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ABSTRACT
We propose a new method for approximate Bayesian statistical inference on the basis of summary

statistics. The method is suited to complex problems that arise in population genetics, extending ideas
developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such
as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved
by fitting a local-linear regression of simulated parameter values on simulated summary statistics, and then
substituting the observed summary statistics into the regression equation. The method combines many of
the advantages of Bayesian statistical inference with the computational efficiency of methods based on
summary statistics. A key advantage of the method is that the nuisance parameters are automatically
integrated out in the simulation step, so that the large numbers of nuisance parameters that arise in
population genetics problems can be handled without difficulty. Simulation results indicate computational
and statistical efficiency that compares favorably with those of alternative methods previously proposed
in the literature. We also compare the relative efficiency of inferences obtained using methods based on
summary statistics with those obtained directly from the data using MCMC.

VALID and efficient statistical inferences are often Tavaré et al. (1997) pioneered a rejection-sampling
method for simulating an approximate posterior ran-difficult to achieve in population genetics prob-

lems, because data sets are large and complex, and dom sample. Any properties of the posterior distribu-
tion, such as 95% intervals, can then be approximatedbecause even the simplest models typically have many

nuisance parameters, which often include the entire by corresponding properties of the sample. Under the
genealogical tree underlying the observations. Until re- method, a candidate value, φ�, for the parameter of
cently, the only feasible approach to statistical inference interest, φ, is simulated from its prior distribution. Ide-
proceeded by comparing summary statistics with their ally, the next step would be to accept φ� with probability
null distribution under a simplified model. This ap- proportional to its likelihood, otherwise φ� is rejected.
proach is statistically inefficient and inflexible, the re- However, because the likelihood is difficult to compute,
sults can be difficult to interpret, and quantitative model Tavaré et al. (1997) replaced the full data with a sum-
comparison is usually not possible. mary statistic S and accepted φ� with probabilty propor-

In recent years, advances in methods of stochastic tional to P(S � s|φ�). This is implemented by accepting
simulation have begun to permit likelihood-based statis- φ� if and only if
tical inference in population genetics problems. In par-

P(S � s|φ�) � cU, (1)ticular, the Bayesian paradigm has many advantages in
this setting (Shoemaker et al. 1999). In addition to convey- where U is a uniform random variable, s denotes the
ing statistical efficiency, Bayesian methods have advantages observed value of S, and c is a constant satisfying c �
of interpretation since they provide probability distribu- maxφP(S � s|φ). As is typical in population genetics, no
tions for the unknown(s) of interest, either singly or sufficient statistic was available in the setting considered
jointly. Perhaps most importantly, the Bayesian approach by Tavaré et al., but they argued that their statistic S
resolves, via integration, the theoretical problems caused (the number of segregating sites) is close to sufficient
by the presence of many nuisance parameters. In many for their parameter φ (the scaled mutation rate).
scenarios, however, the large number of nuisance pa- Although a useful advance, the approach of Tavaré
rameters means that computational problems continue et al. (1997) is limited to relatively simple settings in
to limit the practicality of Bayesian methods. which P(S � s|φ) can readily be computed and max-

imized over φ. Fu and Li (1997) opened the way to
greater generality of this approach by, after simulation
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METHODStheir model and accept φ� if the observed summary
statistic s matches the simulated value s�. For Fu and Li Rejection-based approximate Bayesian inference: Ini-
(1997), the unknown of interest φ was the time since tially we assume that there is a single parameter of inter-
the most recent common ancestor of the sample, for est, φ; the case of vector-valued φ is discussed below.
which a standard coalescent prior distribution was as- The basic rejection-sampling algorithm is: (1) choose a
sumed, and the statistic S was the maximum over haplo- summary statistic S and calculate its value s for the
types of the number of nucleotide differences. observed data set; (2) choose a tolerance �; (3) simulate

This Monte Carlo likelihood approximation was ex- φ� from the prior distribution for φ; (4) simulate a genea-
tended by Weiss and von Haeseler (1998) to multiple logical tree under the chosen model, such as a coales-
summary statistics, some with near-continuous distribu- cent model (see, e.g., Nordborg 2001); (5) simulate
tions, and multiple parameters. Instead of requiring an ancestral allelic types at the root of the tree, and then
exact match, they accept φ� whenever ||s� � s|| � �, for mutation events along the tree to generate a data set
some appropriate metric ||·|| and tolerance �, where s� at the leaves; (6) compute s�, the value of S for the
and s are vectors of summary statistics calculated at, simulated data set; (7) if ||s� � s|| � �, then accept φ�,
respectively, simulated and observed data sets. Rather otherwise reject; and (8) repeat steps 3 to 7 until k
than simulate φ� from a prior distribution, they em- acceptances have been obtained.
ployed a grid of φ values, which is equivalent to assuming Regression adjustment and weighting: Our new algo-
a uniform prior. rithm mimics the above up to and including step 6,

Pritchard et al. (1999) adopted a rejection-sampling except that Pritchard et al. (1999) used a rectangular
method similar to that of Weiss and von Haeseler acceptance region, whereas after appropriate scaling,
(1998) but with simulation from a prior. Their investiga- for example, to equalize variances, we take ||·|| to be the
tion of mutation and demographic parameters, based Euclidean norm ||s|| � √�q

j�1 s2
j , where s � (s1, . . . , sq),

on a sample of human Y chromosome data, is discussed so that acceptance regions are spheres.
further below. Similar methods have been adopted by We propose two innovations at step 7: smooth weight-
Wall (2000), Tishkoff et al. (2001), and Estoup et al. ing and regression adjustment. In steps 1–6 we have
(2002). These rejection-sampling methods combine the simulated independent pairs (φi, si), i � 1, 2, · · · , m,
computational convenience of summary statistics with where each φi is an independent draw from the prior
the advantages of the Bayesian paradigm. A key feature distribution for φ, and the si are simulated values of S
of the approach is that it can handle complex models with φ � φi. Under the Bayesian paradigm P(φ|S) �
with many nuisance parameters, provided only that sim- P(S|φ)P(φ)/P(S) � P(S, φ)/P(S). The posterior distri-
ulation of data under the model is feasible. Moreover, bution is a conditional density that could be estimated
the ratio of acceptances under two models approximates by first estimating the joint density P(S, φ) and dividing
the Bayes factor, and hence quantitative model compari- by an estimate of the marginal density P(S) evaluated
son is possible. at S � s. The (φi, si) are random draws from the joint

A crucial limitation of the rejection-sampling method density, and the rejection method is just one of many
is that only a small number of summary statistics can possible methods for estimating the conditional density
usually be handled. Otherwise, either acceptance rates when S � s. It is based on the idea that the φi for which

||si � s|| is small form an approximate posterior randombecome prohibitively low or the tolerance � must be
sample. Our idea is to improve the approximation byincreased, which can distort the approximation, because
(1) weighting the φi according to the value of ||si � s||the s� are treated equally whenever ||s� � s|| � �, irre-
and (2) adjusting the φi using local-linear regression tospective of the precise value of ||s� � s||. Here, we intro-
weaken the effect of the discrepancy between si and s.duce two improvements to existing rejection-sampling

It is convenient to start with standard linear regres-methods, smooth weighting and regression adjustment,
sion, but this is only to explain ideas: Our recommendeddescribed further below. The key benefit is insensitivity
method uses local-linear regression, described subse-of the approximation to �. This insensitivity permits
quently. Here, we assume that the conditional densityincreasing the number of summary statistics, thus poten-
that we are trying to estimate can be described by thetially increasing the information extracted from the
following regression model for some intercept � anddata. An additional feature of our study is that it is the
vector of regression coefficients 	,first to compare the inferences obtained using summary

statistics with those obtained by full-data Markov chain φi � � 
 (si � s)T	 
 εi , i � 1, · · · , m, (2)
Monte Carlo (MCMC) methods. Given the potential
that the summary-statistic methods have for substantially where the εi are uncorrelated with mean zero and com-
widening the access to and scope of Bayesian inference mon variance. No other assumptions are made about
in population genetics, it is important to illustrate the the distribution of the εi and hence the φi. When si �

s the φi are drawn from the posterior distribution withrelative efficiency of both methods.
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mean E[φ|S � s] � �. The least-squares estimate of (�,
I�(t) � �1, t � �

0, t � �,	) minimizes

in place of (5), then�
m

i�1

{φi � � � (si � s)T	}2 . (3)

�̂ � �i φiI�(‖si � s‖)

�i I�(‖si � s‖)
, (8)The solution is

(�̂, 	̂) � (XTX)�1XT� ,
which is the rejection-method estimate. More generally,
the rejection method can be viewed as the special casewhere
of our local-linear regression approach that uses the
indicator kernel and local-constant regression.

The regression approach can be extended to adjustX � �1 s11 � s1 · · · s1q � sq

···
···

...
···

1 sm1 � s1 · · · smq � sq

� , � � �φ1

···
φm

� .
multiple parameters simultaneously, using multivariate
regression, in which case 	 is a matrix and � and φi

It follows from (2) that the φ*i defined by are vectors. Examples of the approximation of joint
posterior densities for pairs of parameters are given

φ*i � φi � (si � s)T	̂ below.
Choice of tolerance, �: For both rejection and regres-form an approximate random sample from P(φ|S � s).

sion methods we set � to be a quantile, P�, of the empiri-This will be exact if the regression model is truly linear
cal distribution function of the simulated ||si � s||. Forand the distributional assumptions given above for the εi
example, P� � 0.01 means that the 1% of simulated siare met and if the sample is so large that �̂ � �, 	̂ � 	.
that are closest to s are assigned a nonzero weight.Note that �̂ is an estimate of the posterior mean E[φ|S �
Choice of � involves a bias-variance trade-off: Increasings] and hence can be interpreted as a point estimate of φ.
� reduces variance thanks to a larger sample size forLocal-linear regression: The linearity and additivity
fitting the regression, but also increases bias arising fromassumptions underpinning (2) will often be implausi-
uncorrected departures from additivity and linearity.ble, but may apply locally in the vicinity of s. To imple-

In the limit of increasing �, all si are accepted underment local-linear regression, we replace the minimiza-
the rejection method, and so posterior approximationstion (3) with
approach prior values. For practical values of �, the
simulation results below suggest that there can be a�

m

i�1

{φi � � � (si � s)T	}2K�(‖si � s‖). (4)
notable “bias” of the posterior estimate toward the prior.
The local-linear regression method approaches simpleThe kernel function K�(t) is taken here to be the Epa-
linear regression in this limit, and so the accuracy ofnechnikov kernel,
the results for large � depends on the adequacy of the
linearity and additivity assumptions. In the limit as �

K�(t) � �c ��1(1 � (t/�)2), t � �

0, t � �,
(5) tends to zero, the regression and rejection methods are

equivalent. Thus, the relative merits of the two methods
where c is a normalizing constant. Other kernel func- hinge on their sensitivity to � in the vicinity of � � 0,
tions could be used, for example, the Gaussian kernel, which is explored via simulation studies below.
but (5) is convenient because K�(t) decreases smoothly Posterior density estimation: The posterior density at
but steeply to zero as |t | increases, so that few values a candidate value φ0 for φ can be approximated using
are assigned small nonzero weights: Such values slow kernel density estimation applied to the weighted
down computations for little gain (see also Fan and sample,
Gijbels 1996; Fan and Zhang 1999).

The solution to (4) is �̂(φ0|s) � �i K�(φ*i � φ0)K�(‖si � s‖)

�iK�(‖si � s‖)
, (9)

(�̂, 	̂) � (XTW X)�1XTW� , (6)
where � is a density-estimation bandwidth. Once again

where W is the matrix whose ith diagonal element is we employ the Epanechnikov kernel, but note that the
K�(||si � s||) while all other elements are zero. The role of the density-estimation kernel function is distinct
posterior mean estimate is from its regression-weighting role. There is no require-

ment for the two kernels to have the same functional
�̂ � �i φ*i K�(‖si � s‖)

�i K�(‖si � s‖)
. (7) form. We have chosen to do so here, but note that

the regression tolerance � is usually different from the
density-estimation bandwidth �.If we had adopted local-constant regression (i.e., 	 �

0) and the indicator kernel function As noted above, using a local-constant approach with
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the indicator kernel leads to the usual rejection-method ods are also compared with those obtained by the
MCMC method of Wilson and Balding (1998), whichestimate of the posterior density function:
has been expanded to include a model of population
growth (Wilson et al. 2003; the program BATWING is�̂(φ0|s) � �i K�(φi � φ0)I�(‖si � s‖)

�iI�(‖si � s‖)
.

available at http://www.maths/abdn.ac.uk/�ijw). The
growth model is the same as that described above, butAlternative methods, such as local-likelihood-based
with a number of different parameterizations, which aremethods, can be used to estimate densities from the
discussed below. Thus we can compare the results fromadjusted sample. For all the density estimation in this
approximate posterior distributions based on summaryarticle we have used the local-likelihood method of
statistics with those from posterior distributions basedLoader (1996).
on the full data.

Stable population model: The parameter of interest
is 
 � 2N�, where N is the number of chromosomes inSIMULATION STUDY
the population and � is the mutation rate. Setting 
 �

Equation 6 is the standard expression for the fitted 10, we simulated 100 data sets of 445 chromosomes
value at the intercept in a weighted linear regression typed at eight completely linked loci. These data sets
and can thus be estimated by any standard method. For were then analyzed with both the regression and the
the results presented in this article, we used the function rejection methods, using P� � 0.00125, 0.0025, 0.005,
lm(), either in the R statistical language (Ihaka and 0.01, 0.02, 0.04, 0.08, 0.16 and simulation sizes k � 2000,
Gentleman 1996; http://cran.r-project.org) or for mul- 10,000, and 50,000. For the full-data estimation using
tivariate response variables in the commercial program MCMC, we ran BATWING for 2 � 106 parameter up-
Splus. The density-estimation program Locfit is also im- dates (20 tree updates per parameter update), after a
plemented in R. burn-in of 105 parameter updates, thinned every 200,

Motivating data set and model: In this section we to yield 10,000 points. For the regression and rejection
describe a number of simulation-based tests in which the methods we assumed rectangular priors on 
 of (0, 50)
relative performances of the rejection and regression and flat improper priors for the MCMC method. The
methods are compared. These tests are centered around two priors are comparable because the widths of the
the models and data set analyzed by Pritchard et al. rectangular priors are large relative to the posterior
(1999). The data set consists of gene frequencies at density. In particular, although it is likely that the poste-
eight loci on the Y chromosome, surveyed from 445 rior distribution for 
 is improper (i.e., has infinite area),
males taken from a number of different populations to the degree of approximation inherent in MCMC,
around the world, previously published by Perez-Lez- after burn-in the simulated samples are so far from 50
aun et al. (1997) and Seielstad et al. (1998). Pritchard that in practice there would be no difference in behavior
et al. (1999) considered a population growth model whether a rectangular prior was used or not. The results
similar to that of Weiss and von Haeseler (1998) and are illustrated in Figure 1, which shows the relative mean
Beaumont (1999), in which an ancestral population square error (RMSE) of the estimates of 
 for k � 50,000
of constant size NA chromosomes begins exponential plotted against the tolerance, P�, together with approxi-
growth tg generations from the present time, giving a mate standard errors estimated via a nonparametric
current population size of N0 � NAexp(rtg), where r is bootstrap. The RMSE is calculated as (1/n)�n(
̂i � 
)2/
the population growth rate per generation. Pritchard 
2. It can be seen that the RMSE of 
 estimated by the
et al. (1999) extracted three summary statistics from the rejection method diverges rapidly from that estimated
data: (1) the mean (across loci) of the variance in repeat by MCMC with increasing values of P�, and this contrasts
numbers; (2) the mean effective heterozygosity (i.e., with the regression method in which the divergence is
the probability of two randomly drawn chromosomes small. We have also repeated the analysis (here and with
differing at a particular locus, averaged across loci); and the growth model discussed below) using the median
(3) the number of distinct haplotypes in the sample. of the relative absolute errors and obtained very similar
They simulated data points under a coalescent model results, indicating that the improvement in accuracy
and applied the rejection algorithm described above, does not depend on a few outlying points. Interestingly,
keeping only points that were within 10% of the ob- although the RMSE of the MCMC method is the smallest
served values of each summary statistic. Data sets were of the three methods, the difference between it and
simulated with a number of mutation models, and they that of the regression method is not substantial. For p� �
analyzed both the combined data set of 445 chromo- 0.01 the RMSEs for sample sizes 10,000 and 2000 are very
somes and the data from each population separately. similar. However, for smaller p� there is a tendency for
In our comparisons, we consider only the single-step the RMSE to begin increasing because of the increased
mutation model (Ohta and Kimura 1973), with no sampling variance. This affects the regression method
limit on the allele sizes, and the combined data set. most strongly, and for k � 2000 and P� � 0.00125,

0.0025, and 0.005 (sample sizes 3, 5, and 9, respectively)The results from the regression and rejection meth-
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Figure 1.—A plot of the RMSE in estimates of

 against a measure of tolerance P�, as defined in
the text. Estimates using the rejection method
are shown as a dotted line and those from the
regression method as a solid line. The RMSE for
the MCMC method is shown by the solid square
at P� � 0. Standard errors are shown as vertical
bars.

the RMSE of the regression method is worse than that of the � � 0.0007, tg � 900, NA �1500, r � 0.0075 estimated
by Pritchard et al. (1999). Because of the time takenthe rejection method. Most studies will wish to calculate

distributional summaries and estimate densities, and for the MCMC method to converge, a sample size of
200 was used rather than 445 as in the original data set.therefore generally require sample sizes of �500, and

thus this effect will generally have little practical impor- For the MCMC simulation we ran 107 parameter updates
(20 tree updates per parameter update), after a burn-tance, unless a large number of summary statistics are

used, as discussed later. in of 5 � 105 parameter updates, thinned every 1000,
to yield 10,000 points. For both the MCMC and theWe have also estimated the RMSE for the heterozygos-

ity-based and variance-based estimators of 
 (King et al. rejection/regression methods we used gamma priors
with parameters (shape, scale): 
 (4, 1), � (3, 2), � (3,2000, Equations 2–5). For the variance-based estimator

the RMSE is 0.46 � 0.11 and for the heterozygosity- 1). Values of P� were the same as for the stable popula-
tion case, and we present results for k � 50,000 in Figurebased estimator it is 0.092 � 0.016. Both estimators have

means close to 10 and the cause of the large RMSE is 2. It can be seen that in general the regression method
has superior performance to the rejection method andthe substantially higher variance compared to the other

methods. that the MCMC method is more accurate than either.
In the case of 
, the relative performance of the differentGrowing population model: Although the model in-

cludes four parameters that might be considered estima- methods is very similar to that in the stable population
case, with the RMSE of the rejection method divergingble—i.e., r, tg, NA, and � in the model of Pritchard et

al. (1999)—only three parameters are identifiable in very rapidly from the regression-based value with in-
creasing values of P�. For �, there is a marked improve-the likelihood function. Although more parameters can

be estimated through the use of informative priors as ment in accuracy using the MCMC method. There is
appreciable divergence between the regression and re-discussed in Tavaré et al. (1997) and performed in

Pritchard et al. (1999), for the RMSE analysis we re- jection methods with P�, but it is less marked than for

. A similar pattern is seen with �. It can be seen thatstricted ourselves to a three-parameter model. This leads

to a choice of parameterizations (e.g., Weiss and von with low P� the RMSE of the regression method begins
to rise.Haeseler 1998; Beaumont 1999) and, for compatibility

with the BATWING program, we used Additional summary statistics: We investigated the
mean across loci of the kurtosis in the allele length


 � 2NA�, � � rNA, � � r tg .
distribution and the variance of the variances in length
among loci (Di Rienzo et al. 1998; Reich et al. 1999),One hundred test data sets were simulated using the
the mean maximum allele frequency, a multivariateparameter values: 
 � 2.1, � � 11.25, and � � 6.75.

These values were chosen because they correspond to equivalent of kurtosis (i.e., based on the fourth power of
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Figure 2.—A plot of the RMSE in estimates of 
, �, and � against a measure of tolerance P�, as defined in the text. Solid
lines were obtained using three summary statistics. Shaded lines were obtained using five summary statistics. Other details are
as for Figure 1.

the Euclidean distance from the centroid of the lengths method begins to rise with small P�, as shown in Figure
2, but the lines do not cross. By contrast we found thatmeasured at each locus for each chromosome), and the

measure of linkage disequilibrium, �2 (see, e.g., Hudson with k � 2000 the RMSE for the regression method
began to be notably larger than that for the rejection2001), averaged over all pairs of loci. The rationale for

the latter stems from the observation by Slatkin (1994) method at P� � 0.02. This is due to the increased variabil-
ity in the regression estimates with increasing numberthat the degree of linkage disequilibrium is reduced in

growing populations, even for completely linked loci. of summary statistics (the “curse of dimensionality”).
For fixed simulation size k, increasing the number ofNone of these statistics individually led to a marked

improvement in RMSE. The latter two statistics ap- summary statistics requires an increase in the tolerance
�. For the rejection method, the results of Figure 2peared to lead to a small, and possibly statistically sig-

nificant, reduction in the RMSE for �, and the results indicate that the bias thus introduced outweighs the
benefits of the additional information. This is not sofrom using five summary statistics (the original three

plus the multivariate kurtosis and �2) are illustrated as for our regression method, because of its insensitivity
to �, although the improvement is small. Inevitably,shaded lines in Figure 2. The effect of the extra summary

statistics is to produce either no change or a small im- there will be a tendency for diminishing returns from
each extra summary statistic. Overall, however, thereprovement in the RMSE for the regression method for

all tolerances, but a substantial worsening for the rejec- seems to be room for additional improvement in the
fit using regression-based methods, such that accuracytion method (for all tolerances). With five summary

statistics, as with three, the RMSE of the regression close to that of full-data methods may be obtained, but
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Figure 3.—Plots of the posterior densities for 
, �, and � estimated by MCMC, regression, and rejection methods. Densities
estimated by the regression method are shown on the left, and those estimated by the rejection method are on the right. The
posterior density estimated by MCMC is shown as a solid line, and the prior is shown as a dashed line. Posterior densities from
the regression/rejection methods are shown as shaded lines (P� � 0.00125, shaded; P� � 0.16, shaded dotted).

using orders of magnitude fewer computations. The tions were carried out, then the rejection method will
outperform both the MCMC and the regression meth-MCMC simulations for the growing population model

took 100 processor days on 700 Mhz Pentium 3 proces- ods as the tolerance becomes larger. This is because
the data will cause the true posterior distribution tosors, whereas the summary statistic analysis took 4 hr

for three parameters and 27 hr for five parameters. The fluctuate away from the prior, whereas, in the case of
the rejection method, if the tolerance is large all sampleslatter increase in time does not reflect the consequences

of scaling up with more summary statistics, but that the will be randomly taken from the prior and have the
same mean as the prior and negligible variance in thecomputation of �2 is very time consuming, whereas that

for the other summary statistics is generally small com- mean. Similarly, because the posterior distribution esti-
mated by the rejection method tends toward the priorpared to the time for generating samples. It should also

be noted that in all the simulations described in this when the tolerance is large, if a prior is chosen such
that the mean of the posterior distribution tends to bearticle the time spent performing the regression calcula-

tions is a negligible proportion of the total time to carry on one side of the true value (for example, when the
likelihood is very skewed) and the prior mean is on theout the coalescent simulations—a few seconds in com-

parison to several hours. It is conceivable that with a other side of the true value, the RMSE for the rejection
method can be seen first to decrease with increasing P�very large number of summary statistics and a large

number of points accepted within the tolerance limits, and then increase. A comparison of the mean posterior
variances might avoid this problem. However, the RMSEthe time spent performing the regression calculations

predominates, in which case the rejection method may is a useful summary because it combines both the effect
of variability in the estimates and bias. Therefore wehave an advantage in that more points can be analyzed

within a given time. use RMSE to summarize the relative performance of
the different methods and have chosen priors that avoidThe performance of RMSE as a measure of accuracy

depends on the priors chosen. If the prior mean for a this problem.
Comparison of posterior densities: We estimated margi-parameter is the same as the value with which the simula-
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Figure 4.—Plots of the joint posterior densities for the three pairs of parameters among 
, �, and �, estimated by MCMC,
regression, and rejection methods. Densities estimated by the regression method are shown on the left, and those estimated by
the rejection method are on the right. A tolerance of 0.08 was used to compare the regression and rejection methods. The 10,
50, and 90% highest posterior density contours are shown. Those estimated by MCMC are shown as solid lines, and those
estimated from summary statistics are shown as shaded lines.

nal posterior densities for 
, �, and � for one of the different location as well as a broader variance. In com-
paring the regression- and rejection-based posterior100 data sets simulated under the growing-population

model. The regression and rejection methods were ap- densities there is no independent “true” posterior den-
sity based on summary statistics with which to compareplied with two different tolerances (P� � 0.00125 and

P� � 0.16) and k � 500,000, while for the MCMC method the results in Figure 3. However for P� � 0.00125 the
posterior densities obtained by both the rejection anddensities were estimated using 10,000 BATWING out-

puts. The results are presented in Figure 3. It can be regression methods are very similar. If it is assumed that
the regression method accelerates the rate of conver-seen that there is a general tendency for the posterior

density estimated by the rejection method to be closer gence to the “true” posterior distribution on the basis
of the summary statistics, then similarity of the regres-to the prior than that estimated by the other methods,

particularly with P� � 0.16. The densities for the two sion- and rejection-based distributions may indicate con-
vergence, although there is always the possibility thattolerances are generally different with the rejection

method and very similar with the regression method. both will continue to change slowly with decreasing P�.
To estimate joint posterior densities for pairs of pa-The posterior density from the MCMC method is gener-

ally sharper than those from the other methods and is rameters, bivariate local-linear regression adjustments
were carried out using lm() in Splus, which can handlemore likely to be centered around the true value.

The true posterior distribution based on summary multivariate response variables. Figure 4 shows the 10,
50, and 90% highest posterior density (HPD) contoursstatistics need not be very similar to that of the full data,

estimated by MCMC—i.e., it could potentially have a for pairs of parameters considered jointly. It can be seen
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TABLE 1

Comparison of estimates using regression and rejection methods

Pritchard et al. (1999) Regression Rejection

Original Replicate P� � 2% P� � 16% P� � 2% P� � 16% Prior

� Mean 7 7.2 6.7 6.8 7.1 7.5 8
�10�4 95% CI 4–12 3.5–12 3.7–12 3.6–13 3.5–12 3.6–13 4–14

r Mean 75 75 100 93 82 67 50
�10�4 95% CI 22–209 23–210 52–290 47–270 24–220 10–210 10–180

tg Mean 900 900 750 900 900 1000 1000
95% CI 300–2150 320–2100 272–2100 320–3200 300–2100 200–2700 25.5–3700

NA Mean 1.5 1.5 1.5 1.3 1.3 2.9 36
�103 95% CI 0.1–4.9 0.14–4.4 0.57–6 1–14 0.096–4.6 0.099–11 0.098–250

Means and 95% equal-tailed credible intervals of the marginal posterior distributions of �, r, tg, and NA estimated from the
445 Y chromosomes described in Pritchard et al. (1999). The prior values have been recomputed by us and differ slightly from
the authors’ original values. CI, credible interval.

that both summary-statistic-based methods tend to have able to replicate the results of Pritchard et al. (1999)
for their definition of tolerance, and generally therewider joint posterior densities than the MCMC-based

method, particularly for (
, �). However, the densities is similarity between their results and those from the
rejection method using our definition of tolerance, atestimated by the regression method are much closer to

those estimated by MCMC than those estimated by the least for the narrower tolerances. As with the results
above, there is a tendency for the estimates from therejection method.
rejection method to move closer to the prior with in-
creasing P�, whereas this effect is not so strong with

ANALYSIS OF HUMAN Y CHROMOSOME DATA the regression method. The results from the regression
method with P� � 0.02 tend to be more different fromPritchard et al. (1999) estimated posterior densities
those obtained using the method of Pritchard et al.for the four “natural” parameters of the growing popula-
(1999) than the results from the rejection method, andtion model: �, r, tg, and NA. The BATWING program
it is tempting to conclude that the regression-based re-does not use this parameterization, and we use an alter-
sults are closer to the true p(
|s), despite the 12.5-foldnative, similar parameterization described below for
increased intensity of sampling with the method ofcomparing posterior distributions from the rejection
Pritchard et al. (1999).and regression methods with the full-data likelihoods.

To compare the results from a four-parameter model,However, despite not having the full-data likelihood as
similar to that used by Pritchard et al. (1999), usinga benchmark it is still useful to compare the perfor-
full-data posterior distributions estimated with BAT-mances of the regression and rejection methods with
WING as a benchmark, we have used the following pa-these four parameters, and the results are shown in
rameterization (and priors): � (gamma: shape � 10,Table 1. We present results for tolerance P� � 0.02 and
scale �0.00008), NA (lognormal: mean log 8.5, SD logP� � 0.16. The results for the rejection and regression
2), r (exponential: 0.005), and 	 � tg/NA (gamma: shapemethods are based on 100,000 simulations. We summa-
�2, scale �1). In 5 individuals we detected changes inrize the posterior distributions by the mean and 95%
microsatellite lengths that were fractions of the repeatequal-tail probability intervals, as in Pritchard et al.
length, and we therefore used only 440 individuals in(1999). In addition, we repeated the results of Pritch-
the MCMC estimation. The new summary statistics cal-ard et al. (1999), using their definition of tolerance
culated from this group were variance in allele length,(10% of the observed value) with 106 simulations, in
1.123; heterozygosity, 0.635; and number of distinct hap-which �1600 points were accepted.
lotypes, 312. For the MCMC simulation we ran 107 pa-The main pattern evident in Table 1 is that all the
rameter updates (40 tree updates per parameter up-methods give broadly similar answers irrespective of the
date), after a burn-in of 5 � 105 parameter updates,tolerance. This appears to be because there is very little
thinned every 1000, to yield 10,000 points. The resultsinformation in the data on much of the parameter
of this analysis are shown in Figure 5 and reflect thosespace. For example, the priors and posteriors for � are
in Table 1. The full-data posterior distributions are gen-almost identical, and therefore it is not surprising that
erally very broad and similar to the priors, with theeven with P� � 0.16 in the rejection method, where the
exception of values of NA, r, and 	 close to 0, which areacceptance rate is 100-fold greater than in the study by
clearly rejected by the data. Not surprisingly, therefore,Pritchard et al. (1999), there is very little difference

in the summaries of the posterior distributions. We are the rejection method generally appears to perform well.
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Figure 5.—Plots of the posterior densities for �, NA, rg, and 	 estimated by MCMC, regression, and rejection methods. Details
are as for Figure 3.

CONCLUSIONSFor NA and r, where the prior is more different from
the posterior, the usual pattern is observed whereby the There are two principal advantages of our approach
distributions estimated by the rejection method move over the rejection method: Simulated φ� are assigned a
toward the prior for large P�, and this effect is weaker weight that decreases with ||s� � s||, and local-linear
in the regression method. For � and 	, where the poste- regression corrects for the difference between E[φ|S �
riors and priors are very similar, no such effect is ob- si] and E[φ|S � s]. We have illustrated with examples,
served, and in fact, for 	 the regression-based density where we have the full-data posterior distributions, that
appears to change more with P� than the rejection-based this innovation leads to substantially improved accuracy
density. It should be borne in mind that although a over earlier methods. We also illustrate the relative accu-
minimum of 1000 independent points are used in the racy of MCMC-based and summary-statistic-based meth-
density estimates, there will still be some sampling error ods for inferring past population growth. It can be seen
in the estimates (and also, of course, sampling error that the MCMC-based method is consistently superior
associated with the regression itself). A further point to to the summary-statistic-based methods and highlights
note is that with 	, where the posterior density is close that it is well worth making the effort to obtain full-data
to 0, the regression method gives some negative values, inferences if possible. However, undoubtedly there are
which have been truncated in Figure 5. This could be advantages to the use of summary statistics, both in the
avoided by the use of transformations or a generalized ease of implementation and in the time taken to obtain
linear model in the regression. results, and it appears to be a viable initial approach for

As with the results in Figure 3 the rejection-based applying Bayesian methods to some population genetic
densities tend to be similar to the regression-based den- problems. Because of the curse of dimensionality there
sities for P� � 0.02, suggesting a degree of convergence. are limitations to the number of summary statistics that
The density for r is the most different. However, tests can be handled with a reasonable number of simulations
with P� � 0.002 indicate that the rejection-based density (otherwise the problem will approach that of MCMC
does indeed converge to that estimated by the regression in computational time). It remains to be seen which
method. The results suggest that the posterior distribu- population genetic problems can be easily summarized
tions for r and 	, given the summary statistics, are notably by a small enough number of summary statistics for

this approach to be competitive with MCMC. Furtherdifferent from the full-data posterior distributions.



2035Approximate Bayesian Computation

pp. 309–324 in Handbook of Statistical Genetics, edited by D. J.research is needed to find a more rigorous way for
Balding, M. Bishop and C. Cannings. Wiley, Chichester, UK.

choosing summary statistics, including the use of or- Ihaka, R., and R. Gentleman, 1996 R: a language for data analysis
and graphics. J. Comput. Graph. Stat. 5: 299–314.thogonalization and “projection-pursuit” methods. A

King, J. P., M. Kimmel and R. Chakraborty, 2000 A power analysisproblem that needs to be considered is the potential
of microsatellite-based statistics for inferring past population

for the regression method to adjust the simulated points growth. Mol. Biol. Evol. 17: 1859–1868.
Loader, C. R., 1996 Local likelihood density estimation. Ann. Stat.so that they fall outside the support of the prior. For

24: 1602–1618.example, if the posterior density is large at 0 negative
Nordborg, M., 2001 Coalescent theory, pp. 179–212 in Handbook

values can be generated. This can be addressed by the of Statistical Genetics, edited by D. J. Balding, M. Bishop and C.
Cannings. Wiley, Chichester, UK.use of transformations. In addition, improved regres-

Ohta, T., and M. Kimura, 1973 A model of mutation appropriatesion methods, or other methods of conditional-density
to estimate the number of electrophoretically detectable alleles

estimation, may overcome this problem and allow wider in a finite population. Genet. Res. 22: 201–204.
Perez-Lezaun, A., F. Calafell, M. Seielstad, E. Mateu, D. Comastolerances to be used, thereby decreasing the number

et al., 1997 Population genetics of Y-chromosome short tandemof simulations that are needed and increasing the num-
repeats in humans. J. Mol. Evol. 45: 265–270.

ber of summary statistics that can be accommodated. Pritchard, J. K., M. T. Seielstad, A. Perez-Lezaun and M. W.
Feldman, 1999 Population growth of human Y chromosomes:Overall, however, the general approach presented here
a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:should allow for a greatly expanded use of approximate
1791–1798.
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