Numerical Integration (Quadrature)

Sachin Shanbhag Dept. Scientific Computing

(based on material borrowed from Dennis Duke, Samir Al-Amer, David Kofke, Holistic Numerical Methods Institute)

Numerical Integration

Why do we need it?

- many integrals cannot be evaluated analytically
- even if you can, you might need to check your answer
- even if you can, numerical evaluation of the answer can be bothersome

Examples:

$$\int_0^\infty \frac{dx}{\sqrt{x}\cosh x} = 2\sqrt{\pi} \sum_{k=0}^\infty \frac{(-1)^k}{\sqrt{2k+1}}$$

 $\int_{a}^{b} e^{-x^{2}} dx$

Error function

An example of an integral that needs checking:

$$(3.15.7) \qquad \int_{0}^{1} \frac{\ln\left(1+ay\right)\ln\left(1+by\right)}{1+oy} \, \mathrm{d}y = \frac{1}{c} \left\{ \frac{1}{2}\ln^{2}\left(\frac{e-a}{c}\right)\ln\left(1+e\right) + \frac{1}{2}\ln^{2}\left(\frac{e-b}{c}\right)\ln\left(1+e\right) - \frac{1}{2}\ln^{2}\left(\frac{a}{b}\right)\ln\left(1+b\right) + \frac{1}{2}\ln^{2}\left(\frac{a-e}{b-e}\right)\ln\left(\frac{1+b}{1+e}\right) + \ln\left(\frac{e-a}{c}\right)\left[\operatorname{Li}_{s}\left(\frac{a}{a-e}\right) - \operatorname{Li}_{z}\left(a\frac{1+e}{a-e}\right)\right] + \frac{1}{n}\left(\frac{e-b}{c}\right)\left[\operatorname{Li}_{s}\left(\frac{b}{b-e}\right) - \operatorname{Li}_{s}\left(b\frac{1+e}{b-e}\right)\right] + S_{1,2}\left(a\frac{1+e}{a-e}\right) - \frac{S_{1,3}\left(\frac{a}{a-e}\right) + S_{1,2}\left(b\frac{1+e}{b-e}\right) - S_{1,2}\left(\frac{b}{b-e}\right) - S_{1,2}\left(\frac{a-b}{a}\right) + \frac{S_{1,2}\left(\frac{a-b}{a-e}\right) + \frac{S_{1,2}\left(\frac{a-b}{a-e}\right) - S_{1,2}\left(\frac{a-b}{a-e}\right) + \frac{1}{n}\left(\frac{a}{b}\right)\left[\operatorname{Li}_{z}\left(\frac{a-b}{a}\right) - \operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right)\right] + \frac{1}{n}\left(\frac{a-b}{b}\right)\left[\operatorname{Li}_{z}\left(\frac{a-b}{a}\right) - \operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right)\right] + \frac{1}{n}\left(\frac{a-e}{b}\right)\left[\operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right) - \operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right)\right] + \frac{1}{n}\left(\frac{a-e}{b}\right)\left[\operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right) - \operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right)\right] + \frac{1}{n}\left(\frac{a-e}{b}\right)\left[\operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right) - \operatorname{Li}_{z}\left(\frac{a-b}{a-e}\right)\right]\right]$$

$$\operatorname{Li}_{2}(y) = -\int_{0}^{1} \frac{\ln(1-xy)}{x} \, \mathrm{d}x = -\int_{0}^{y} \frac{\ln(1-x)}{x} \, \mathrm{d}x$$

$$S_{1,2}(y) = \frac{1}{2} \int_{0}^{1} \frac{\ln^{2}(1 - xy)}{x} \, \mathrm{d}x$$

Possible Issues

the integrand is some sort of table of numbers

- regularly spaced
- irregularly spaced
- contaminated with noise (experimental data)

the integrand is computable everywhere in the range of integration, but there may be

- infinite range of integration
- local discontinuities

considerations

- time to compute the integral
- estimate of the error due to
 - truncation
 - round-off
 - noise in tabulated values

Integral as Riemann sum

• In the differential limit, an integral is equivalent to a summation operation:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{i=n} f(x_i) \Delta x \approx \sum_{i=0}^{N-1} f(x_i) \Delta x$$

• Approximate methods for determining integrals are mostly based on idea of area between integrand and axis.

Let's try a simple example

n	intervals	dx	error
1	2	0.785398	-0.340759
2	4	0.392699	-0.183465
3	8	0.196350	-0.094960
4	16	0.098175	-0.048284
5	32	0.049087	-0.024343
6	64	0.024544	-0.012222
7	128	0.012272	-0.006123
8	256	0.006136	-0.003065
9	512	0.003068	-0.001533
10	1024	0.001534	-0.000767

Analytically

$$\int_0^{\pi/2} \cos x \, dx = \sin x \Big|_0^{\pi/2} = 1$$

Note that the error is decreasing by a factor 2, just like our discretization interval dx.

Question: Why is the error = I(exact) - I(calc) negative?

Instead of having the top of the rectangle hit the left (or right) edge we could also have it hit the function at the midpoint of each interval:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N-1} f(\frac{x_i + x_{i+1}}{2})\Delta x$$

n	intervals	dx	error
1	2	0.785398	-0.026172153
2	4	0.392699	-0.006454543
3	8	0.196350	-0.001608189
4	16	0.098175	-0.000401708
5	32	0.049087	-0.000100406
6	64	0.024544	-0.000025100
7	128	0.012272	-0.000006275
8	256	0.006136	-0.000001569
9	512	0.003068	-0.000000392
10	1024	0.001534	-0.00000098

now the error is falling **by a factor 4** with each halving of the interval *dx*.

Note that the lines at the top of the rectangles can have any slope whatsoever and we will always get the same answer. Question: Why is the error smaller?

Question: Why is the error smaller?

Answer:

• One reason is that in the mid-point rule, the maximum distance over which we "extrapolate" our knowledge of f(x) is halved.

• Different integration schemes result from what we think the function is doing between evaluation points.

• Link between interpolation and numerical integration

Orientation

Newton-Cotes Methods

Use intepolating polynomials. Trapezoid, Simpson's 1/3 and 3/8 rules, Bode's are special cases of 1st, 2nd, 3rd and 4th order polynomials are used, respectively

• Romberg Integration (Richardson Extrapolation)

use knowledge of error estimates to build a recursive higher order scheme

• Gauss Quadrature

Like Newton-Cotes, but instead of a regular grid, choose a set that lets you get higher order accuracy

• Monte Carlo Integration

Use randomly selected grid points. Useful for higher dimensional integrals (d>4)

Newton-Cotes Methods

- In Newton-Cotes Methods, the function is approximated by a polynomial of order *n*
- To do this, we use ideas learnt from interpolation
- Computing the integral of a polynomial is easy.

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(a_{0} + a_{1}x + \dots + a_{n}x^{n}\right)dx$$

we approximate the function f(x) in the interval [a,b] as:

$$f(x) \approx a_0 + a_1 x + \dots + a_n x^n$$
 interpolation

$$\int_{a}^{b} f(x)dx \approx a_{0}(b-a) + a_{1}\frac{(b^{2}-a^{2})}{2} + \dots + a_{n}\frac{(b^{n+1}-a^{n+1})}{n+1}$$

Newton-Cotes Methods

Trapezoid Method (First Order Polynomial are used)

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} (a_0 + a_1 x)dx$$

Multi-step Trapezoid Method

If the interval is divided into n segments(not necessarily equal)

$$a = x_0 \le x_1 \le x_2 \le \dots \le x_n = b$$
$$\int_a^b f(x) dx \approx \sum_{i=0}^{n-1} \frac{1}{2} (x_{i+1} - x_i) (f(x_{i+1}) + f(x_i))$$

Special Case (Equally spaced base points) $x_{i+1} - x_i = h$ for all *i*

$$\int_{a}^{b} f(x) dx \approx h \left[\frac{1}{2} [f(x_0) + f(x_n)] + \sum_{i=1}^{n-1} f(x_i) \right]$$

Multi-step Trapezoid Method

n	intervals	dx	error
1	2	0.78539816	0.05194055
2	4	0.39269908	0.01288420
3	8	0.19634954	0.00321483
4	16	0.09817477	0.00080332
5	32	0.04908739	0.00020081
6	64	0.02454369	0.00005020
7	128	0.01227185	0.00001255
8	256	0.00613592	0.00000314
9	512	0.00306796	0.00000078
10	1024	0.00153398	0.00000020

$$\int_{0}^{\pi/2} \cos x \, dx = \sin x \Big|_{0}^{\pi/2} = 1$$

Now the error is again decreasing by a factor 4, so like dx^2 .

In fact, it can be shown that:

$$|Error| \le \frac{b-a}{12} h^2 \max_{x \in [a,b]} |f''(x)|$$

Newton-Cotes Methods

Simpson 1/3 Rule Second Order Polynomial are used

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left(a_{0} + a_{1}x + a_{2}x^{2}\right)dx$$
$$h=(b-a)/2$$

Simpson 3/8 Rule

Third Order Polynomial are used,

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} (a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3})dx$$
$$h=(b-a)/3$$

Newton-Cotes Methods

Degree	Common name	Formula	Error term
1	Trapezoid rule	$\frac{h}{2}(f_0 + f_1)$	$-\frac{h^3}{12}f^{(2)}(\xi)$
2	Simpson's rule	$\frac{h}{3}(f_0 + 4f_1 + f_2)$	$-\frac{h^5}{90}f^{(4)}(\xi)$
з	Simpson's 3/8 rule	$\frac{3h}{8}(f_0 + 3f_1 + 3f_2 + f_3)$	$-\frac{3h^5}{80}f^{(4)}(\xi)$
4	Boole's rule, or Bode's Rule [sic]	$\frac{2h}{45}(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$	$-\frac{8h^7}{945}f^{(6)}(\xi)$

Closed Newton–Cotes Formulas

These are called "closed" because we use function evaluations at the end-points of the interval. There are "open" formulae which don't evalute f(a) and f(b), but we won't discuss them here.

wikipedia.org

• Trapezoid formula with an interval *h* gives error of the order $O(h^2)$

• Can we combine two Trapezoid estimates with intervals 2h and h to get a better estimate?

• For a multistep trapezoidal rule, the error is:

$$E_{t} = \frac{(b-a)^{3}}{12n^{2}} \frac{\sum_{i=1}^{n} f''(\xi_{i})}{n} \quad \text{where } \xi_{i} \in [a+(i-1)h, a+ih]$$

• Think of $\sum_{i=1}^{n} f''(\xi_i)$ as an approximate average value of f''(x) in [a,b]. Then, $E_{+} \cong \frac{C}{2}$

$$E_t \cong \frac{1}{n^2}$$

How good is this approximation?

Consider

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

Vertical distance covered by a rocket between 8 to 30 seconds

n	Value	E _t
1	11868	807
2	11266	205
3	11153	91.4
4	11113	51.5
5	11094	33.0
6	11084	22.9
7	11078	16.8
8	11074	12.9

Exact value x=11061 meters

The true error gets approximately quartered as the number of segments is doubled. This information is used to get a better approximation of the integral, and is the basis of Romberg Integration (or Richardson's extrapolation).

$$E_t \cong \frac{C}{n^2}$$
 where C is an *approximately constant*

If I_{true} = true value and I_{p} = approx. value of the integral

$$I_{true} \approx I_n + E_t$$

$$E_t(n) \approx C/n^2 \approx I_{true} - I_n$$

$$E_t(2n) \approx C/4n^2 \approx I_{true} - I_{2n}$$

Therefore, eliminate C/n^2 between these two equations

$$I_{true} \cong I_{true,est} = I_{2n} + \frac{I_{2n} - I_n}{3}$$

Note: What we calculate is still an approximation for I_{true}

Example

The vertical distance covered by a rocket from 8 to 30 seconds is given by

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt \qquad \text{Exact value=11061 meters}$$

- 1. Use Richardson's rule to find the distance covered (use table for multistep trapezoidal rule).
- 2. Find the true error, E_t for part (1).

n	Value	E _t	RelErr
1	11868	807	7.296
2	11266	205	1.854
3	11153	91.4	0.8265
4	11113	51.5	0.4655
5	11094	33.0	0.2981
6	11084	22.9	0.2070
7	11078	16.8	0.1521
8	11074	12.9	0.1165

Multistep trapezoidal rule

Solution

$$I_2 = 11266m$$

 $I_4 = 11113m$

Using Richardson's extrapolation formula for Trapezoidal rule, choosing n=2

$$I_{true} \cong I_{2n} + \frac{I_{2n} - I_n}{3}$$

= 11062 m ($I_{true,est}$)
$$E_t = I_{exact} - I_{true,est} = -1 m$$

 $|\in_t| = \left| \frac{11061 - 11062}{11061} \right| \times 100$

Solution

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

n	Trapezoidal Rule	e _t for Trapezoidal Rule	Richardson's Extrapolation	e _t for Richardson's Extrapolation
1	11868	7.296		
2	11266	1.854	11065	0.03616
4	11113	0.4655	11062	0.009041
8	11074	0.1165	11061	0.0000

Usually much better estimates

Romberg Integration: Successive Refinement

A general expression for Romberg integration can be written as

$$I_{2n}^{(k)} = \frac{4^{k} I_{2n}^{(k-1)} - I_{n}^{(k-1)}}{4^{k-1} - 1}, k \ge 2$$

• The index k represents the order of extrapolation.

• $I_n^{(1)}$ represents the values obtained from the regular Trapezoidal rule with n intervals.

- k=2 represents values obtained using the true estimate as $O(h^2)$.
- $I_n^{(k)}$ has an error of the order $1/n^{2k}$.

Romberg Integration: Successive Iteration

For our particular example:

Questions from last class:

1. What is the error in Romberg integration?

$$I_{true} \cong I_{true,est} = I_{2n} + \frac{I_{2n} - I_n}{3} \qquad O(1/n^4)$$
$$E_t \cong \frac{C_1}{n^2} + \frac{C_2}{n^4} + \frac{C_3}{n^6} \dots \qquad Over here identical to Simpson's rule.$$

In fact this is how Numerical Recipes (Press et al.) implements the Simpson's rule

Successive iterations:

$$I_{2n}^{(k)} = \frac{4^{k} I_{2n}^{(k-1)} - I_{n}^{(k-1)}}{4^{k-1} - 1}, k \ge 2$$

This has an error of the order $1/n^{2k}$.

Questions from last class:

2. Is Romberg better than Simpson's?

Successive iterations:

$$I_{2n}^{(k)} = \frac{4^{k} I_{2n}^{(k-1)} - I_{n}^{(k-1)}}{4^{k-1} - 1}, k \ge 2$$

This has an error of the order $1/n^{2k}$.

So usually, yes!

To evaluate an integral to the same degree of accuracy, you need fewer function evaluations with Romberg.

Numerical Recipes:

$$\int_{0}^{2} x^{4} \log(x + \sqrt{x^{2} + 1}) dx$$
Simpson's rule makes 8 times as many function calls

Questions:

- 1. Do I have to use I_n and I_{2n} ?
- 2. Is this true only for the trapezoidal rule?

Questions:

- 1. Do I have to use I_n and I_{2n} ?
- 2. Is this true only for the trapezoidal rule?

No!

But you have to derive new relationships in lieu of:

$$I_{2n}^{(k)} = \frac{4^k I_{2n}^{(k-1)} - I_n^{(k-1)}}{4^{k-1} - 1}, k \ge 2$$

But note that it may destroy "recursive structure" used in the expression above to minimize function calls.

Gauss Quadrature

Motivation

Multistep Trapezoid Method

$$\int_{a}^{b} f(x)dx = h\left[\sum_{i=1}^{n-1} f(x_i) + \frac{1}{2}(f(x_0) + f(x_n))\right]$$

It can be expressed as

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n} c_{i} f(x_{i})$$
where $c_{i} = \begin{cases} h & i = 1, 2, ..., n-1 \\ 0.5h & i = 0 \text{ and } n \end{cases}$

Gauss Quadrature

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} c_{i} f(x_{i})$$

$$c_{i}: Weights \qquad x_{i}: Nodes$$

Problem

How do we select c_i and x_i so that the formula gives a better (higher order) approximation of the integral?

Approximate function with Polynomial

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx$$

where $P_n(x)$ is a polynomial that interpolates f(x)at the nodes $x_0, x_1, ..., x_n$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} P_{n}(x)dx = \int_{a}^{b} \left(\sum_{i=0}^{n} \ell_{i}(x)f(x_{i})\right)dx$$

$$\Rightarrow \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i}) \quad \text{where } c_{i} = \int_{a}^{b} \ell_{i}(x) dx$$

• If the points x_i are chosen on a uniform grid, this is exactly Newton-Cotes

Newton-Cotes

For a uniform grid { x_i } $P_n(x)$ is exact if f(x) is a polynomial d(n)

Gaussian Quadrature

Choose the n+1 grid points { x_i } so that the polynomial $P_n(x)$ is exact if f(x) is a polynomial d(2n+1)

How do we get nodes and weights

Example:

Can we select nodes and weights so that a (n+1)=2 nodes allow us to write a formula that is exact for polynomials of degree (2n+1) = 3?

$$\int_{-1}^{1} f(x) \, dx = c_0 f(x_0) + c_1 f(x_1)$$

Brute Force:

Set up equations for all polynomials d(0) to d(2n+1) and solve for c_i and x_i

$$f(x) = 1; \quad c_0 + c_1 = \int_{-1}^{1} 1 \, dx = 2$$

$$f(x) = x; \quad c_0 x_0 + c_1 x_1 = \int_{-1}^{1} x \, dx = 0$$

$$f(x) = x^2; \quad c_0 x_0^2 + c_1 x_1^2 = \int_{-1}^{1} x^2 \, dx = 2/3$$

$$f(x) = x^3; \quad c_0 x_0^3 + c_1 x_1^3 = \int_{-1}^{1} x^3 \, dx = 2$$

Solve simultaneously, get

$$c_0 = c_1 = 1$$

 $x_0 = -1/\sqrt{3}; x_1 = 1/\sqrt{3}$

Nodes and weights for larger n:

		C
Number of points, n	Points, x _i	Weights, w _i
1	0	2
2	$\pm\sqrt{1/3}$	1
	0	8⁄9
3	$\pm\sqrt{3/5}$	⁵ ⁄9
A	$\pm\sqrt{\left(3-2\sqrt{6/5}\right)/7}$	$\tfrac{18+\sqrt{30}}{36}$
7	$\pm\sqrt{\left(3+2\sqrt{6/5}\right)/7}$	$\tfrac{18-\sqrt{30}}{36}$
	0	128/225
5	$\pm \frac{1}{3}\sqrt{5-2\sqrt{10/7}}$	$\frac{322+13\sqrt{70}}{900}$
	$\pm \frac{1}{3}\sqrt{5+2\sqrt{10/7}}$	$\frac{322-13\sqrt{70}}{900}$

wikipedia.org

What is my limits are not [-1,1]?

For a range of integration other than [-1,1], change of variables

$$\int_{a}^{b} f(y) \, dy = \frac{b-a}{2} \int_{-1}^{1} f(\frac{b-a}{2}x + \frac{a+b}{2}) dx$$
$$= \frac{b-a}{2} \sum_{i=1}^{n} c_{i} f(\frac{b-a}{2}x_{i} + \frac{a+b}{2})$$

Example

$$\int_{0}^{1} e^{-x^{2}} dx = \frac{1}{2} \int_{-1}^{1} e^{-(.5t+.5)^{2}} dt$$
$$= \frac{1}{2} \left[e^{-\left(-0.5\sqrt{\frac{1}{3}}+.5\right)^{2}} + e^{-\left(0.5\sqrt{\frac{1}{3}}+.5\right)^{2}} \right]$$

2 points

Advantages/Disadvantages

1. For functions that are smooth or approximately polynomial beats Newton-Cotes in accuracy.

$$\operatorname{erf}(1) = \frac{2}{\pi} \int_{0}^{1} e^{-x^{2}} dx$$
 with n=3, get 5 correct
significant places

2. Not easy to get error bounds (need to know derivative f^{2n+2}).

3. Unlike Romberg Integration, we cannot successively refine (Gauss-Konrad tries to overcome that.)

Gauss Quadrature: Generalization

What we just looked at was a special case of:

$$\int_{a}^{b} w(x) f(x) \, dx = \sum_{i=1}^{n} c_{i} f(x_{i})$$

with w(x) = 1. This is called Gauss-Legendre.

There are other forms of Gauss Quadrature (not only Gauss-Legendre) which are useful, when:

- 1. there are discontinuties,
- 2. range of integration is not finite,
- 3. when the weight w(x) can help the function "look" more polynomial
- 4. Etc.

Generalization

The fundamental theorem of Gaussian quadrature states that the optimal nodes x_i of the *n*-point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial for the same interval and weighting function.

Generalization

$$\int_{a}^{b} w(x) f(x) \, dx = \sum_{i=1}^{n} c_{i} f(x_{i})$$

Interval	ω(<i>x</i>)	Orthogonal polynomials	A & S	For more information, see
[-1, 1]	1	Legendre polynomials	25.4.29	Section Rules for the basic problem, above
(–1, 1)	$(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta > -1$	Jacobi polynomials	25.4.33 ($\beta = 0$)	
(–1, 1)	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)	25.4.38	Chebyshev–Gauss quadrature
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)	25.4.40	Chebyshev–Gauss quadrature
[0, ∞)	e^{-x}	Laguerre polynomials	25.4.45	Gauss-Laguerre quadrature
(-∞, ∞)	e^{-x^2}	Hermite polynomials	25.4.46	Gauss-Hermite quadrature

wikipedia

Gauss-Legendre

All we do are look for zeros of $P_n(x)$ in [-1,1]. These are our x_i s.

The c_i s can be obtained from

$$c_i = \frac{2}{(1 - x_i^2)(P'_n(x_i))^2}$$

Generalization

In practice,

- 1. Gauss-Legendre is the most widely used Gauss quadrature formula.
- 2. We look at the limits and the weighting function w(x) for the integral we want to evaluate and decide what quadrature formula might be best.
- 3. We don't calculate the nodes and weights ourselves. Instead, we look them up for a give *n*, and simply carry out the weighted sum.

http://www.efunda.com/math/num_integration/num_int_gauss.cfm

4. Note that this may require a change of variables.

Monte Carlo Integration

Adapting notes from David Kofke's Molecular Simulation class.

One-Dimensional Integrals

Methodical approaches

- trapezoid rule, Simpson's rule, Gauss quadrature

Monte Carlo Integration

- Stochastic approach
- Same quadrature formula, different selection of points

• http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Random Number Generation

- Random number generators
 - subroutines that provide a new random deviate with each call
 - basic generators give value on (0,1) with uniform probability
 - uses a deterministic algorithm (of course)
 - usually involves multiplication and truncation of leading bits of a number

 $X_{n+1} = (aX_n + c) \mod m$ linear congruential sequence

- Returns set of numbers that meet many <u>statistical</u> measures of randomness
 - histogram is uniform
 - no systematic correlation of deviates
 - no idea what next value will be from knowledge of present value (without knowing generation algorithm)
 - but eventually, the series must end up repeating
- Some famous failures
 - be careful to use a good quality generator

Random Number Generation

RANDU

- Linear congruential sequence developed in the 1960s at IBM

Not so random!

http://www.purinchu.net/wp/2009/02/06/the-randu-pseudo-random-number-generator/

Errors in Random vs. Methodical Sampling

- Comparison of errors
 - methodical approach
 - Monte Carlo integration

$$\delta I \propto \Delta x^2 \propto n^{-2}$$
$$\delta I \propto n^{-1/2}$$

- MC error vanishes much more slowly for increasing *n*
- For one-dimensional integrals, MC offers no advantage
- This conclusion changes as the dimension *d* of the integral increases
 - methodical approach $\delta I \propto n^{-2/d}$
 - *MC* integration

independent of dimension!

MC "wins" at about *d* = 4

for example (Simpson's rule)

Shape of High-Dimensional Regions

- Two (and higher) dimensional shapes can be complex
- How to construct and weight points in a grid that covers the region *R*?

Example: mean-square distance from origin

$$\langle r^2 \rangle = \frac{\iint_R (x^2 + y^2) dx dy}{\iint_R dx dy}$$

Shape of High-Dimensional Regions

- Two (and higher) dimensional shapes can be complex
- How to construct and weight points in a grid that covers the region *R*?
 - hard to formulate a methodical algorithm in a complex boundary
 - usually do not have analytic expression for position of boundary
 - complexity of shape can increase unimaginably as dimension of integral grows

Example: mean-square distance from origin

$$\langle r^2 \rangle = \frac{\iint_R (x^2 + y^2) dx dy}{\iint_R dx dy}$$

High-Dimensional Integrals

Sample Integral from Statistical Physics

$$\langle U \rangle = \frac{1}{Z_N} \frac{1}{N!} \int dr^N U(r^N) e^{-\beta U(r^N)}$$

3N_{particle} dimensional integral

- N=100 modest (course project) Therefore, in 3D, 300 dimensional integral
- Say 10 grid points in each dimension (very coarse)
 # function evaluations: 10³⁰⁰ (assume 1 flop)
- IBM BlueGene/L-system: 300 Tflop
- Total time: $10^{300}/10^{15} \sim 10^{285}$ s = 10^{277} years
- Age of the universe: 10¹⁴
 # atoms on earth: 10⁵⁰

High-Dimensional Integrals

Sample Integral from Statistical Physics

$$\langle U \rangle = \frac{1}{Z_N} \frac{1}{N!} \int dr^N U(r^N) e^{-\beta U(r^N)}$$

3N_{particle} dimensional integral

- N=100 modest (course project) Therefore, in 3D, 300 dimensional integral
- Say 10 grid poir # function evalu
- IBM BlueGene/I

But we routinely compute such properties using MC

- Total time: $10^{300}/10^{15} \sim 10^{285}$ s = 10^{277} years
- Age of the universe: 10¹⁴ # atoms on earth: 10⁵⁰

Integrate Over a Simple Shape? 1.

- Modify integrand to cast integral into a simple shaped region
 - define a function indicating if inside or outside R

$$\left\langle r^{2} \right\rangle = \frac{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy (x^{2} + y^{2}) s(x, y)}{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy s(x, y)} \checkmark^{s} = \begin{cases} 1 & \text{inside} \\ 0 & \text{outside} \end{cases}$$

- Difficult problems remain
 - grid must be fine enough to resolve shape
 - many points lie outside region of interest
 - too many quadrature points for our highdimensional integrals (<u>see applet again</u>)

•http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Integrate Over a Simple Shape? 2.

 Statistical-mechanics integrals typically have significant contributions from miniscule regions of the integration space

$$- \langle U \rangle = \frac{1}{Z_N} \frac{1}{N!} \int dr^N U(r^N) e^{-\beta U(r^N)}$$

- contributions come only when no spheres overlap
- e.g., 100 spheres at freezing the fraction is 10⁻²⁶⁰
- Evaluation of integral is possible only if restricted to region important to integral
 - must contend with complex shape of region
 - MC methods highly suited to "importance sampling"

Importance Sampling

- Put more quadrature points in regions where integral receives its greatest contributions
- Return to 1-dimensional example Most contribution from region near x = 1
- Choose quadrature points not uniformly, but according to distribution $\pi(x)$
 - linear form is one possibility
- How to revise the integral to remove the bias?

The Importance-Sampled Integral

 Consider a rectangle-rule quadrature with unevenly spaced abscissas

$$I \approx \sum_{i=1}^{n} f(x_i) \Delta x_i$$

- Spacing between points
 - reciprocal of local number of points per unit length

$$\Delta x_i = \frac{b-a}{n} \frac{1}{\pi(x_i)}$$

Greater $\pi(x) \rightarrow$ more points \rightarrow smaller spacing

- Importance-sampled rectangle rule
 - Same formula for MC sampling

$$I \approx \frac{b-a}{n} \sum_{\substack{i=1\\\pi(x)}}^{n} \frac{f(x_i)}{\pi(x_i)} \qquad \qquad \begin{array}{c} \text{choose x points} \\ \text{according to } \pi(x) \end{array}$$

The Importance-Sampled Integral

Error in MC is related to the variance:

$$\varepsilon^{2} \approx \frac{\left\langle f^{2} \right\rangle - \left\langle f \right\rangle^{2}}{n}$$

Can't control the n^{-1/2} dependence

If f=constant, then numerator, and error vanish

Choose π to make f/ π approximately constant, then can make error go to zero even if f is not constant.

$$\varepsilon^{2} \approx \frac{\left\langle \left(\frac{f}{\pi}\right)^{2} \right\rangle - \left\langle \left(\frac{f}{\pi}\right) \right\rangle^{2}}{n}$$

Generating Nonuniform Random Deviates

- Probability theory says...
 - ... given a probability distribution u(z)
 - if x is a function x(z),
 - then the distribution of $\pi(x)$ obeys
- Prescription for $\pi(x)$
 - solve this equation for x(z)
 - generate z from the uniform random generator
 - compute x(z)
- Example
 - we want $\pi(x) = ax$ on x = (0,1)- then $z = \frac{1}{2}ax^2 + c = x^2$

a and c from "boundary conditions"

- so x = $z^{1/2}$
- taking square root of uniform deviate gives linearly distributed values
- Generating $\pi(x)$ requires knowledge of $\int \pi(x) dx$

$$\pi(x) = u(z) \left| \frac{dz}{dx} \right|$$

Generating Nonuniform Random Deviates

Example:

Generate x from linearly distributed random numbers between [a,b), $\pi(x)$

If $\pi(x)$ is normalized then,

$$\pi(x) = \frac{2x}{b^2 - a^2}$$

If we have u(z) a uniform random number [0,1)

$$\pi(x) = \frac{2x}{b^2 - a^2} = 1\frac{dz}{dx}$$
$$\int_{a}^{x} dx \frac{2x}{b^2 - a^2} = \int_{0}^{z} dz$$
$$x = \sqrt{a^2 + (b^2 - a^2)z}$$

Choosing a Good Weighting Function

• MC importance-sampling quadrature formula

$$I \approx \frac{1}{n} \sum_{\substack{i=1\\\pi(x)}}^{n} \frac{f(x_i)}{\pi(x_i)}$$

- Do not want $\pi(x)$ to be too much smaller or too much larger than f(x)
 - too small leads to significant contribution from poorly sampled region
 - too large means that too much sampling is done in region that is not (now) contributing much

Variance in Importance Sampling Integration

• Choose π to minimize variance in average

$$f(x) = 3x^2$$

n = 100

 $\pi(x)$

 σ_I

n = 1000

$$\sigma_{I}^{2} = \frac{1}{n} \left\{ \int \left[\frac{f(x)}{\pi(x)} \right]^{2} \pi(x) dx - \left[\int \left[\frac{f(x)}{\pi(x)} \right] \pi(x) dx \right]^{2} \right\}$$

$$\frac{1}{3x^{2}} = \frac{1}{\sqrt{8n}} \int \left[\frac{f(x)}{\sqrt{8n}} \right]^{2} \pi(x) dx = \left[\int \left[\frac{f(x)}{\pi(x)} \right] \pi(x) dx \right]^{2} \right\}$$

$$\frac{1}{\sqrt{8n}} = \frac{1}{\sqrt{8n}} \int \left[\frac{1}{\sqrt{8n}} \right]^{2} \pi(x) dx = \left[\int \left[\frac{f(x)}{\pi(x)} \right] \pi(x) dx \right]^{2} \right\}$$

- Smallest variance in average corresponds to $\pi(x) = c \times f(x)$
 - not a viable choice
 - the constant here is selected to normalize $\pi(x)$
 - if we can normalize $\pi(x)$ we can evaluate $\int \pi(x) dx$
 - this is equivalent to solving the desired integral of f(x)
- http://www.eng.buffalo.edu/~kofke/ce530/Applets/applets.html

Summary

- Monte Carlo methods use stochastic process to answer a non-stochastic question
 - generate a random sample from an ensemble
 - compute properties as ensemble average
 - permits more flexibility to design sampling algorithm
- Monte Carlo integration
 - good for high-dimensional integrals
 - better error properties
 - better suited for integrating in complex shape
- Importance Sampling
 - focuses selection of points to region contributing most to integral
 - selecting of weighting function is important
 - choosing perfect weight function is same as solving integral

Extra Slides

Approximate function with Polynomial

Recall, that the interpolating polynomial depends on the chosen grid points

$$P_n(x) = \sum_{i=0}^n l_i(x) f(x_i)$$

Langrange interpolants can be written as,

$$l_i(x) = \frac{\alpha(x)}{(x - x_i)\alpha'(x_i)}$$

$$\alpha(x) = (x - x_1)(x - x_2)..(x - x_n) = \prod_{i=0}^n (x - x_i)$$

$$\alpha'(x_i) = \prod_{\substack{j=0\\j\neq i}}^n (x_i - x_j)$$

Note that here, $\lim_{x \to x_i} l_i(x) = \lim_{x \to x_i} \frac{\alpha(x)}{(x - x_i)\alpha'(x_i)} = 1$

Theorem (Gauss)

Let P(x) be a nontrivial polynomial of degree *n* such that it is orthogonal to polynomials of lesser degree

$$\int_{a}^{b} x^{k} P(x) dx = 0 \qquad 0 \le k \le n - 1$$

If $x_0, x_1, x_2, \dots, x_n$ are zeros of P(x) and

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} c_{i} f(x_{i}) \quad where \quad c_{i} = \int_{a}^{b} \ell_{i}(x) dx$$

Then this approximation is exact for all polynomials of degree less than or equal to 2n+1

Method 2:

In practice, we use Gauss' Theorem and well-studied classes of orthogonal polynomials

Here, Legendre Polynomials (hence sometimes Gauss-Legendre Quadrature)

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{nm}$$

All we do are look for zeros of $P_n(x)$ in [-1,1]. These are our x_i s.

The c_i s can be obtained from

$$c_i = \frac{2}{(1 - x_i^2)(P'_n(x_i))^2}$$