8 to 30  seconds is given by
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1. Use RichardsonÕs rule to find the
distance covered (use table for
multistep trapezoidal rule).

2. Find the true error, Et for part (1).

0.116512.9110748

0.152116.8110787

0.207022.9110846

0.298133.0110945

0.465551.5111134

0.826591.4111533

1.854205112662

7.296807118681

RelErrEtValuen

Multistep trapezoidal rule

Exact value=11061 meters



   

mI 112662 =

mI 11113
4

=

Using RichardsonÕs extrapolation formula for Trapezoidal
rule, choosing n=2

Solution
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I true " I2n +
I2n # In

3
= 11062 m (Itrue,est)

Et = Iexact - Itrue,est = -1 m

100
11061

1106211061
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--
0.03616

0.009041
0.0000

--
11065
11062
11061

7.296
1.854
0.4655
0.1165

11868
11266
11113
11074

1
2
4
8

 et for RichardsonÕs
Extrapolation

RichardsonÕs
Extrapolation

et for Trapezoidal
Rule

Trapezoidal
Rule
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Usually much better estimates



Romberg Integration: Successive Refinement

     

     
       

!  

I2n
(k)

=
4k I2n

(k" 1) " In
(k" 1)

4k" 1 " 1
,k # 2

¥ The index k represents the order of extrapolation.

¥ In(1) represents the values obtained from the regular Trapezoidal
rule with n intervals.

¥ k=2 represents values obtained using the true estimate as O(h2).

¥ In(k) has an error of the order 1/n2k.

A general expression for Romberg integration can be written as



Romberg Integration: Successive Iteration

     

     
       

11868

1126

11113

11074

11065

11062

11061

11062

11061

11061

1-segment

2-segment

4-segment

8-segment

First Order
(k= 2)

Second Order
(k= 3)

Third Order
(k= 4)

For our particular example:



Questions from last class:

1. What is the error in Romberg integration?
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Et "
C1

n2 +
C2

n4 +
C3

n6 ...
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I true " I true,est = I2n +
I2n # In

3
Over here identical to
SimpsonÕs rule.

In fact this is how Numerical Recipes (Press et al.) implements the SimpsonÕs rule

This has an error of the order 1/n2k.

Successive iterations:
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4k I2n

(k" 1) " In
(k" 1)

4k" 1 " 1
,k # 2

O(1/n4)



Questions from last class:

2. Is Romberg better than SimpsonÕs?

This has an error of the order 1/n2k.

Successive iterations:

!  

I2n
(k )

=
4k
I2n

(k" 1) " I
n

(k" 1)

4k" 1 " 1
,k # 2

So usually, yes!

To evaluate an integral to the same degree of accuracy, you need fewer
function evaluations with Romberg.

!  

x4

0

2

" log(x + x2 +1)dx

Numerical Recipes:

SimpsonÕs rule makes 8 times
as many function calls



Romberg Integration

     

     
       

Questions:

1. Do I have to use In and I2n?

2. Is this true only for the trapezoidal rule?



Romberg Integration

     

     
       

Questions:

1. Do I have to use In and I2n?

2. Is this true only for the trapezoidal rule?

No!

But you have to derive new relationships in lieu of:

!  

I2n
(k) =

4k I2n
(k" 1) " In

(k" 1)

4k" 1 " 1
,k # 2

But note that it may destroy Òrecursive structureÓ used in the expression
above to minimize function calls.



Gauss Quadrature

!  

Multistep Trapezoid Method
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Motivation
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f (x)dx
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" = ci f (xi )
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n

#
ci :Weights xi :Nodes

Gauss Quadrature

Problem

How do we select ci and xi so that the formula gives a
better (higher order) approximation of the integral?
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wherePn(x) is a polynomial that interpolates f(x)

at the nodes x0,x1,...,xn
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Approximate function with Polynomial



¥ If the points xi are chosen on a uniform grid, this is exactly Newton-Cotes

Newton-Cotes
For a uniform grid { xi } Pn(x) is exact if f(x) is a polynomial d(n)

Gaussian Quadrature
Choose the n+1 grid points { xi } so that the polynomial

 Pn(x) is exact if f(x) is a polynomial d(2n+1)



!  

" 1

1

# f (x) dx = c0 f (x0) + c1 f (x1)

How do we get nodes and weights

Example:

Can we select nodes and weights so that a (n+1)=2 nodes allow us
to write a formula that is exact for polynomials of degree (2n+1) = 3?



Brute Force:

Set up equations for all polynomials d(0) to d(2n+1) and solve for ci and xi

! 

f (x) =1; c0 + c1 =
"1

1

# 1 dx = 2

f (x) = x; c0x0 + c1x1 =
"1

1

# xdx = 0

f (x) = x2; c0x0
2 + c1x1

2 =
"1

1

# x2 dx = 2/3

f (x) = x3; c0x0
3 + c1x1

3 =
"1

1

# x3 dx = 2

Solve simultaneously, get

!  

c0 = c1 =1

x0 = " 1/ 3;x1 =1/ 3



 Nodes and weights for larger n:

wikipedia.org

ci



For a range of integration other than [-1,1], change of variables
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Advantages/Disadvantages

1. For functions that are smooth or approximately polynomial beats
Newton-Cotes in accuracy.

!  

erf(1) =
2
"

e#x2

0

1

$ dx
with n=3, get 5 correct
significant places

2. Not easy to get error bounds (need to know derivative f2n+2).

3. Unlike Romberg Integration, we cannot successively refine (Gauss-
Konrad tries to overcome that.)



Gauss Quadrature: Generalization

What we just looked at was a special case of:

with w(x) = 1. This is called Gauss-Legendre.

!  

a

b

" w(x) f (x) dx = ci f (xi )
i=1

n

#

There are other forms of Gauss Quadrature (not only Gauss-Legendre)
which are useful, when:

1. there are discontinuties,
2. range of integration is not finite,
3. when the weight w(x) can help the function ÒlookÓ more polynomial
4. Etc.



Generalization

The fundamental theorem of Gaussian quadrature states that
the optimal nodes xi of the n-point Gaussian quadrature
formulas are precisely the roots of the orthogonal polynomial
for the same interval and weighting function.
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Generalization

wikipedia



All we do are look for zeros of Pn(x) in [-1,1]. These are our xis.

The cis can be obtained from

!  

ci =
2

(1" xi
2)( # P n(xi ))

2

Gauss-Legendre



In practice,

1. Gauss-Legendre is the most widely used Gauss quadrature formula.

2. We look at the limits and the weighting function w(x) for the integral we
want to evaluate and decide what quadrature formula might be best.

3. We donÕt calculate the nodes and weights ourselves. Instead, we look
them up for a give n, and simply carry out the weighted sum.

http://www.efunda.com/math/num_integration/num_int_gauss.cfm

4. Note that this may require a change of variables.

Generalization



Monte Carlo Integration

Adapting notes from David KofkeÕs
Molecular Simulation class.



¥ Methodical approaches
Ð trapezoid rule, SimpsonÕs rule, Gauss quadrature

¥ Quadrature formula

One-Dimensional Integrals

n uniformly separated points

Sum areas of shapes
approximating shape
of curve
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I f x dx= !Evaluating the general integral
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Monte Carlo Integration

¥ Stochastic approach
¥ Same quadrature formula, different selection of points

¥ http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

1

( )
n

i
i

b a
I f x

n =

!
" #

n points selected from
uniform distribution p(x)

( )x!

x



Random Number Generation

¥ Random number generators
Ð subroutines that provide a new random deviate with each call
Ð basic generators give value on (0,1) with uniform probability
Ð uses a deterministic algorithm (of course)

¥ usually involves multiplication and truncation of leading bits of a
number

¥ Returns set of numbers that meet many statistical
measures of randomness
Ð histogram is uniform
Ð no systematic correlation of deviates

¥ no idea what next value will be from knowledge of
present value (without knowing generation algorithm)

¥ but eventually, the series must end up repeating

¥ Some famous failures
Ð be careful to use a good quality generator

1 ( )modn nX aX c m+ = + linear congruential sequence

Plot of successive
deviates (Xn,Xn+1)

Not so random!



Random Number Generation

¥ RANDU
Ð Linear congruential sequence developed in the 1960s at IBM

Not so random!
http://www.purinchu.net/wp/2009/02/06/the-randu-pseudo-random-number-generator/



Errors in Random vs. Methodical Sampling

¥ Comparison of errors
Ð methodical approach
Ð Monte Carlo integration

¥ MC error vanishes much more slowly for increasing n
¥ For one-dimensional integrals, MC offers no advantage
¥ This conclusion changes as the dimension d of the

integral increases
Ð methodical approach
Ð MC integration

¥ MC ÒwinsÓ at about d = 4

1// dx L n! =
independent of dimension!

for example (SimpsonÕs rule)

d = 2
36 points,
361/2 = 6 in
each row

!  

" I # $x2 # n%2

! 

"I #n$1/ 2

!  

" I # n
$2 / d

! 

"I #n$1/ 2



Shape of High-Dimensional Regions

¥ Two (and higher) dimensional shapes can be
complex

¥ How to construct and weight points in a grid
that covers the region R?

2 2

2

( )
R

R

x y dxdy

r
dxdy

+

=
!!

!!

Example: mean-square
distance from origin



Shape of High-Dimensional Regions

¥ Two (and higher) dimensional shapes can be
complex

¥ How to construct and weight points in a grid
that covers the region R?

Ð hard to formulate a methodical algorithm in a
complex boundary

Ð usually do not have analytic expression for
position of boundary

Ð complexity of shape can increase unimaginably
as dimension of integral grows

2 2

2

( )
R

R

x y dxdy

r
dxdy

+

=

!!

!!

Example: mean-square
distance from origin

?iw



High-Dimensional Integrals

( )1 1
! ( )

N

N

N N U r
Z NU dr U r e !"= #

Sample Integral from Statistical Physics

3Nparticle dimensional integral

¥ N=100 modest (course project)
  Therefore, in 3D, 300 dimensional integral

¥ Say 10 grid points in each dimension (very coarse)
  # function evaluations: 10300 (assume 1 flop)

¥ IBM BlueGene/L-system: 300 Tflop

¥ Total time: 10300/1015 ~10285 s = 10277 years

¥ Age of the universe: 1014

  # atoms on earth: 1050



¥ N=100 modest (course project)
  Therefore, in 3D, 300 dimensional integral

¥ Say 10 grid points in each dimension (very coarse)
  # function evaluations: 10300 (assume 1 flop)

¥ IBM BlueGene/L-system: 300 Tflop

¥ Total time: 10300/1015 ~10285 s = 10277 years

¥ Age of the universe: 1014

  # atoms on earth: 1050

High-Dimensional Integrals

( )1 1
! ( )

N

N

N N U r
Z NU dr U r e !"= #

Sample Integral from Statistical Physics

3Nparticle dimensional integral

But we routinely
compute such

properties using MC



Integrate Over a Simple Shape? 1.

¥ Modify integrand to cast integral into a
simple shaped region
Ð define a function indicating if inside or

outside R

¥ Difficult problems remain
Ð grid must be fine enough to resolve shape
Ð many points lie outside region of interest
Ð too many quadrature points for our high-

dimensional integrals (see applet again)

0.5 0.5 2 2
2 0.5 0.5

0.5 0.5

0.5 0.5
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( , )

dx dy x y s x y
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dx dys x y

+ +

! !
+ +

! !

+
=

" "
" "

1     inside R

0   outside R

s =
!
"
#

¥http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html



¥ Statistical-mechanics integrals typically have
significant contributions from miniscule regions of the
integration space

Ð

Ð contributions come only when no spheres overlap
Ð e.g., 100 spheres at freezing the fraction is 10-260

¥ Evaluation of integral is possible only if restricted to
region important to integral
Ð must contend with complex shape of region
Ð MC methods highly suited to Òimportance samplingÓ

( )1 1
!

( )
N

N

N N U r
Z NU dr U r e !"= #

( )0Ue !" #

Integrate Over a Simple Shape? 2.



Importance Sampling

¥ Put more quadrature points in regions where integral receives its
greatest contributions

¥ Return to 1-dimensional example
Most contribution from region near x = 1

¥ Choose quadrature points
not uniformly, but according
to distribution #(x)
Ð linear form is one possibility

¥ How to revise the integral to
remove the bias?

1
2

0

3I x dx= !

2( ) 3f x x=

( ) 2x x! =



The Importance-Sampled Integral

¥ Consider a rectangle-rule quadrature with
unevenly spaced abscissas

¥ Spacing between points
Ð reciprocal of local number of points per unit length

¥ Importance-sampled rectangle rule
Ð Same formula for MC sampling
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Greater #(x) $  more points $  smaller spacing
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n
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# $ choose x points

according to #(x)



The Importance-Sampled Integral
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Error in MC is related to the variance:

If f=constant, then numerator, and error vanish
!  

" 2 #
f 2 $ f

2

n
CanÕt control the n-1/2

dependence

Choose # to make f/# approximately constant, then can
make error go to zero even if f is not constant.



Generating Nonuniform Random Deviates

¥ Probability theory says...
Ð ...given a probability distribution u(z)
Ð if x is a function x(z),
Ð then the distribution of #(x) obeys

¥ Prescription for #(x)
Ð solve this equation for x(z)
Ð generate z from the uniform random generator
Ð compute x(z)

¥ Example
Ð we want                   on x = (0,1)
Ð then
Ð so x = z1/2

Ð taking square root of uniform deviate gives linearly distributed values

¥ Generating #(x) requires knowledge of

( ) ( )
dz

x u z
dx

! =

( )x ax! =
2 21

2z ax c x= + = a and c from Òboundary conditionsÓ

!  

" (x)dx#



Generating Nonuniform Random Deviates

Example:

Generate x from linearly distributed random numbers between [a,b), " (x)

If " (x) is normalized then,

ba

" (x)

! 

" (x) =
2x

b2
# a2

If we have u(z) a uniform random number [0,1)

! 

" (x) =
2x

b2 # a2 =1
dz
dx

dx
a

x

$
2x

b2 # a2 = dz
0

z

$

x = a2 + (b2 # a2)z

0 1

U(z)



Choosing a Good Weighting Function

¥ MC importance-sampling quadrature formula

¥ Do not want " (x) to be too much smaller or too much larger than f(x)
Ð too small leads to significant contribution from poorly sampled region

Ð too large means that too much sampling is done in region that is not (now)
contributing much

1
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n
i

ii
x

f x
I

n x
!

!=

" #

2x! = 2
3x! =

43x! =

( )x!
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( )

f x
x!



Variance in Importance Sampling Integration

¥ Choose "  to minimize variance in average

¥ Smallest variance in average corresponds to " (x) = c # f(x)
Ð not a viable choice
Ð the constant here is selected to normalize #(x)
Ð if we can normalize #(x) we can evaluate
Ð this is equivalent to solving the desired integral of f(x)

¥ http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html
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Summary

¥ Monte Carlo methods use stochastic process to
answer a non-stochastic question
Ð generate a random sample from an ensemble
Ð compute properties as ensemble average
Ð permits more flexibility to design sampling algorithm

¥ Monte Carlo integration
Ð good for high-dimensional integrals

¥ better error properties
¥ better suited for integrating in complex shape

¥ Importance Sampling
Ð focuses selection of points to region contributing most to

integral
Ð selecting of weighting function is important
Ð choosing perfect weight function is same as solving integral
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Approximate function with Polynomial

!  

Pn(x) = li (x)
i=0

n

" f (xi )

Recall, that the interpolating polynomial depends on the chosen grid points

 Langrange interpolants can be written as,

!  

lim
x" xi

li (x) = lim
x" xi

# (x)
(x $ xi ) % # (xi)

=1Note that here,

!  

" # (xi) = (xi $ x j )
j=0
j%i

n

&



Theorem (Gauss)

Let P(x) be a nontrivial polynomial of degree n such that it is orthogonal to
polynomials of lesser degree

  

!  

a

b

" f (x)dx # ci f (xi )
i=0

n

$ where ci =
a

b

" l i (x)dx!  

a

b

" xkP(x)dx = 0 0 # k # n $1

If x0, x1, x2, É . xn are zeros of P(x) and

Then this approximation is exact for all polynomials of
degree less than or equal to 2n+1



Method 2:

In practice, we use GaussÕ Theorem and well-studied classes of orthogonal
polynomials

Here, Legendre Polynomials (hence sometimes Gauss-Legendre Quadrature)

!  

"1

1

# Pm(x)Pn(x)dx =
2

2n +1
$nm

All we do are look for zeros of Pn(x) in [-1,1]. These are our xis.

The cis can be obtained from
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ci =
2

(1" xi
2)( # P n(xi ))
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