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Population genetics can help us to find answers

We are interested in questions like

– How big is this population?
– Are these populations isolated? How common is migration?
– How fast have they been growing or shrinking?
– What is the recombination rate across this region?
– Is this locus under selection?

All of these questions require comparison of many individuals.



Coalescent-based studies

How many gray whales were there prior to whaling?

When was the common ancestor of HIV lines in a Libyan hospital?

Is the highland/lowland distinction in Andean ducks recent or ancient?

Did humans wipe out the Beringian bison population?

What proportion of HIV virions in a patient actually contribute to the
breeding pool?

What is the direction of gene flow between European rabbit populations?



Basics: Wright-Fisher population model

All individuals release many gametes and new individuals for the next
generation are formed randomly from these.



Wright-Fisher population model

Population size N is constant through time.

Each individual gets replaced every generation.

Next generation is drawn randomly from a large gamete pool.

Only genetic drift affects the allele frequencies.



Other population models

Other population models can often be equated to Wright-Fisher

The N parameter becomes the effective population size Ne

For example, cyclic populations have an Ne that is the harmonic mean
of the various sizes



The big trick

We have a model for the progress of a population forward in time

What we observe is the end product: genetic data today

We want to reverse this model so that it tells us about the past of our
sequences



The Coalescent

Sewall Wright showed that the probability
that 2 gene copies come from the same
gene copy in the preceding generation is

Prob (two genes share a parent) =
1

2N



The Coalescent

Present

Past

In every generation, there is a chance of 1/2N to coalesce. Following the
sampled lineages through generations backwards in time we realize that it
follows a geometric distribution with

E(u) = 2N [the expectation of the time of coalescence u of two tips is 2N ]



The Coalescent

JFC Kingman generalized this for k gene
copies.

Prob (k copies are reduced to k − 1 copies) =
k(k − 1)

4N



Kingman’s n-coalescent

Present

Past



Kingman’s n-coalescent

Present

Past
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The expectation for the time
interval uk is
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The Θ parameter

The n-coalescent is defined in terms of Ne and time.

We cannot measure time just by looking at genes, though we can measure
divergence.

We rescale the equations in terms of Ne, time, and the mutation rate µ.

We can no longer estimate Ne but only the composite parameter Θ.

Θ = 4Neµ in diploids.

Multiple time point data can separate Ne and µ



What is this coalescent thing good for?



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We know that we can calculate p(Genealogy|N)



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We remember the probability calculation

p(G|N) = p(u1|N, k)
1

2N
× p(u2|N, k− 1)

1

2N
× .....



Utopian population size estimator

1. We get the correct genealogy from an infallible oracle

2. We remember the probability calculation

p(Genealogy|N) =
T�

j

e−uj
kj(kj−1)

4N
1

2N



Utopian population size estimator



Utopian population size estimator



Utopian population size estimator

N = 2270

N = 12286



Lack of infallible oracles

We assume we know the true genealogy including branch lengths

We don’t really know that

We probably can’t even infer it:

– Tree inference is hard in general
– Population data usually don’t have enough information for good tree

inference



Non-likelihood use of coalescent

Summary statistics

– Watterson’s estimator of θ
– FST (estimates θ and/or migration rate)
– Hudson’s and Wakeley’s estimators of recombination rate

Known-tree methods

– UPBLUE (Yang)
– Skyline plots (Strimmer, Pybus, Rambaut)

These methods are conceptually easy, but not always powerful, and they
are difficult to extend to complex cases.



Genealogy samplers

Acknowledge that there is an underlying genealogy–

– but we don’t know it
– we can’t infer it with high certainty
– we can’t sum over all possibilities

A directed sample of plausible genealogies–

– can capture much of the information in the unknown true genealogy
– takes a long time but not forever

These are genealogy sampler methods



Outline

1. Introduction to coalescent theory

2. Practical example: red drum

3. Genealogy samplers

4. Break

5. Survey of samplers

6. Evolutionary forces

7. Practical considerations



What is the effective population size of red drum?

Red drum, Sciaenops ocellatus, are large fish found in the Gulf of Mexico.

Turner, Wares, and Gold
Genetic effective size is three orders of magnitude smaller than adult census
size in an abundant, estuarine-dependent marine fish
Genetics 162:1329-1339 (2002)



What is the effective population size of red drum?

Census population size: 3,400,000

Effective population size: ?

Data set:

– 8 microsatellite loci

– 7 populations

– 20 individuals per population



What is the effective population size of red drum?

Three approaches:

1. Allele frequency fluctuation from year to year

Measures current population size
May be sensitive to short-term fluctuations

2. Coalescent estimate from Migrate

Measures long-term harmonic mean of population size
May reflect past bottlenecks or other long-term effects

3. Demographic models

Attempt to infer genetic size from census size
Vulnerable to errors in demographic model
Not well established for long-lived species with high reproductive
variability



Population model used for Migrate

Multiple populations along Gulf coast

Migration allowed only between adjacent populations

Allowing for population structure should improve estimates of population
size





What is the effective population size of red drum?

Estimates:

Census size (N): 3,400,000
Allele frequency method (Ne): 3,516 (1,785-18,148)
Coalescent method (Ne): 1,853 (317-7,226)

The demographic model can be made consistent with these only by assuming
enormous variance in reproductive success among individuals.



What is the effective population size of red drum?

Allele frequency estimators measure current size

Coalescent estimators measure long-term size

Conclusion: population size and structure have been stable



What is the effective population size of red drum?

Effective population size at least 1000 times smaller than census

This result was highly surprising

Red drum has the genetic liabilities of a rare species

Turner et al. hypothesize an “estuary lottery”

Unless the eggs are in exactly the right place, they all die
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Coalescent estimation of population parameters

Mutation model: Steal a likelihood model from phylogeny inference

Population genetics model: the Coalescent



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ)



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
�

G

P (Data|G)P (G|Θ)



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
�

G

P (Data|G)P (G|Θ)

P (Data|G) comes from a mutational model



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
�

G

P (Data|G)P (G|Θ)

P (G|Θ) comes from the coalescent



Coalescent estimation of population parameters

L(Θ) = P (Data|Θ) =
�

G

P (Data|G)P (G|Θ)

�
G is a problem



Can we calculate this sum over all genealogies?

Tips Topologies
3 3
4 18
5 180
6 2700
7 56700
8 1587600
9 57153600
10 2571912000
15 6958057668962400000
20 564480989588730591336960000000
30 4368466613103069512464680198620763891440640000000000000
40 30273338299480073565463033645514572000429394320538625017078887219200000000000000000
50 3.28632 × 10112

100 1.37416 × 10284



A solution: Markov chain Monte Carlo

If we can’t sample all genealogies, could we try a random sample?

– Not really.

How about a sample which focuses on good ones?

– What is a good genealogy?
– How can we find them in such a big search space?



A solution: Markov chain Monte Carlo

Metropolis recipe

0. first state

1. perturb old state and calculate
probability of new state

2. test if new state is better than
old state: accept if ratio of new
and old is larger than a random
number between 0 and 1.

3. move to new state if accepted
otherwise stay at old state

4. go to 1



How do we change a genealogy?

z
A B

C D

1

2
j

k



MCMC walk result
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MCMC walk result–with problems

Tree space Tree space
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Improving our MCMC walker: Heating

Metropolis Coupled Markov chain Monte Carlo (AKA MC3)

Run several independent parallel chains: each has a different temperature

After some sampling of genealogies, swap the genealogies of a pair of
chains if the ratio between probabilities in the cold and the hot chain is
larger than a random number drawn between 0 and 1.



Improving our MCMC walker: MCMCMC or MC3



better MCMC walk result
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Likelihood and Bayesian approaches

All genealogy samplers search among genealogies

All of them require some type of guide value (“driving value”) to
determine which genealogies will be proposed

Two major approaches: Likelihood-based and Bayesian

Major ideological difference, relatively small practical one



Likelihood samplers

Use arbitrary values of the parameters to guide the search

Sample genealogies throughout the search

At the end of the search, evaluate P (G|Θ) for sampled genealogies

Correct for the influence of the driving values

Iterate to improve driving values



Bayesian samplers

Propose new driving values throughout the run

New driving values drawn from a prior

Accept or reject driving values based on P (G|Θ)

Final conclusions based on histogram of driving values



Likelihood analysis

We will approximate:

L(Θ) =
�

G

P (Data|G)P (G|Θ)



Likelihood analysis

We will approximate:

L(Θ) =
�

G

P (Data|G)P (G|Θ)

by sampling n genealogies from P (Data|G)P (G|Θ0):

L(Θ) =
1

n

�

G∗

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Here the G∗ are no longer random genealogies; they are sampled from a
distribution that depends on the driving value Θ0



Likelihood analysis

L(Θ) =
1

n

�

G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Isn’t this circular? We have a solution for the unknown L(Θ) in terms of
the unknown L(Θ0).



Likelihood analysis

L(Θ) =
1

n

�

G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)/L(Θ0)

Isn’t this circular? We have a solution for the unknown L(Θ) in terms of
the unknown L(Θ0).

L(Θ)

L(Θ0)
=

1

n

�

G

P (Data|G)P (G|Θ)

P (Data|G)P (G|Θ0)

This doesn’t give us the actual value of L(Θ) but it does allow us to
compare various values of Θ and choose the best.



Likelihood analysis

This approach is only asymptotically correct

For finite sample sizes, it has a bias toward its driving value

We can greatly reduce this:

– Start with an arbitrary Θ0

– Run the sampler a while and estimate the best Θ
– It will be biased toward Θ0, but...
– Use it as the new Θ0 and start over



Bayesian approach

A Bayesian analysis requires us to provide priors for all parameters

These could be based on detailed knowledge of the biology

In practice, uninformative flat priors are used























































Advantages of Bayesian analysis

Easier to interpret probabilities than likelihoods

Smoothing a histogram is quicker than finding maxima of a likelihood
curve

Not dependent on starting driving values

Parameter values near zero estimated more accurately

Prior information can be incorporated (in theory)

Trendy!



Disdvantages of Bayesian analysis

No information currently available on correlation of parameters

Dependent on good priors; results can be severely distorted by bad priors



Bottom line

Kuhner 2006: Bayes and likelihood almost identical

Beerli 2006: Bayes has edge with sparse data

My recommendations:

– Use Bayes if you think a parameter is very close to zero
– Otherwise, with rich data either method is good
– With poor data, do you really want to be doing this analysis at all?
– When using Bayes, be careful of your priors!

If the genealogy search is inadequate, both methods will fail (and fail in
similar ways)



Break
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BEAST (http://evolve.zoo.ox.ac.uk/beast/)

Drummond and Rambaut

Estimates:

– Overall population size x mutation rate
– Overall growth rate
– With multiple time points, mutation rate and generation time
– Detailed skyline plots of growth rate
– Relaxed molecular clock

Bayesian analysis

DNA, RNA, amino acids, codon data, continuous and discrete
morphological traits



BEAST

Strengths:

– Multiple time point data (ancient DNA, microorganisms)
– Flexible population growth model
– Highly flexible mutation model

Weaknesses:

– Single population
– No recombination



IM, IMa2
(http://lifesci.rutgers.edu/ heylab/HeylabSoftware.htm#IM)

Nielsen, Hey, Wakeley

Estimates:

– Population size x mutation rate
– Immigration rates
– Size of ancestral population
– Time of divergence
– Daughter population growth rates (IM only)

Bayesian analysis

DNA, RNA, microsatellites, HapSTRs

IM has the most models; IMa2 has more than two populations



IM/IMa2

Strengths:

– Correct analysis of young (less than 4N generations) populations
– Distinguishing gene flow from common ancestry

Weaknesses:

– Single time point only
– No recombination
– Exponential growth only



LAMARC
(http://evolution.gs.washington.edu/lamarc.html)

Kuhner, Beerli, Felsenstein et al.

Estimates:

– Population size x mutation rate
– Immigration rates
– Growth rates
– Overall recombination rate

Likelihood or Bayesian analysis

DNA, RNA, SNPs, microsats, elecrophoretic alleles

Gene mapping, haplotype inference



LAMARC

Strengths:

– Recombination
– Data with unknown haplotype phase
– Combining dissimilar loci

Weaknesses:

– Assumes stable population structure (divergence coming soon!)
– Single time point data only
– Exponential growth only



MIGRATE-N
(http://popgen.csit.fsu.edu/Migrate-n.html)

Beerli

Estimates:

– Population size x mutation rate
– Immigration rates
– Tests among different migration models

Likelihood or Bayesian analysis

DNA, RNA, SNPs, microsats, elecrophoretic alleles

Multiple time points



Bayes factor tests of models

Bayes factor
Simulation
results

c�2009 Peter Beerli
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MIGRATE-N

Strengths:

– Skyline plots for all parameters
– Multiple time points
– Bayes factor tests of different models

Weaknesses:

– Assumes stable population structure and size
– No recombination or growth
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Generations

Comparison of skyline plots between MIGRATE-N and BEAST for simulated
influenza data with multiple time points



Genetree
(http://www.stats.ox.ac.uk/g̃riff/software.html)

Infinite sites model

Use MCMC to sample a path
through the possible histories

Sample many different possible
histories



Dating mutations events using Genetree

Milot et al. (2000)



Comparison between Migrate-N and Genetree

(Beerli and Felsenstein 2001)



Genetree

Strengths:

– Efficient search
– Dating of specific mutations
– Dating of the common ancestor

Weaknesses:

– Infinite-sites mutational model only
– No recombination
– Exponential growth only
– Single time point
– Less developed user interface
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Genetic drift (Theta)

With one time point, we estimate Θ = 4Neµ in diploids

The number estimated is 2Neµ in haploids or Neµ in mtDNA

Two ways to separate Ne and µ:

– Dated historical data (ancient DNA, etc.)
– External estimate of mutation rate

For most organisms, Ne is less than N

Demographic models can help resolve this



Variable population size

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size Θ.



Exponential population size expansion or shrinkage



Grow a frog

-50 0 50 100

1

0.01

0.1

Θ

g
Mutation Rate Population sizes

-10000 generations Present
10−8 8, 300, 000 8, 360, 000
10−7 780, 000 836, 000
10−6 40, 500 83, 600



Bayesian skyline plots



Growth estimation software

Currently done with Lamarc or Beast

Statistically weaker than estimation of Θ:

– Biased upwards with one locus/one timepoint
– Reasonable results with multiple unlinked loci
– Even better results with multiple timepoints

Lamarc assumes exponential growth/shrinkage

Beast has a generalized model



Gene flow

p(G|Θ,M) =
�

uj

�
pop.�

i

g(Θi,M.i)

��
2
Θ if event is a coalescence,

Mji if event is a migration from j to i.



Gene flow: What researchers used (and still use)

FST

σW

σB

σB

σB
σW

σW



What researchers used (and still use)

Sewall Wright showed
that

FST =
1

1 + 4Nm

and that it assumes

migration into all subpopulation is the same

population size of each island is the same



Simulated data and Wright’s formula



Maximum Likelihood method to estimate gene flow
parameters

(Beerli and Felsenstein 1999)

100 two-locus datasets with 25 sampled individuals for each of 2 populations
and 500 base pairs (bp) per locus.

Population 1 Population 2

Θ 4N (1)
e m1 Θ 4N (2)

e m2

Truth 0.0500 10.00 0.0050 1.00
Mean 0.0476 8.35 0.0048 1.21
Std. dev. 0.0052 1.09 0.0005 0.15



Complete mtDNA from 5 human“populations”

A total of 53 complete mtDNA sequences (∼ 16 kb):
Africa: 22, Asia: 17, Australia: 3, America: 4, Europe: 7.

Assumed mutation model: F84+Γ



Full model: 5 population sizes + 20 migration rates



Restricted model: only migration into neighbors allowed

0.015

0.009

0.005
0.001



Coalescent migration estimation

Done by Lamarc, Migrate-N, IM/IMa estimating:

– Θ per subpopulation
– Immigration from each subpopulation into each of the others

Lamarc and Migrate-N assume stable population structure

IM/IMa assume divergence of two or more populations from a common
ancestor



Recombination rate estimation



Coalescent recombination estimators

Previously done with Recombine

Currently done with Lamarc

Assumptions:

– No gene conversion
– Equal recombination rate at every site

Allows correct use of data with recombination to estimate other
parameters

Use of recombining data in a non-recombination-aware algorithm leads
to bias



Estimation of divergence time

Wakeley and Nielsen (2001)



Estimation of divergence time

Wakeley and Nielsen (2001) Figure 7. The joint integrated likelihood surface
for T and M estimated from the data by Orti et al. (1994). Darker values
indicate higher likelihood.



Coalescent divergence estimators

Done with IM/IMa

Up to 10 populations

Co-estimates divergence time, migration rates and populations sizes

Not all data sets can separate migration from divergence

Multiple loci are helpful



Multiple time points

Ancient DNA or historical samples of fast-evolving organisms

Done with Beast or Migrate-N

Points must be:

– Dated
– Far enough apart for measurable evolution

Advantages:

– Separation of Θ into Ne and µ
– Much better resolution of growth rates



Haplotype uncertainty



Haplotypes

Either haplotypes must be resolved or the program must integrate over all
possible haplotype assignments.

Currently only Lamarc can do the latter.



MCMC versus best-fit haplotypes

Advantages of MCMC:

– Avoids bias of ”too good” best fit
– Incorporates error of haplotypes into error estimates

Advantages of best-fit haplotyping:

– Much faster
– Avoids MCMC search failure issues
– Can use external evidence about best haplotypes



Linkage disequilibrium mapping

With a disease mutation model we can use the recombination estimator to
post-analyze the sampled genealogies that where used to estimate r and
find the location of the disease mutation on the DNA.



Linkage disequilibrium mapping

Lamarc can perform this type of mapping.

Takes phenotype data with penetrance model

Handles haplotype uncertainty

Currently limited in the size of case it can handle

We hope to relax this limitation soon



Selection coefficient estimation

Krone and Neuhauser (1999), Felsenstein (unpubl)

only A
A or a

A a
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Information content of the coalescent

What can best give us more information?

More individuals?

More base pairs?

More loci?



Variability of the coalescent

10 coalescent trees generated with the same population size, N = 10, 000



Variability of mutations



Does adding more individuals help?



The bottom line

The information content of a single locus is limited

Additional sequence length or individuals are only mildly helpful

Multiple loci allow the best estimates

If recombination is present, long sequences can partially substitute for
multiple loci

Multiple time points can also help, if significant evolution happens
between them



Two publications supporting this conclusion

Felsenstein, J (2005) Accuracy of coalescent likelihood estimates: Do we
need more sites, more sequences, or more loci? MBE 23: 691-700.

Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for
surveying molecular genetic diversity. Genetics 144: 1247-1262.



Practical advice

The major practical problem: how long to run the program?

Additionally: how many chains, how many steps per chain?



The problem of defaults

Length of run varies hugely with data and model

There are no good defaults

Programs normally ship with defaults which let you see results quickly

These are not suitable for publication runs!



Parameter estimates are still changing

If your estimate of a parameter looks like this:

Chain Θ
1 0.0035
2 0.0047
3 0.0088
4 0.0105
5 0.0121

you have not run the program long enough. It’s probably best to increase
the number of steps in each chain.



Parameter estimates are still changing

If your estimate of a parameter looks like this:

Chain Θ
1 0.0035
2 0.0047
3 0.0088
4 0.0105
5 0.0121

you have not run the program long enough. It’s probably best to increase
the number of steps in each chain.

You would prefer to see this:

Chain Θ
1 0.0056
2 0.0098
3 0.0110
4 0.0107
5 0.0109



Trees aren’t being accepted

If almost all trees are being rejected, the sampler obviously cannot move
well.

This might be due to a bad starting value

More likely it shows a need for heating



Parameter values leap around

If your estimate of a parameter looks like this:

Chain r
1 0.0005
2 0.0047
3 0.0001
4 0.1105
5 0.0021

Your chains may be too short. (Each visits only one of multiple peaks.)

Your data may have no power.



Program takes forever to run

You may be asking too much

If estimating migration, try restricting your migration model

Disable or fix at constant values parameters you aren’t interested in

Try randomly removing some individuals

– More than 20 individuals per population doesn’t help much
– Don’t systematically remove similar sequences!

Borrow a faster computer with lots of memory



Error bars too wide

Particularly common with growth and recombination estimates

Usually not an error in your run

Badly performing genealogy samplers get estimates that are TOO
NARROW

If yours are too wide:

– Limit the number of parameters being inferred
– Add unlinked loci
– Add time points
– Add sequence length, if recombination present

Always publish error bars; point estimates have no meaning without them



Validating genealogy samplers

Two useful tools:

TRACER (Drummond and Rambaut)

– ESS statistic
– Traces of parameters throughout the run
– Histograms of parameter values

AWTY (Swofford)

– Traces of clade probabilities throughout the run



Review paper

Kuhner MK (2008) Coalescent genealogy samplers: windows into population
history. TREE 24:86-93.
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What was the long-term population size of gray whales?

Alter, Rynes and Palumbi (2007) DNA evidence for historic population size
and past ecosystem impacts of gray whales. PNAS 104: 15162-15167.



What was the long-term population size of gray whales?

How many gray whales pre-whaling?

Whaling ship records not conclusive

Recent slowing of the observed growth rate may suggest recovery

Molecular data an alternative source of information



What was the long-term population size of gray whales?

10 loci:

– 7 autosomal
– 2 X-linked
– 1 mtDNA

Complex mutational model with rate variation among loci

Complex population model with subdivision and copy number

Complex demographic model relating Ncensus to Ne



What was the long-term population size of gray whales?



What was the long-term population size of gray whales?

Locus n Estimated N
Aut ACTA 72 162,625

BTN 72 76,369
CP 76 77,319
ESO 72 272,320
FGG 72 180,730
LACTAL 72 44,410
WT1 80 51,972

X G6PD 30 2,769
PLP 52 92,655

mtDNA Cytb 42 107,778
All data 96,400 (78,500-117,700)
Current census 18,000-29,000
Previous models 19,480-35,430



What was the long-term population size of gray whales?

Important conservation implications

Effect on ecosystem significant:

– Resuspension of up to 700 million cubic meters sediment
– (12 Yukon Rivers worth)
– Food for 1 million sea birds

If accepted, result suggests halving gray whale kill rate

Broadly similar results for minke, humpback, and fin whales


