
  

Bulirsch-Stoer MethodBulirsch-Stoer Method



  

Midpoint MethodMidpoint Method

Recall “modified” Euler

This method is  2nd order 

consistent

Also called the leap-frog formula.

Let's modify it a little bit.

yn−1/2=yn−1
h
2
f tn−1, yn−1

yn=yn−1hf tn−1/2, yn−1/2



  

““Modified” Midpoint MethodModified” Midpoint Method

Take n small steps of size h to cover the interval t
0
 to 

t
0
+H.

n+1 function evaluations required

y0= y t0
y1=y t1= y0h f  y0, t 0
y2= y t 2= y02h f  y1, t1
y3= y t3= y12h f  y2, t 2

yi1= y t i1= yi−12h f  yi , t i 

y t 0H =
1
2
[ yn yn−1h f  yn , t n ]

First Step: Euler

Modified Midpoint

i = 1... n-1

Combination



  

““Modified” Midpoint MethodModified” Midpoint Method

Useful because:
It has an error series that consists of only the even powers of h

Reminiscent of Romberg integration with trapezoidal rule 
for quadrature

Can play the same trick of combining steps with different 
values of h to get higher order accuracy – Bulirsch 
Stoer method

Both based on Richardson's extrapolation idea.

y t 0H − y t0=∑ k i h
2i



  

Richardson Extrapolation and Richardson Extrapolation and 
Bulirsch-Stoer MethodBulirsch-Stoer Method

Take a “large” step size H

Consider the answer as an 
analytic function f(h) of 
h=H/n.

Fit the function by polynomial 
or rational function 
interpolation.

Choose a method (e.g., 
midpoint) such that f(h) is 
even in h.  And finally 
extrapolate to h=0.   



  

Polynomial ExtrapolationPolynomial Extrapolation

Get two estimates for y(t
0
+H) using n and 2n steps.

This estimate 4th order accurate, same as 4th order 
Runge-Kutta

Can use exactly the same idea of “successive 
refinement” used in Romberg integration to get higher 
order estimates.

y t0H =
4 y2n− yn

3



  

Polynomial ExtrapolationPolynomial Extrapolation

If Y
n
(k) represents the kth order estimate of y(t

0
+H), then

This is exactly the same as what we did for Romberg 
Integration by building the table.

Y j
k1

=Y j
k 

Y j

 k 
−Y j−1

k 


n j
n j−k



2

−1



  

Bulirsch StoerBulirsch Stoer

A commonly used sequence of “n”s is:

n = {2, 4, 6, 8, 10,... } n
j
=2j

After each n
j
, extrapolate and obtain error estimate

This technique (and extrapolation in general) works best 
for smooth functions.

If not very smooth, use adaptive RK, since it does does 
a better job of negotiating abruptly changing regions of 
the domain.


