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‘ What is the rate of emergence of new diseases?
How many strains of influenza could there be?
How fast do new strains adapt to humans (other species)?

‘ How do diseases spread?
Are there recurrent patterns of emergence (old strains maintenance) ?
What are the most common routes of distributions of diseases?




Problems that need to be solved Conservation
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‘ How can we maintain the genetic variability within a population?

‘ How are populations connected?
What was the connectivity among populations in the past? In the future?










Population genetics

Allele frequencies
Population models
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Coalescence
theory

Population genetics

Allele frequencies
Population models




coeaelesce | koo'les|

verb [ intrans. |

come together and form one mass or whole : the puddles had
coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
e [ trans. | combine (elements) in a mass or whole : fo Aelp
coalesce the community, they established an office.

DERIVATIVES

co-a-les.cence |-1esans| noun

co-a-les.cent |-lesont| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum ‘with’) +
alescere ‘grow up’ (from alere ‘nourish’).
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Wright-Fisher population model

‘ All individuals live one generation and get replaced by their offspring
‘ All have same chance to reproduce, all are equally fit

‘ The number of individuals in the population is constant
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t — 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

t—1
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in
generation t — 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation ¢ have a common ancestor in
generation t — 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in last generation is
1
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The probability that two randomly picked chromosome do not have a common
ancestor is

1
1 — —
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If we know the genealogy of the two individuals then we can
calculate the probability as

rom=(1-35) ()

where 7 is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals
coalesce:

E(r) =2N
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10000 random draw from a population with size
2N = 20 leads to this distribution of times
until two randomly chosen individuals have a
common ancestor. The observed mean waiting
time of 2N=20.34



‘ For the time of coalescence in a sample of two, we will wait on average 2N
generations assuming it is a Wright-Fisher population

‘ The model assumes that the generations are discrete and non-overlapping

‘ Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

‘ We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.



Wright-Fisher Canning Moran

/.}1

~ 1 O =T o2 = o2

offsprlng offspring offspring 2N
E(r) = 2N E(r) = 2N/x E(7) = 3(2N)?
generation time g = 1 g=1 g=2N
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Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n, and its probability
structure looking backwards in time.

General findings:

coalescence rate = (

n n(n —1)
2 2

Once a coalescence happened n is reduce to n — 1 because
two lineage merged into one. He then imposed a continuous

approximation of the Canning’s exchangeable model to get
results.
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........................... Y0 Looking backward in time, the first
.............................. coalescence between two random
___________________________ u3 individuals Is the result of a waiting
process that depends on the sample n and
the total population size .
Using Kingman’s coalescence rate and
Imposing a time scale we can approximate

the process with a exponential distribution:
P(u;|N) = e %)

with the scaled coalescence rate

A:@) 1 k(k—1) k(k—1)

2N ~ 2(2N) 4N



Chance of coalescence in a particular generation

Our approximation is
k\ 1 1
A= ()= 4 0(=
(2)2w + O
This approximation ignores multiple coalescences in one generation. We may
want to worry about that because the approximation ignores those. Here are the

exact probabilities of 0, 1, or more coalescences with 10 lineages in populations
of different sizes:

\ 0) 1 >1
100 0.79560747 0.18744678 0.01694575

1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the coalescent
rate for pairs by about 10-fold, but reduces the rate for triples (or more) by about
100-fold.



Uo If we know the relationships among all

.............................. individuals we can calculate the probability
U3 for each of the particular coalescence event.

With probability P(u,;|/N) a coalescent
.............................. event happens, but we still do not know
which pair of individuals is involved, we pick

a random pair with probability
1

()

therefore

o _up k(1) 2
P(u;j|N,i1,12) = |e 974N AN ]k(k—l)



Uo If we know the relationships among all

.............................. individuals we can calculate the probability
U3 for each of the particular coalescence event.

With probability P(u,;|/N) a coalescent
.............................. event happens, but we still do not know
which pair of individuals is involved, we pick

a random pair with probability
1

()

therefore

P(ug|V, iy, i) = e~ 57
4N
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.............................. of a whole relationship tree (Genealogy
___________________________ u3 (7). We assume that each coalescence is
independent from any other:

X P(ul‘N, ig, 24)



.............................. of a whole relationship tree (Genealogy
U3 (7). We assume that each coalescence is

independent from any other:
........................... ug P(GIN) =

X P(U1’N7 iSa Z4>

X



We are now able to calculate the probability
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
independent from any other:

P(G|N) =

P(UQ’N,’il,Zé)
X P(u1 N, ’ig,i4)
X P(US N, 2'3’4,2'5)

X P(u4|N,i1,2,%3,45)
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P(G|N)

Uo \We are now able to calculate the probability

...... of a whole relationship tree (Genealogy

u3 (7). We assume that each coalescence is
independent from any other:

Uy P(G|N) — P(U0|N,’i1,’i2)

X P(u1 N, ’ig, i4)

X P(U3 N, ’i3,4, 25)

X P(ug|N,i1.2,43.4.5)

I Bilkj—1) 9
H e YWTTAN  —
. 4N
1=0



T k;(k: ~1) 9
........................... o P(G|N) = H Uj =N N

us The expectatlons of the total time to
""""""""""""""" coalescence is the sum of the expectations
for each interval. Each interval has

Uu .
.............................. expecta’uon
AN

k(k—1)
this leads to the expectation for the time of
the most recent common ancestor
L 4N
ki(kj —1)

E(u) =

E(TMRca) =
=0

where J is the number of time intervals w;. In the limit this is

2 1 1 2
lim E(TMRCA> =2N+-N+-N+-=-N+—N+..=4N lim U(TMRCA) = 4N



If we know the genealogy G with certainty then we can can calculate the
population size N. Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.
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If we know the genealogy G with certainty then we can can calculate the
population size N. Finding the maximum probability P(G|N, k) is simple, we
evaluate all possible values for N and pick the value with the highest probability.




Prob( G I N)
[+10™3]
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Population size N

If an oracle gives us the true relationship tree GG then we can calculate the
population size N.

T k(k—1)\ 2
p(GIN,n)—lgeXp (—uk N )4N
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There are at least two problems with the oracle-approach:

‘ There is no oracle to gives us clear information!
‘ We do not record genealogies, our data are sequences, microsatellite loci!

‘ What about the variability of the coalescence process?
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All genealogies were simulated with the same population size N, = 10, 000



freq.

25.
20.
15.
10.
5.
20 40 60 80 100
[103 generations]
Time to MRCA

MRCA = most recent common ancestor (last node in the genealogy) -, ... 2015 power Boer



‘ All individuals have the same fithess (no selection).

‘ All individuals have the same chance to be in the sample (random sampling).

‘ The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n<<N

‘ Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model
and derived a maximal sample size n < 4N for a diploid population.
Although this may look like a severe restriction for the use of the coalescence
iIn small populations, it turned out that the coalescence is rather robust and
that even sample sizes close to the effective population size are not biasing
Immensely.















‘ Large samples coalesce on average in 4N generations.

‘ The time to the most recent common ancestor (TMRCA) has a large variance

‘ Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

‘ The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

‘ With a known genealogy we can estimate the population size. Unfortunately,
the true genealogy of a sample is rarely known.



Genealogy and data our data looks like this:
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Genealogy and data
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‘ Finite populations loose alleles due to genetic drift

‘ Mutation introduces new alleles into a population at rate

‘ With 2N chromosomes we can expect to see every generation 2N new
mutations. The population size N is positively correlated with the the mutation
rate p.

‘ With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.



The observed genetic variability

S = f(N,p,n).
Different N and appropriate . can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

Using genetic variability alone therefore does not allow to disentangle N and .

With multiple dated samples and known generation time we can estimate /N and
1 iIndependently.



By convention we express most results as the compound N and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

© =xNpu,

where 1 is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

‘ for diploids: © = 4N .
‘ for haploids: © = 2N p.
‘ For mtDNA in diploids with strictly maternal inheritance this leads to © =

2N, and if the sex ratiois 1 : 1 then © = Ny

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript NV and call it the effective population size N., and consider
O the mutation-scaled EFFECTIVE population size.
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Nijuveniles 11V,
s NB juveniles adults

A adults

127,417 ratio Ng/N,

\ data

203,869"-,,,lI from catch and survey data (used
a ratio of 1.6)
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Using the infinite sites model we use the number of variable sites S per locus to
calculate the mutation-scaled population size:

S

n—1

1
k
k=1

Ow =

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson’s 6y, uses a mutation rate per locus! To compare with other work use
mutation rate per site.



For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.
Mutation model to describe the change of genetic material over time.




We calculate the Posterior distribution p(©|D) using Bayes’ rule

p(©)p(D[O)
(D)

p(0©|D) =

where p(D|©) is the likelihood of the parameters.




p(D|®,G) =p(G|O)p(D|G)

The probability of a genealogy given parameters.

The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.

p(D|G)
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p(D|®) = [;p(G|©®)p(D|G)dG

The probability of a genealogy given parameters.

The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.
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Metropolis recipe

0. first state

1. perturb old state and
calculate probability of new
state

2. test if new state is better than
old state: accept if ratio of new
and old is larger than a random
number between 0 and 1.

3. move to new state if accepted
otherwise stay at old state

4.goto 1
























‘ Irreducibility: the Markov chain must be able to reach all interesting parts of
the distribution.

‘ Recurrence: all interesting parts must be reached (in principle) infinitely often
if the chain is run infinitely long.

‘ Convergence: the sample mean must converge to the expectation.



Inference of population size Nuu-Chah-Nulth

<, L i
...--"'"'_"'"'-..,J- :




. Natl. Acad. Sci. USA
ol. 88, pp. 8720-8724, October 1991
Evolution

Extensive mitochondrial diversity within a single Amerindian tribe
tics /mol pology /Pacific Northwest/human evolution)

R. H. WARD*, BARBARA L. FRAZIER*, KERRY DEW-JAGER*, AND SVANTE PAABOT

*Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and TD of Zoology, University of Munich,
Luisenstrasse 14, D-8000 Munich 2, Federal Republic of Germany

[The Nuu-Cha-Nulth are organized
in 14 nations totaling 8147
(Nuuchahnulth tribal council Indian
reqgistry from February 2006)]

0.0000 . . .
0.00 0.02 0.04 0.06 0.08

Q)
Bayesian inference: © = 0.036

Ward et al calculated O g ens = 0.043

With a mutation rate of 0.32/site/million year
and a generation time of 27 years we get
Niemales = 2082. Assuming same numbers
of men and women and on average 2
children we get N = 8328.
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Extensions of the basic coalescence
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‘ Population growth (2 parameters) or fluctuations

‘ Migration among populations (2 to many, potentially thousands, parameters)
‘ Population splitting (2 to many parameters)

‘ Recombination (2 parameters)



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.
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‘ In a small population lineages coalesce quickly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches.

‘ In a small population lineages coalesce quickly

‘ In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.
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Populations are rarely completely stable through time,
and attempts have been made to model population

growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth

could be modeled as




For constant population size we found

k(1) )2
p(GlO) = He_“J 1
Relaxing the constant size to exponential

growth and using g = r/u leads to

; k(k 1) 2
@ One—8t
G‘@O’ H © ° @Oe_gt

Present

Past
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Present

Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.

37

Past ..cooiniiiiiars I 2ioit

118 0f 159 — (2013 Peter Beerl



Expansion of Pelophylax lessonae in Europe
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skyline) whereas MIGRATE uses a non-

can handle such scenarios.

skyride

(

parametric approach for its skyline plots that has the tendency to smooth the

fluctuations too much, compared to beast.
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Random fluctuations of the population size are most often ignored. BEAST

(and to some extent MIGRATE)
a full parametric approach
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Comparison of the skyline

100.0

R _ plots of simulated influenza
o S / '\ dynamics  analyzed by
v = - T MIGRATE and BEAST. The
o | x-axis is the time in years
O MIGRATE co?stant pbiof ... and the y-axis is effective
o population size. The data
/., are sequences from 250

o . S * individuals sampled at regular
Ll intervals over 5 years. The
" BEAST constant prior 4 dashed curve is the actual
5 = population size deduced from
 the true genealogy; black

10.0
5.0

/. lines are the mean results of
MIGRATE or BEAST; gray area
IS the 95% credibility interval.
v .. ..  BEAST skyline matches
500 the actual population size

) 7 better than all other methods.
: / /" Simulaton and  graphs
’ courtesy of Trevor Bedford.
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The single population coalescence rate is

k(k —1)
AN

Changes for two populations to

ki(ki — 1) ko(ko — 1)
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A total of 70 individuals from 7 populations analyzed for 377 microsatellite loci:
Mutation model is Brownian motion approximation to the single-step mutation
model
























Model order and probability using Bayes factors

1. all other models: 0.0
Minimal model 1.0
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IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.
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FiG. 3. Melanesian B-globin tree. Time in units of 100,000 years.

138 of 159 — (©)2013 Peter Beerli



4Nm

0.1

0.01

0.001

0.0001

0.0001 0.001  0.01
©






The evil reviewer says: “You shall not use method/program X because your data
does not fit the assumptions for...”

‘ Required samples

‘ Recombination

‘ Population size fluctuation

‘ Divergence



‘ The time to the most recent common ancestor is robust to different sample
sizes.

‘ Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.

samplesize=50

samplesize=10 Felsenstein (2005)
Pluzhnikov and Donnelly
(1996)



0.10 . . - r . . — 1000
¢ ¢ 2 loci
0.08} 1 . 4800
i ¢ ¢ 5 loci
0.06| . [ [ | ¢ % 10 loci|{600
© ‘}\\ M
0.04| . N N 1400
Ii .
- R
0.02f E ‘ —§_ [ e %;;_—__ ____ 1200
0.005——= 10 20 2 5 10 50 0

Sample size Sample size

Medium variability DNA dataset: Mutation-scaled population size © and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ©r = 0.01 is marked with the dotted gray line; M = 100
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Ratio of recombination rate versus mutation rate R

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C'/u. The dotted lines mark the 'true’ values.
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A

scaled population size ©

Upward bias

Ratio of recombination rate versus mutation rate R

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C'/u. The dotted lines mark the 'true’ values.
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~500 simulated datasets

A

scaled migration rate M

Ratio of recombination rate versus mutation rate R

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C'/u. The dotted lines mark the "true’ values.
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~500 simulated datasets

A

scaled migration rate M

Downward bias

-

Ratio of recombination rate versus mutation rate R

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C'/u. The dotted lines mark the "true’ values.
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position: 5 x 10° 4 10, 000bp
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Researchers from the frequency-based camp claim that the coalescence-based
methods are working on an evolutionary time-scale and therefore are not really
usable in a conservation genetics or management context.

There is some truth to this claim because the time scale for the genealogies is in
generations and with large populations such genealogies are deep, but ...

&%




— True value

== \]IGRATE estimate
B Support interval

- -- Harmonic mean






N = 2500 N® = 2500



N = 2500 N® = 2500



The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets.

‘ A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

‘ A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not studied.
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‘ Evening: MIGRATE; use to compare different migration hypotheses using
Bayes factors. We will also run a few basic LAMARC runs.

‘ (On the #molevol2013 website, check out “Bayes factors” and“Parallel
migrate”)
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Coalescent:

Nuu-Cha-Nulth population size: J. Felsenstein. 1971. Inbreeding and variance
effective numbers in populations with overlapping generations. Genetics
68:581-597; R. H. Ward, B. L. Frazier, Kerry Dew-Jager, and S. Paabo.
1991. Extensive mitochondrial diversity within a single Amerindian tribe.
PNAS 88:8780-8724; Sigurgarddéttir S, Helgason A, Gulcher JR, Stefansson K,
Donnelly P. 2000. The mutation rate in the human mtDNA control region. Am J
Hum Genet. 66:1599-609; S. Matsumura and P. Forster. 2008. Generation time
and effective population size in Polar Eskimos. Proc. R. Soc. B 275:1501-1508.

Sample size: Felsenstein, J.2005. Accuracy of coalescent likelihood estimates:
Do we need more sites, more sequences, or more loci? MBE 23: 691-700.
Pluzhnikov A, Donnelly P. 1996. Optimal sequencing strategies for surveying
molecular genetic diversity. Genetics 144: 1247-1262.

Inference:








